首页 > 最新文献

Russian Journal of Bioorganic Chemistry最新文献

英文 中文
The Role of Estrogen Receptors in the Therapeutic Effect of Oxyresveratrol, Phytoestrogen, During, and After Oxidative Stress
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060037
Cansu Kara Oztabag, Akif Hakan Kurt, Lokman Ayaz, Mehmet Ali Sungur

Objective: Oxidative stress plays a significant role in the development and progression of various neurodegenerative disorders, including aging, atherosclerosis, cancer, ischemia reperfusion, inflammation, rheumatoid arthritis, liver diseases. Additionally, it is implicated in retinal diseases (RD) such as glaucoma, diabetic retinopathy (DR), retinal vein occlusion (RVO), and age-related macular degeneration (AMD). In our study, we studied the therapeutic effect of oxyresveratrol, against H2O2-induced oxidative damage. Additionally, we investigated the role of estrogen receptors in the observed effects. Methods: Oxidative stress was induced by H2O2 in ARPE-19 cells. Oxyresveratrol was applied at seven different concentrations during and after oxidative stress. Besides, estrogen receptor inhibitors were applied 1 h before the treatment to investigate the role of estrogen receptors. Changes in cell viability were assessed using XTT. To investigate the effectiveness of oxyresveratrol at the molecular level, cell death detection, Caspase-3, and TOS measurement kits were employed. Results and Discussion: Our findings indicated that oxyresveratrol at concentrations of 10 and 100 µM reduced cell damage in ARPE-19 cells during and after-induced oxidative stress. Additionally, the therapeutic effect of oxyresveratrol in ARPE-19 cells during oxidative stress formation appeared to be dependent on estrogen receptors α and β, while the therapeutic effect after oxidative stress seemed to be GPER1-dependent. Furthermore, oxyresveratrol suppressed apoptosis in ARPE-19 cells under oxidative stress, reducing cell death, and both during and after oxidative stress, oxyresveratrol application decreased TOS levels. Although the antioxidant, anti-inflammatory, and neuroprotective effects of oxyresveratrol are well known, this is the first study to investigate its therapeutic effects on H2O2 induced oxidative stress in ARPE-19 cells and the involvement of estrogen receptors in these effects. Conclusions: We believe that oxyresveratrol may be an alternative therapy in the prevention and treatment of retinal diseases.

目的:氧化应激在包括衰老、动脉粥样硬化、癌症、缺血再灌注、炎症、类风湿性关节炎和肝脏疾病在内的各种神经退行性疾病的发生和发展过程中发挥着重要作用。此外,它还与视网膜疾病(RD)有关,如青光眼、糖尿病视网膜病变(DR)、视网膜静脉闭塞(RVO)和老年性黄斑变性(AMD)。在我们的研究中,我们研究了氧白藜芦醇对 H2O2 诱导的氧化损伤的治疗效果。此外,我们还研究了雌激素受体在观察到的效果中所起的作用。研究方法在 ARPE-19 细胞中用 H2O2 诱导氧化应激。在氧化应激期间和之后,应用七种不同浓度的氧白藜芦醇。此外,在处理前 1 小时使用雌激素受体抑制剂,以研究雌激素受体的作用。细胞活力的变化用 XTT 进行评估。为了研究氧白藜芦醇在分子水平上的有效性,采用了细胞死亡检测、Caspase-3 和 TOS 测量试剂盒。结果与讨论:我们的研究结果表明,10 µM和100 µM浓度的氧白藜芦醇可减少ARPE-19细胞在氧化应激过程中和之后的细胞损伤。此外,氧化应激形成过程中氧白藜芦醇对 ARPE-19 细胞的治疗效果似乎依赖于雌激素受体 α 和 β,而氧化应激后的治疗效果似乎依赖于 GPER1。此外,氧化白藜芦醇还能抑制氧化应激下ARPE-19细胞的凋亡,减少细胞死亡。尽管氧白藜芦醇的抗氧化、抗炎和神经保护作用已广为人知,但这是首次研究氧白藜芦醇对 H2O2 诱导的 ARPE-19 细胞氧化应激的治疗作用,以及雌激素受体在这些作用中的参与。研究结论我们认为氧白藜芦醇可能是预防和治疗视网膜疾病的一种替代疗法。
{"title":"The Role of Estrogen Receptors in the Therapeutic Effect of Oxyresveratrol, Phytoestrogen, During, and After Oxidative Stress","authors":"Cansu Kara Oztabag,&nbsp;Akif Hakan Kurt,&nbsp;Lokman Ayaz,&nbsp;Mehmet Ali Sungur","doi":"10.1134/S1068162024060037","DOIUrl":"10.1134/S1068162024060037","url":null,"abstract":"<p><b>Objective:</b> Oxidative stress plays a significant role in the development and progression of various neurodegenerative disorders, including aging, atherosclerosis, cancer, ischemia reperfusion, inflammation, rheumatoid arthritis, liver diseases. Additionally, it is implicated in retinal diseases (RD) such as glaucoma, diabetic retinopathy (DR), retinal vein occlusion (RVO), and age-related macular degeneration (AMD). In our study, we studied the therapeutic effect of oxyresveratrol, against H<sub>2</sub>O<sub>2</sub>-induced oxidative damage. Additionally, we investigated the role of estrogen receptors in the observed effects. <b>Methods:</b> Oxidative stress was induced by H<sub>2</sub>O<sub>2</sub> in ARPE-19 cells. Oxyresveratrol was applied at seven different concentrations during and after oxidative stress. Besides, estrogen receptor inhibitors were applied 1 h before the treatment to investigate the role of estrogen receptors. Changes in cell viability were assessed using XTT. To investigate the effectiveness of oxyresveratrol at the molecular level, cell death detection, Caspase-3, and TOS measurement kits were employed. <b>Results and Discussion:</b> Our findings indicated that oxyresveratrol at concentrations of 10 and 100 µM reduced cell damage in ARPE-19 cells during and after-induced oxidative stress. Additionally, the therapeutic effect of oxyresveratrol in ARPE-19 cells during oxidative stress formation appeared to be dependent on estrogen receptors α and β, while the therapeutic effect after oxidative stress seemed to be GPER1-dependent. Furthermore, oxyresveratrol suppressed apoptosis in ARPE-19 cells under oxidative stress, reducing cell death, and both during and after oxidative stress, oxyresveratrol application decreased TOS levels. Although the antioxidant, anti-inflammatory, and neuroprotective effects of oxyresveratrol are well known, this is the first study to investigate its therapeutic effects on H<sub>2</sub>O<sub>2</sub> induced oxidative stress in ARPE-19 cells and the involvement of estrogen receptors in these effects. <b>Conclusions:</b> We believe that oxyresveratrol may be an alternative therapy in the prevention and treatment of retinal diseases.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2445 - 2454"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic Profile of Transgenic Birch Plants with the Conifer Cytosolic Glutamine Synthetase Gene GS1 带有针叶树细胞质谷氨酰胺合成酶基因 GS1 的转基因桦树植物的代谢概况
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060207
V. G. Lebedev

