首页 > 最新文献

Environmental Science: Water Research & Technology最新文献

英文 中文
Carbon quantum dot (CQD)-dithizone-based thin-film chemical sensors for the specific detection of lead ions in water resources† 基于薄膜的碳量子点(CQDs)-双硫腙化学传感器用于特异性检测水资源中的铅离子
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-02 DOI: 10.1039/D4EW00452C
Tanmay Vyas, Hritik Kumar, Sandeep Choudhary and Abhijeet Joshi

Lead (Pb2+) is one of the toxic pollutants that poses hazardous and severe risks to human health and the environment globally. Lead toxicity issues can be addressed primarily by the detection of Pb. Thus, the requirement for accurate sensors for lead detection in environmental samples is tremendously increasing across the globe. Fluorescence-based detection of lead in water samples can serve as a stepping stone towards achieving goals such as point-of-care, portable, and on-site detection. In the present study, a selective fluorometric chemical sensor developed from dithizone and carbon quantum dots (CQDs) embedded in chitosan polymer thin films was evaluated for Pb2+ detection in various natural water resources. The fluorescent chemical sensors were characterized using FTIR spectroscopy, XPS, XRD, TEM, CLSM, UV spectroscopy, and fluorescence spectroscopy. Pb2+ ions were detected employing a fiber optic spectrophotometer (FOS) paired with a reflectance probe. Two river water samples and household tap water samples were evaluated for the presence of Pb2+ ions, and spiking studies were carried out to measure the accuracy of detection. The sensing and analytical results indicated that lead detection with a limit of detection of 18.3 nM was possible in the 0–100 μM range of concentration with a response time of 1 minute. The spiking of Pb2+ concentration in the various water resources led to an accurate estimation with a maximum error of 1.4%, indicating an interference-free detection of Pb2+. The estimation of Pb2+ based on Micro-plasma Atomic Emission Spectroscopy was used as a reference method. The results indicate that the developed fluorescent chemical sensor based on dithizone-CQD-impregnated chitosan thin films coupled with a fiber optic spectrometer device shows tremendous potential for point-of-care and real-time monitoring of Pb2+ ions in real water samples.

摘要 铅(Pb2+)毒性是对全球人类健康和环境造成严重危害的祸害之一。铅毒性问题主要可以通过检测铅来解决。因此,全球各地对环境样本中铅检测的精确传感器的需求与日俱增。基于荧光的水样铅检测可以作为实现护理点、便携式和现场检测等目标的垫脚石。在本研究中,利用嵌入壳聚糖聚合物薄膜中的双硫腙和碳量子点(CQDs)开发了一种选择性荧光化学传感器,用于各种天然水资源中 Pb2+ 的检测。利用傅立叶变换红外光谱、XPS、XRD、TEM、CLSM、紫外光谱和荧光光谱对荧光化学传感器进行了表征。利用光纤分光光度计(FOS)和反射探头检测 Pb2+ 离子。对两份河水样本和家庭自来水样本进行了 Pb2+ 离子含量评估,并进行了加标研究,以测量检测的准确性。传感和分析结果表明,在 0-100 µM 的浓度范围内,可以在 1 分钟的响应时间内检测到检测限为 18.3 nM 的铅。对各种水资源中的 Pb2+ 浓度进行加标,得出了准确的估计值,最大误差为 1.4%,表明 Pb2+ 的检测不受干扰。基于微等离子体原子发射光谱法的 Pb2+ 估算方法被用作参考方法。结果表明,所开发的荧光薄膜化学传感器(基于 Dithizone-CQDs 浸渍壳聚糖薄膜和光纤光谱仪装置)在实际水样中 Pb2+ 离子的定点和实时监测方面具有巨大的潜力。关键词水污染 铅(Pb2+)离子 化学传感器 薄膜 碳量子点(CQDs) 光纤光谱仪
{"title":"Carbon quantum dot (CQD)-dithizone-based thin-film chemical sensors for the specific detection of lead ions in water resources†","authors":"Tanmay Vyas, Hritik Kumar, Sandeep Choudhary and Abhijeet Joshi","doi":"10.1039/D4EW00452C","DOIUrl":"10.1039/D4EW00452C","url":null,"abstract":"<p >Lead (Pb<small><sup>2+</sup></small>) is one of the toxic pollutants that poses hazardous and severe risks to human health and the environment globally. Lead toxicity issues can be addressed primarily by the detection of Pb. Thus, the requirement for accurate sensors for lead detection in environmental samples is tremendously increasing across the globe. Fluorescence-based detection of lead in water samples can serve as a stepping stone towards achieving goals such as point-of-care, portable, and on-site detection. In the present study, a selective fluorometric chemical sensor developed from dithizone and carbon quantum dots (CQDs) embedded in chitosan polymer thin films was evaluated for Pb<small><sup>2+</sup></small> detection in various natural water resources. The fluorescent chemical sensors were characterized using FTIR spectroscopy, XPS, XRD, TEM, CLSM, UV spectroscopy, and fluorescence spectroscopy. Pb<small><sup>2+</sup></small> ions were detected employing a fiber optic spectrophotometer (FOS) paired with a reflectance probe. Two river water samples and household tap water samples were evaluated for the presence of Pb<small><sup>2+</sup></small> ions, and spiking studies were carried out to measure the accuracy of detection. The sensing and analytical results indicated that lead detection with a limit of detection of 18.3 nM was possible in the 0–100 μM range of concentration with a response time of 1 minute. The spiking of Pb<small><sup>2+</sup></small> concentration in the various water resources led to an accurate estimation with a maximum error of 1.4%, indicating an interference-free detection of Pb<small><sup>2+</sup></small>. The estimation of Pb<small><sup>2+</sup></small> based on Micro-plasma Atomic Emission Spectroscopy was used as a reference method. The results indicate that the developed fluorescent chemical sensor based on dithizone-CQD-impregnated chitosan thin films coupled with a fiber optic spectrometer device shows tremendous potential for point-of-care and real-time monitoring of Pb<small><sup>2+</sup></small> ions in real water samples.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2858-2868"},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of the heterojunction g-C3N4/Bi2MoO6/clinoptilolite to enhance the photocatalytic degradation of antibiotics in water in the presence of persulfate† g-C3N4/Bi2MoO6/clinoptilolite 异质结在过硫酸盐存在下增强光催化降解水中抗生素的协同效应
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-31 DOI: 10.1039/D4EW00549J
Phuong Thu Le, Thu Phuong Nguyen, Thi Hai Do, Hong Nam Nguyen, Thi Mai Thanh Dinh, Thi Thuy Phan, Toshiki Tsubota and Trung Dung Nguyen