ve: Increasing tree productivity by genetic engineering methods is one of the main trends of forest biotechnology. A promising strategy for this is to improve the use efficiency of nitrogen, which is the main limiting factor of plant growth. For this purpose, the GS1 gene from Scots pine was transferred to downy birch (Betula pubescens) plants. This gene encodes the cytosolic form of glutamine synthetase, the main enzyme of nitrogen metabolism in plants. Methods: To assess the effects of insertion of this gene, the birch plant metabolome was analyzed using GC-MS and HPLC-MS. Results and Discussion: GC-MS analysis found 197 metabolites in birch extracts, but the metabolomes of two transgenic clones showed no statistically significant differences from the control. Using the S-plot based on the OPLS-DA model, 32 metabolite markers affecting the separation of control and transgenic birch plants were detected; 22 of them were identified. Three metabolites among them were nitrogen-containing, including γ-aminobutyric acid, the immediate precursor of which is glutamine. HPLC-MS analysis found 48 metabolites, but transgenic plants did not differ from the control. GC-MS, however, showed a decrease in the content of two phenolic compounds in transgenic plants, which is characteristic of improved nitrogen supply. Conclusions: The study shows that modification of nitrogen metabolism in birch plants does not significantly affect the biochemical composition of tree shoots.

{"title":"Metabolic Profile of Transgenic Birch Plants with the Conifer Cytosolic Glutamine Synthetase Gene GS1","authors":"V. G. Lebedev","doi":"10.1134/S1068162024060207","DOIUrl":"10.1134/S1068162024060207","url":null,"abstract":"<p>ve: Increasing tree productivity by genetic engineering methods is one of the main trends of forest biotechnology. A promising strategy for this is to improve the use efficiency of nitrogen, which is the main limiting factor of plant growth. For this purpose, the <i>GS1</i> gene from Scots pine was transferred to downy birch (<i>Betula pubescens</i>) plants. This gene encodes the cytosolic form of glutamine synthetase, the main enzyme of nitrogen metabolism in plants. Methods: To assess the effects of insertion of this gene, the birch plant metabolome was analyzed using GC-MS and HPLC-MS. Results and Discussion: GC-MS analysis found 197 metabolites in birch extracts, but the metabolomes of two transgenic clones showed no statistically significant differences from the control. Using the S-plot based on the OPLS-DA model, 32 metabolite markers affecting the separation of control and transgenic birch plants were detected; 22 of them were identified. Three metabolites among them were nitrogen-containing, including γ-aminobutyric acid, the immediate precursor of which is glutamine. HPLC-MS analysis found 48 metabolites, but transgenic plants did not differ from the control. GC-MS, however, showed a decrease in the content of two phenolic compounds in transgenic plants, which is characteristic of improved nitrogen supply. Conclusions: The study shows that modification of nitrogen metabolism in birch plants does not significantly affect the biochemical composition of tree shoots.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2596 - 2610"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cognitive Improvement Effects of Polymer-Based Microencapsulated Celecoxib in a Rat Model of Alzheimer’s Disease 聚合物微胶囊塞来昔布对阿尔茨海默病大鼠模型认知能力的改善作用
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060189
Rajendra Herur Vishnumurthy, M. Gnana Ruba Priya, Prashant Tiwari, Viswas Raja Solomon

Objective: The microencapsulation of Celecoxib (CXB) using different polymers aimed to enhance its solubility and permeability profile for potential neuroprotective applications in neurodegenerative diseases like Alzheimer’s disease. Methods: The solvent evaporation method was used for microencapsulation of CXB formulation. Characterization and evaluation of microencapsulation was done by FT-IR, DSC, XRD, SEM, and dissolution methods. Neuroprotective effect was evaluated by Scopolamine induced rat model. Results and Discussion: The solvent evaporation method yielded microencapsulated CXB formulations with high drug loading and improved dissolution profiles. Scanning electron microscopy revealed morphological changes, while differential scanning calorimetry and X-ray diffraction confirmed the conversion of CXB to an amorphous state post-encapsulation. Fourier-transform infrared spectroscopy indicated the formation of hydrogen bonds between CXB and polymers. In behavioral studies, microencapsulated CXB demonstrated superior efficacy in mitigating cognitive impairment induced by scopolamine, suggesting its potential as a neuroprotective agent. This effect may be attributed to the activation of cholinergic pathways. Conclusions: Thus, microencapsulation presents a promising strategy to enhance the therapeutic efficacy of CXB for neurodegenerative disorders.

{"title":"Cognitive Improvement Effects of Polymer-Based Microencapsulated Celecoxib in a Rat Model of Alzheimer’s Disease","authors":"Rajendra Herur Vishnumurthy,&nbsp;M. Gnana Ruba Priya,&nbsp;Prashant Tiwari,&nbsp;Viswas Raja Solomon","doi":"10.1134/S1068162024060189","DOIUrl":"10.1134/S1068162024060189","url":null,"abstract":"<p><b>Objective:</b> The microencapsulation of Celecoxib (CXB) using different polymers aimed to enhance its solubility and permeability profile for potential neuroprotective applications in neurodegenerative diseases like Alzheimer’s disease. <b>Methods:</b> The solvent evaporation method was used for microencapsulation of CXB formulation. Characterization and evaluation of microencapsulation was done by FT-IR, DSC, XRD, SEM, and dissolution methods. Neuroprotective effect was evaluated by Scopolamine induced rat model. <b>Results and Discussion:</b> The solvent evaporation method yielded microencapsulated CXB formulations with high drug loading and improved dissolution profiles. Scanning electron microscopy revealed morphological changes, while differential scanning calorimetry and X-ray diffraction confirmed the conversion of CXB to an amorphous state post-encapsulation. Fourier-transform infrared spectroscopy indicated the formation of hydrogen bonds between CXB and polymers. In behavioral studies, microencapsulated CXB demonstrated superior efficacy in mitigating cognitive impairment induced by scopolamine, suggesting its potential as a neuroprotective agent. This effect may be attributed to the activation of cholinergic pathways. <b>Conclusions:</b> Thus, microencapsulation presents a promising strategy to enhance the therapeutic efficacy of CXB for neurodegenerative disorders.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2312 - 2324"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Synthesis, In Silico Studies, and Anticancer Activity of Novel Nitrobenzene Thiazolyl Hydrazones against the EGFR 新型硝基苯噻唑肼酮对表皮生长因子受体的设计、合成、硅学研究和抗癌活性
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060190
Sonali S. Shinde, Jaydeo T. Kilbile, Shankar Thapa, Mahalakshmi S. Biradar, Sachin S. Bhusari, Pravin S. Wakte

Objective: Design, synthesis, characterization, and in silico studies of novel nitrobenzene thiazolyl hydrazones (VIa–VIh) and inhibitory action against the EGFR. Methods: All synthesized compounds were evaluated for their anticancer activity against selected cancer cell lines in vitro utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and EGFR enzymatic assay. Target molecule features were investigated through a computational study that included drug-likeness, ADMET profiling, and molecular docking. Results and Discussion: The compounds (IVb), (IVe), and (IVh) showed prominent anticancer activity with an IC50 value of 15.45, 18.23, 10.69 μM, and 12.75, 16.05, 11.95 μM against chosen cancer cell lines A549, and MCF-7 respectively. Additionally, in vitro EGFR enzymatic activity provided insight into the process of anticancer action of the majority of the active molecules. According to a molecular docking study, every molecule binds to EGFR (PDB ID: 5D41) with high affinities. Conclusions: Among all, derivatives (IVb), (IVe), and (IVh) showed moderate inhibition compared to different tested derivatives. Thus, the present study of all novel nitrobenzene thiazolyl hydrazones could be further optimized to develop new EGFR inhibitors.