A novel and highly efficient photocatalyst, g-C3N4/Bi2MoO6/clinoptilolite nanocomposite (CNBC), was synthesized by a hydrothermal method and acted as a Z-scheme heterojunction for efficient activation of peroxydisulfate (PDS) to degrade oxytetracycline (OTC) under visible light (vis) irradiation. The morphology and structure of the photocatalyst were determined by XRD, FT-IR, FE-SEM, EDX, BET, TGA, UV-vis DRS, PL, and XPS. The results showed that CNBC-30 had the best photocatalytic performance with an OTC removal efficiency of more than 87% within 120 min under the conditions of [OTC] = 20 mg L−1, [catalyst] = 500 mg L−1, [Na2S2O8] = 1.26 mM, and pH = 4 at room temperature, which was much better than those of pure g-C3N4, Bi2MoO6, and CNB composites. This superiority is due to the excellent adsorption ability of clinoptilolite that effectively forms the g-C3N4/Bi2MoO6 heterojunctions, thus improving the ability to separate charge carriers while decreasing the recombination rate of electron–hole pairs. Furthermore, the effect of catalyst dosage, oxidant concentration, initial pollutant concentration, solution pH, and coexisting anions on the OTC degradation was comprehensively studied. The results showed that the CNBC-30/PDS system had high reusability and adaptability at different pH levels (3.0–11.0). Quenching tests showed that 1O2, O2˙, and h+ played the main roles in OTC degradation. In addition, OTC intermediates were identified and degradation pathways were proposed based on the results of MS analysis. DFT calculations successfully predicted the positions on the OTC molecule with high Fukui numbers that are suitable for attack by oxidants. CNBC-30 was stable for OTC degradation after four cycles with a degradation efficiency of above 78%, demonstrating its durability and potential for practical applications. This study provides insight into PDS activation in the visible light region by a clinoptilolite-based Z-scheme heterojunction for organic pollutant degradation.