目的:设计、合成、表征新型硝基苯噻唑肼(VIa-VIh)并对其进行硅学研究:新型硝基苯噻唑肼(VIa-VIh)的设计、合成、表征和硅学研究以及对表皮生长因子受体的抑制作用。方法:利用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑 MTT 法和表皮生长因子受体酶法,在体外评估了所有合成化合物对所选癌细胞株的抗癌活性。通过计算研究,包括药物相似性、ADMET 分析和分子对接,研究了靶分子的特征。结果与讨论:化合物(IVb)、(IVe)和(IVh)显示出突出的抗癌活性,对所选癌细胞株 A549 和 MCF-7 的 IC50 值分别为 15.45、18.23、10.69 μM 和 12.75、16.05、11.95 μM。此外,体外表皮生长因子受体酶活性有助于了解大多数活性分子的抗癌作用过程。根据分子对接研究,每个分子都能与表皮生长因子受体(PDB ID:5D41)高亲和力结合。结论在所有衍生物中,(IVb)、(IVe)和(IVh)与不同的测试衍生物相比表现出中等程度的抑制作用。因此,本研究对所有新型硝基苯噻唑肼类化合物进行了进一步优化,以开发新的表皮生长因子受体抑制剂。
{"title":"Design, Synthesis, In Silico Studies, and Anticancer Activity of Novel Nitrobenzene Thiazolyl Hydrazones against the EGFR","authors":"Sonali S. Shinde,&nbsp;Jaydeo T. Kilbile,&nbsp;Shankar Thapa,&nbsp;Mahalakshmi S. Biradar,&nbsp;Sachin S. Bhusari,&nbsp;Pravin S. Wakte","doi":"10.1134/S1068162024060190","DOIUrl":"10.1134/S1068162024060190","url":null,"abstract":"<p><b>Objective:</b> Design, synthesis, characterization, and<i> in silico</i> studies of novel nitrobenzene thiazolyl hydrazones (<b>VIa–VIh</b>) and inhibitory action against the EGFR. <b>Methods:</b> All synthesized compounds were evaluated for their anticancer activity against selected cancer cell lines <i>in vitro</i> utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and EGFR enzymatic assay. Target molecule features were investigated through a computational study that included drug-likeness, ADMET profiling, and molecular docking. <b>Results and Discussion:</b> The compounds (<b>IVb</b>), (<b>IVe</b>), and (<b>IVh</b>) showed prominent anticancer activity with an IC<sub>50</sub> value of 15.45, 18.23, 10.69 μM, and 12.75, 16.05, 11.95 μM against chosen cancer cell lines A549, and MCF-7 respectively. Additionally, <i>in vitro</i> EGFR enzymatic activity provided insight into the process of anticancer action of the majority of the active molecules. According to a molecular docking study, every molecule binds to EGFR (PDB ID: 5D41) with high affinities. <b>Conclusions:</b> Among all, derivatives (<b>IVb</b>), (<b>IVe</b>), and (<b>IVh</b>) showed moderate inhibition compared to different tested derivatives. Thus, the present study of all novel nitrobenzene thiazolyl hydrazones could be further optimized to develop new EGFR inhibitors.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2483 - 2498"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Update on Chemistry and Biological Activities of Naturally Occuring Isocoumarins and 3,4-Dihydroisocoumarins (A Review)
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060153
Ghulam Shabir, Aamer Saeed, Moonsa Haq, Fatima Choudry, Rimsha Kiran, Madiha Irfan, Shaneeza Tariq, Hesham R. El-Seedi

Naturally occurring isocoumarins and dihydroisocoumarins emerged as a captivating class of compounds due to their structural diversity and multifaceted biological activities. It stands out as a group of metabolites, which are coumarin isomers with a reversed lactone moiety. They are synthesized by various organisms including plants, marine life, microbes, bacteria, and fungi. Our previous review covered the period 2016–2019, documenting nearly all natural products of this class. This updated review unravels the naturally occurring isocoumarins and dihydroisocoumarins by comprehensively exploring their structural elucidation and the broad spectrum of biological activities ranging from antimicrobial and anticancer properties to antitumour and enzyme inhibition. The classification and biological activities with structural elucidation revealed in our previous review are updated by the discovery of new members of this class. This review includes the most recent research on the structural variety and biological activity of these natural compounds.

{"title":"Update on Chemistry and Biological Activities of Naturally Occuring Isocoumarins and 3,4-Dihydroisocoumarins (A Review)","authors":"Ghulam Shabir,&nbsp;Aamer Saeed,&nbsp;Moonsa Haq,&nbsp;Fatima Choudry,&nbsp;Rimsha Kiran,&nbsp;Madiha Irfan,&nbsp;Shaneeza Tariq,&nbsp;Hesham R. El-Seedi","doi":"10.1134/S1068162024060153","DOIUrl":"10.1134/S1068162024060153","url":null,"abstract":"<p>Naturally occurring isocoumarins and dihydroisocoumarins emerged as a captivating class of compounds due to their structural diversity and multifaceted biological activities. It stands out as a group of metabolites, which are coumarin isomers with a reversed lactone moiety. They are synthesized by various organisms including plants, marine life, microbes, bacteria, and fungi. Our previous review covered the period 2016–2019, documenting nearly all natural products of this class. This updated review unravels the naturally occurring isocoumarins and dihydroisocoumarins by comprehensively exploring their structural elucidation and the broad spectrum of biological activities ranging from antimicrobial and anticancer properties to antitumour and enzyme inhibition. The classification and biological activities with structural elucidation revealed in our previous review are updated by the discovery of new members of this class. This review includes the most recent research on the structural variety and biological activity of these natural compounds.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2426 - 2444"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu-Metal Catalyst Based Click Chemistry: Synthesis, Characterization, Molecular Docking, and Antibacterial Evaluation of Triazole Derivatives 基于铜金属催化剂的点击化学:三唑衍生物的合成、表征、分子对接和抗菌评估
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060165
Sachin M. Sitapara, Jignesh H. Pandya, Shantaben K. Kangad, Deepika Maliwal, Raghuvir R. S. Pissurlenkar, Dharmesh K. Katariya, Sandeep G. Chovatiya

Objective: Triazole, also known as pyrrdiazole, is a five-membered nitrogen-containing heterocyclic compound composed of two carbon atoms and three nitrogen atoms. Triazole analogs have garnered significant attention due to their extensive applications in medicinal chemistry and their diverse range of biological activities. Methods: With this consideration, we synthesized a diverse library of novel triazolopyridine-based 1,2,3-triazole derivatives (Xa–Xh) by employing Cu alkyne-azide cycloaddition methodology and confirmed the structures by various spectroscopic techniques including mass spectrometry, FT-IR, 1H, and 13C NMR spectroscopy. Further, the synthesized compounds were evaluated for their in silico and in vitro antibacterial potential against various Gram-positive and Gram-negative bacterial strains. Results and Discussion: In the results it is found that compound (Xa) exhibited superior antibacterial activity against S. aureus while compound (Xd) demonstrated comparable activity against E. coli when compared to standard drugs. Molecular docking study also indicated that compounds (Xa) and (Xd) possess the capability to bind to the active sites of S. aureus, E. coli, and P. aeruginosa. Conclusions: All this findings suggested (Xa) and (Xd) as promising alternatives for combating bacterial infections.

{"title":"Cu-Metal Catalyst Based Click Chemistry: Synthesis, Characterization, Molecular Docking, and Antibacterial Evaluation of Triazole Derivatives","authors":"Sachin M. Sitapara,&nbsp;Jignesh H. Pandya,&nbsp;Shantaben K. Kangad,&nbsp;Deepika Maliwal,&nbsp;Raghuvir R. S. Pissurlenkar,&nbsp;Dharmesh K. Katariya,&nbsp;Sandeep G. Chovatiya","doi":"10.1134/S1068162024060165","DOIUrl":"10.1134/S1068162024060165","url":null,"abstract":"<p><b>Objective:</b> Triazole, also known as pyrrdiazole, is a five-membered nitrogen-containing heterocyclic compound composed of two carbon atoms and three nitrogen atoms. Triazole analogs have garnered significant attention due to their extensive applications in medicinal chemistry and their diverse range of biological activities. <b>Methods:</b> With this consideration, we synthesized a diverse library of novel triazolopyridine-based 1,2,3-triazole derivatives (<b>Xa–Xh</b>) by employing Cu alkyne-azide cycloaddition methodology and confirmed the structures by various spectroscopic techniques including mass spectrometry, FT-IR, <sup>1</sup>H, and <sup>13</sup>C NMR spectroscopy. Further, the synthesized compounds were evaluated for their in silico and in vitro antibacterial potential against various Gram-positive and Gram-negative bacterial strains. <b>Results and Discussion:</b> In the results it is found that compound (<b>Xa</b>) exhibited superior antibacterial activity against <i>S. aureus</i> while compound (<b>Xd</b>) demonstrated comparable activity against <i>E. coli</i> when compared to standard drugs. Molecular docking study also indicated that compounds (<b>Xa</b>) and (<b>Xd</b>) possess the capability to bind to the active sites of <i>S. aureus</i>, <i>E. coli</i>, and <i>P. aeruginosa</i>. <b>Conclusions:</b> All this findings suggested (<b>Xa</b>) and (<b>Xd</b>) as promising alternatives for combating bacterial infections.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2473 - 2482"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Cationic Carbohydrate-Modified Amphiphiles and Liposomes for Effective Delivery of Short Nucleic Acids into Eukaryotic Cells 新型阳离子碳水化合物修饰的双亲化合物和脂质体,可将短核酸有效送入真核细胞
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060293
E. V. Shmendel, A. O. Buyanova, O. V. Markov, N. G. Morozova, M. A. Zenkova, M. A. Maslov

Objective: The development of systems for targeted delivery of nucleic acids (NAs) is necessary to ensure their selective transport to the site of therapeutic action. The aim of this work was to synthesize carbohydrate-modified amphiphiles containing a spermine residue, required for compaction and binding to NAs, as well as a diglyceride residue for forming lipid aggregates and a carbohydrate residue (lactose or D-mannose) for improving the hydrophilic–lipophilic balance of the molecule. The lactose residue can serve as a targeting ligand for NA delivery into liver hepatocytes, and the D-mannose residue can perform specific NA transport into dendritic cells and macrophages. Methods: New carbohydrate-modified cationic amphiphiles were obtained by organic synthesis, and their aqueous dispersions or cationic liposomes were prepared. Cytotoxicity of the cationic amphiphiles and liposomes was performed using the MTT assay on HEK 293 and BHK cell lines in the absence of fetal bovine serum (FBS). Complexes of the cationic amphiphiles or liposomes with NAs (FITC-ODN, pDNA, and siRNA) were formed at various component ratios (N/P), and the efficiency of transfection in HEK 293 and BHK IR-780 cells was assessed by flow cytometry. Results and Discussion: New cationic amphiphiles containing lactose or D-mannose residues were synthesized. The cationic amphiphiles, whatever the structure of their carbohydrate residue, effectively deliver a short FITC-ODN into HEK293 cells in the presence of FBS, and are nontoxic. The cationic liposome formed by the lactose-containing amphiphile and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) successfully delivers short NAs (FITC-ODN and siRNA) both in the absence and in the presence of serum in the culture media. Conclusions: The obtained carbohydrate-modified cationic amphiphiles, both individually and as component of cationic liposomes, hold promise to be used as systems for the delivery of short nucleic acids in further development of drugs for gene therapy.

{"title":"New Cationic Carbohydrate-Modified Amphiphiles and Liposomes for Effective Delivery of Short Nucleic Acids into Eukaryotic Cells","authors":"E. V. Shmendel,&nbsp;A. O. Buyanova,&nbsp;O. V. Markov,&nbsp;N. G. Morozova,&nbsp;M. A. Zenkova,&nbsp;M. A. Maslov","doi":"10.1134/S1068162024060293","DOIUrl":"10.1134/S1068162024060293","url":null,"abstract":"<p><b>Objective:</b> The development of systems for targeted delivery of nucleic acids (NAs) is necessary to ensure their selective transport to the site of therapeutic action. The aim of this work was to synthesize carbohydrate-modified amphiphiles containing a spermine residue, required for compaction and binding to NAs, as well as a diglyceride residue for forming lipid aggregates and a carbohydrate residue (lactose or D-mannose) for improving the hydrophilic–lipophilic balance of the molecule. The lactose residue can serve as a targeting ligand for NA delivery into liver hepatocytes, and the D-mannose residue can perform specific NA transport into dendritic cells and macrophages. <b>Methods:</b> New carbohydrate-modified cationic amphiphiles were obtained by organic synthesis, and their aqueous dispersions or cationic liposomes were prepared. Cytotoxicity of the cationic amphiphiles and liposomes was performed using the MTT assay on HEK 293 and BHK cell lines in the absence of fetal bovine serum (FBS). Complexes of the cationic amphiphiles or liposomes with NAs (FITC-ODN, pDNA, and siRNA) were formed at various component ratios (N/P), and the efficiency of transfection in HEK 293 and BHK IR-780 cells was assessed by flow cytometry. <b>Results and Discussion:</b> New cationic amphiphiles containing lactose or D-mannose residues were synthesized. The cationic amphiphiles, whatever the structure of their carbohydrate residue, effectively deliver a short FITC-ODN into HEK293 cells in the presence of FBS, and are nontoxic. The cationic liposome formed by the lactose-containing amphiphile and 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphoethanolamine (DOPE) successfully delivers short NAs (FITC-ODN and siRNA) both in the absence and in the presence of serum in the culture media. <b>Conclusions:</b> The obtained carbohydrate-modified cationic amphiphiles, both individually and as component of cationic liposomes, hold promise to be used as systems for the delivery of short nucleic acids in further development of drugs for gene therapy.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2379 - 2396"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in the Heterogeneity of MSC Subpopulations During Replicative Senescence as Seen from Single-Cell Speed Measurements
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S106816202408020X
A. V. Lukacheva, A. I. Gorb, A. S. Musorina, D. V. Kriger, G. G. Poljanskaya, D. E. Bobkov

Objective: To examine the distribution of motility metrics of human mesenchymal stem cells (MSCs) and immortalized cell line in long-term 2D culture. Methods: We used single-cell motility tracking to analyze changes in the motility metrics (average speed, distance, track length). The study compared three cell lines: two lines of MSCs that undergo replicative senescence (DF-2, MSCWJ-1), and a third line of immortalized fibroblast-like cells with an unlimited lifespan (XP12RO). Results and Discussion: The results revealed that replicative senescence in MSCs is associated with an alteration in the distribution of observed motility metrics, which is expressed as a change from a bimodal distribution in young cells to a unimodal distribution in old cells. The distribution of motility metrics in immortalized cells did not change throughout long-term cultivation. Conclusions: Subpopulation heterogeneity decreases as MSCs undergo replicative senescence.

目的研究人类间充质干细胞(MSCs)和永生化细胞系在长期二维培养中的运动指标分布。方法我们使用单细胞运动追踪技术分析运动指标(平均速度、距离、轨迹长度)的变化。该研究比较了三种细胞系:两种会发生复制衰老的间充质干细胞系(DF-2、MSCWJ-1)和第三种具有无限寿命的永生化成纤维母细胞样细胞系(XP12RO)。结果与讨论结果显示,间充质干细胞的复制衰老与观察到的运动指标分布的改变有关,表现为从年轻细胞的双峰分布变为老细胞的单峰分布。在长期培养过程中,永生化细胞的运动指标分布没有发生变化。结论亚群异质性会随着间充质干细胞经历复制衰老而降低。
{"title":"Changes in the Heterogeneity of MSC Subpopulations During Replicative Senescence as Seen from Single-Cell Speed Measurements","authors":"A. V. Lukacheva,&nbsp;A. I. Gorb,&nbsp;A. S. Musorina,&nbsp;D. V. Kriger,&nbsp;G. G. Poljanskaya,&nbsp;D. E. Bobkov","doi":"10.1134/S106816202408020X","DOIUrl":"10.1134/S106816202408020X","url":null,"abstract":"<p><b>Objective:</b> To examine the distribution of motility metrics of human mesenchymal stem cells (MSCs) and immortalized cell line in long-term 2D culture. <b>Methods:</b> We used single-cell motility tracking to analyze changes in the motility metrics (average speed, distance, track length). The study compared three cell lines: two lines of MSCs that undergo replicative senescence (DF-2, MSCWJ-1), and a third line of immortalized fibroblast-like cells with an unlimited lifespan (XP12RO). <b>Results and Discussion:</b> The results revealed that replicative senescence in MSCs is associated with an alteration in the distribution of observed motility metrics, which is expressed as a change from a bimodal distribution in young cells to a unimodal distribution in old cells. The distribution of motility metrics in immortalized cells did not change throughout long-term cultivation. <b>Conclusions:</b> Subpopulation heterogeneity decreases as MSCs undergo replicative senescence.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2509 - 2518"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expeditious Synthesis, Characterization, and Antimicrobial Assessment of Thiazole Derivatives
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060116
Shantaben K. Kangad, Sachin M. Sitapara, V. N. Patolia

Objective: This study aims to explore the antimicrobial potential of thiazole derivatives and their significance as promising pharmaceutical agents, given their diverse therapeutic applications, including anticancer, antibacterial, antiviral, antihypertensive, and antifungal activities. Methods: An efficient synthetic route was established to synthesize a range of ethyl(E)-2-(4-hydroxy-3-((phenylimino)methyl)phenyl)-5-methylthiazole-4-carboxylate derivatives (VIIa–VIIj). Structural elucidation of these newly synthesized compounds utilized advanced techniques, such as 1H, 13C NMR, FT-IR spectroscopy, mass spectrometry, and elemental analysis, ensuring accurate identification and characterization. Furhter, all the synthesized compounds were evaluated for their antimicrobial potential against various bacterial and fungal strains. Results and Discussion: In the results, it is found that compounds (VIIa), (VIId), (VIIe), and (VIIg) shows good antibacterial activity while compounds (VIIb) and (VIIc) shows good antifungal activity, suggesting their possible utility in clinical contexts. Conclusions: This research provides valuable insights into the therapeutic potential of thiazole derivatives, paving the way for future investigations into their clinical implications for addressing microbial challenges.

研究目的鉴于噻唑衍生物具有抗癌、抗菌、抗病毒、抗高血压和抗真菌等多种治疗用途,本研究旨在探索噻唑衍生物的抗菌潜力及其作为有前途的药物的意义。方法:建立了一条高效的合成路线,以合成一系列(E)-2-(4-羟基-3-((苯基亚氨基)甲基)苯基)-5-甲基噻唑-4-甲酸乙酯衍生物(VIIa-VIIj)。利用 1H、13C NMR、FT-IR 光谱、质谱和元素分析等先进技术对这些新合成的化合物进行了结构阐释,确保了准确的鉴定和表征。此外,还评估了所有合成化合物对各种细菌和真菌菌株的抗菌潜力。结果与讨论:结果发现,化合物 (VIIa)、(VIId)、(VIIe) 和 (VIIg) 具有很好的抗菌活性,而化合物 (VIIb) 和 (VIIc) 具有很好的抗真菌活性,这表明它们在临床上可能有用。结论这项研究为了解噻唑衍生物的治疗潜力提供了宝贵的见解,为今后研究它们在应对微生物挑战方面的临床意义铺平了道路。
{"title":"Expeditious Synthesis, Characterization, and Antimicrobial Assessment of Thiazole Derivatives","authors":"Shantaben K. Kangad,&nbsp;Sachin M. Sitapara,&nbsp;V. N. Patolia","doi":"10.1134/S1068162024060116","DOIUrl":"10.1134/S1068162024060116","url":null,"abstract":"<p><b>Objective:</b> This study aims to explore the antimicrobial potential of thiazole derivatives and their significance as promising pharmaceutical agents, given their diverse therapeutic applications, including anticancer, antibacterial, antiviral, antihypertensive, and antifungal activities. <b>Methods:</b> An efficient synthetic route was established to synthesize a range of ethyl(<i>E</i>)-2-(4-hydroxy-3-((phenylimino)methyl)phenyl)-5-methylthiazole-4-carboxylate derivatives (<b>VIIa–VIIj</b>). Structural elucidation of these newly synthesized compounds utilized advanced techniques, such as <sup>1</sup>H, <sup>13</sup>C NMR, FT-IR spectroscopy, mass spectrometry, and elemental analysis, ensuring accurate identification and characterization. Furhter, all the synthesized compounds were evaluated for their antimicrobial potential against various bacterial and fungal strains. <b>Results and Discussion:</b> In the results, it is found that compounds (<b>VIIa</b>), (<b>VIId</b>), (<b>VIIe</b>), and (<b>VIIg</b>) shows good antibacterial activity while compounds (<b>VIIb</b>) and (<b>VIIc</b>) shows good antifungal activity, suggesting their possible utility in clinical contexts. <b>Conclusions:</b> This research provides valuable insights into the therapeutic potential of thiazole derivatives, paving the way for future investigations into their clinical implications for addressing microbial challenges.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2182 - 2190"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal Immune Learning Ability in Immune and Non-Immune Cells (A Review)
IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-16 DOI: 10.1134/S1068162024060359
I. V. Alekseenko, L. G. Kondratyeva, I. P. Chernov, E. D. Sverdlov

In response to infections, all jawed vertebrate organisms have evolved complex defense systems in which long-term immune memory of previous infections plays a central role. This memory allows the cells of the immune system to recognize pathogens and protect the organism by developing a stronger immune response in case of repeated infections with the same pathogen. Until recently, the long-term immune memory was attributed solely to the adaptive immune system. However, in the last decade, the protective role of innate immune cells has become increasingly apparent. It has been discovered that, in addition to their well-known role in short-term and nonspecific defense, these cells can also acquire a form of long-term memory, enabling them to mount an immune response to unrelated pathogens (heterologous protection), which is enhanced by repeated stimulation. This long-term nonspecific innate immune memory has been termed “trained immunity.” Its occurrence is associated with intensive metabolic rearrangements and epigenetic modifications of innate immune cells. In light of the growing threat of unforeseen epidemics, there is increasing hope that the possibility of creating nonspecific universal vaccines may be linked to the innate immune system. Recently, the capacity for trained immunity has been identified in tissue-resident immune cells. Moreover, the immune memory in non-immune cells, such as fibroblasts, stromal cells, and epithelial stem cells, has also been revealed. This ability has been termed “enhanced trained immunity” or “inflammatory memory.” The significance of tissue-specific induction of trained innate immunity is not yet fully understood, but it may play an important role in local defense against infections, as well as in inflammatory diseases and cancer.

为了应对感染,所有有颌脊椎动物都进化出了复杂的防御系统,其中对先前感染的长期免疫记忆发挥着核心作用。这种记忆使免疫系统细胞能够识别病原体,并在重复感染同一病原体时产生更强的免疫反应,从而保护生物体。直到最近,长期免疫记忆仍被认为是适应性免疫系统的唯一作用。然而,近十年来,先天性免疫细胞的保护作用日益明显。人们发现,除了众所周知的短期和非特异性防御作用外,先天性免疫细胞还能获得一种长期记忆,使其能够对不相关的病原体做出免疫反应(异源保护),这种反应在反复刺激下会增强。这种长期的非特异性先天免疫记忆被称为 "训练有素的免疫"。它的发生与先天性免疫细胞的密集代谢重排和表观遗传修饰有关。鉴于不可预见的流行病威胁日益严重,人们越来越希望非特异性通用疫苗的产生可能与先天性免疫系统有关。最近,在组织驻留免疫细胞中发现了训练有素的免疫能力。此外,成纤维细胞、基质细胞和上皮干细胞等非免疫细胞的免疫记忆也被发现。这种能力被称为 "增强的训练有素的免疫力 "或 "炎症记忆"。组织特异性诱导训练有素的先天性免疫能力的意义尚不完全清楚,但它可能在局部防御感染以及炎症性疾病和癌症中发挥重要作用。
{"title":"Universal Immune Learning Ability in Immune and Non-Immune Cells (A Review)","authors":"I. V. Alekseenko,&nbsp;L. G. Kondratyeva,&nbsp;I. P. Chernov,&nbsp;E. D. Sverdlov","doi":"10.1134/S1068162024060359","DOIUrl":"10.1134/S1068162024060359","url":null,"abstract":"<p>In response to infections, all jawed vertebrate organisms have evolved complex defense systems in which long-term immune memory of previous infections plays a central role. This memory allows the cells of the immune system to recognize pathogens and protect the organism by developing a stronger immune response in case of repeated infections with the same pathogen. Until recently, the long-term immune memory was attributed solely to the adaptive immune system. However, in the last decade, the protective role of innate immune cells has become increasingly apparent. It has been discovered that, in addition to their well-known role in short-term and nonspecific defense, these cells can also acquire a form of long-term memory, enabling them to mount an immune response to unrelated pathogens (heterologous protection), which is enhanced by repeated stimulation. This long-term nonspecific innate immune memory has been termed “trained immunity.” Its occurrence is associated with intensive metabolic rearrangements and epigenetic modifications of innate immune cells. In light of the growing threat of unforeseen epidemics, there is increasing hope that the possibility of creating nonspecific universal vaccines may be linked to the innate immune system. Recently, the capacity for trained immunity has been identified in tissue-resident immune cells. Moreover, the immune memory in non-immune cells, such as fibroblasts, stromal cells, and epithelial stem cells, has also been revealed. This ability has been termed “enhanced trained immunity” or “inflammatory memory.” The significance of tissue-specific induction of trained innate immunity is not yet fully understood, but it may play an important role in local defense against infections, as well as in inflammatory diseases and cancer.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2209 - 2218"},"PeriodicalIF":1.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Russian Journal of Bioorganic Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1