通过水热法合成了一种新型高效光催化剂 g-C3N4/Bi2MoO6/clinoptilolite 纳米复合材料(CNBC),并在可见光(vis)照射下作为 Z 型异质结有效激活过硫酸盐(PDS)降解土霉素(OTC)。通过 XRD、FT-IR、FE-SEM、EDX、BET、TGA、UV-vis DRS、PL 和 XPS 测定了光催化剂的形貌和结构。结果表明,在[OTC] = 20 mg L-1、[催化剂] = 500 mg L-1、[Na2S2O8] = 1.26 mM、室温下 pH = 4 的条件下,CNBC-30 的光催化性能最佳,120 min 内的 OTC 去除率超过 87%,远优于纯 g-C3N4、Bi2MoO6 和 CNB 复合材料。这种优越性得益于clinoptilolite 的出色吸附能力,它能有效地形成 g-C3N4/Bi2MoO6 异质结,从而提高分离电荷载流子的能力,同时降低电子-空穴对的重组率。此外,还全面研究了催化剂用量、氧化剂浓度、初始污染物浓度、溶液 pH 值和共存阴离子对 OTC 降解的影响。结果表明,CNBC-30/PDS 系统在不同 pH 值(3.0-11.0)下具有较高的重复使用性和适应性。淬灭试验表明,1O2、O2˙- 和 h+ 在 OTC 降解中起主要作用。此外,还根据 MS 分析结果确定了 OTC 的中间产物并提出了降解途径。DFT 计算成功预测了 OTC 分子上 Fukui 数较高且适合氧化剂攻击的位置。经过四个循环后,CNBC-30 能够稳定地降解 OTC,降解效率超过 78%,这证明了它的耐久性和实际应用潜力。这项研究深入探讨了在可见光区域通过基于clinoptilolite的Z-scheme异质结激活PDS以降解有机污染物的问题。
{"title":"Synergistic effect of the heterojunction g-C3N4/Bi2MoO6/clinoptilolite to enhance the photocatalytic degradation of antibiotics in water in the presence of persulfate†","authors":"Phuong Thu Le, Thu Phuong Nguyen, Thi Hai Do, Hong Nam Nguyen, Thi Mai Thanh Dinh, Thi Thuy Phan, Toshiki Tsubota and Trung Dung Nguyen","doi":"10.1039/D4EW00549J","DOIUrl":"10.1039/D4EW00549J","url":null,"abstract":"<p >A novel and highly efficient photocatalyst, g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>/clinoptilolite nanocomposite (CNBC), was synthesized by a hydrothermal method and acted as a Z-scheme heterojunction for efficient activation of peroxydisulfate (PDS) to degrade oxytetracycline (OTC) under visible light (vis) irradiation. The morphology and structure of the photocatalyst were determined by XRD, FT-IR, FE-SEM, EDX, BET, TGA, UV-vis DRS, PL, and XPS. The results showed that CNBC-30 had the best photocatalytic performance with an OTC removal efficiency of more than 87% within 120 min under the conditions of [OTC] = 20 mg L<small><sup>−1</sup></small>, [catalyst] = 500 mg L<small><sup>−1</sup></small>, [Na<small><sub>2</sub></small>S<small><sub>2</sub></small>O<small><sub>8</sub></small>] = 1.26 mM, and pH = 4 at room temperature, which was much better than those of pure g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>, Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>, and CNB composites. This superiority is due to the excellent adsorption ability of clinoptilolite that effectively forms the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> heterojunctions, thus improving the ability to separate charge carriers while decreasing the recombination rate of electron–hole pairs. Furthermore, the effect of catalyst dosage, oxidant concentration, initial pollutant concentration, solution pH, and coexisting anions on the OTC degradation was comprehensively studied. The results showed that the CNBC-30/PDS system had high reusability and adaptability at different pH levels (3.0–11.0). Quenching tests showed that <small><sup>1</sup></small>O<small><sub>2</sub></small>, O<small><sub>2</sub></small>˙<small><sup>−</sup></small>, and h<small><sup>+</sup></small> played the main roles in OTC degradation. In addition, OTC intermediates were identified and degradation pathways were proposed based on the results of MS analysis. DFT calculations successfully predicted the positions on the OTC molecule with high Fukui numbers that are suitable for attack by oxidants. CNBC-30 was stable for OTC degradation after four cycles with a degradation efficiency of above 78%, demonstrating its durability and potential for practical applications. This study provides insight into PDS activation in the visible light region by a clinoptilolite-based Z-scheme heterojunction for organic pollutant degradation.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2665-2687"},"PeriodicalIF":3.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycine-assisted phosphorus release and recovery from waste-activated sludge† 甘氨酸辅助从废物活性污泥中释放和回收磷
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-28 DOI: 10.1039/D4EW00158C
Sheqi Cen, Yao Zou, Hang Chen, Xuhan Deng, Fu Huang, Liping Chen, Le Li, Tenghui Jin, Chaohai Wei, Lichao Nengzi and Guanglei Qiu

This study reports a sustainable and green method for phosphorus (P) extraction and recovery from waste activated sludge (WAS) using glycine as a P-extraction agent. Glycine showed an extraordinary ability to induce P release from waste-activated sludge at a rate of 8.7 mg P per L per h without being consumed. The P-extraction rate was linearly related to the mixed liquor suspended solid concentration and was not affected by the temperature in the range of 25–35 °C. After extraction, the released P was recovered via calcium precipitation, resulting in high P-content (48%, as phosphate) products (dominated by amorphous calcium phosphate). An unparallel advantage of the method is the high recyclability of glycine. Repetitive experiments showed <10% glycine loss over four P-extraction–P-recovery–glycine-reuse cycles. Additionally, extremely low heavy metal contents were observed in the P-recovery products in comparison to the acid/alkali-assisted P extraction, indicating its environmental friendliness as a sustainable strategy for P recovery from WAS.

本研究报告了一种利用甘氨酸作为磷萃取剂从废弃活性污泥(WAS)中萃取和回收磷(P)的可持续绿色方法。甘氨酸显示出了非凡的能力,它能以每小时每升 8.7 毫克磷的速率诱导废物活性污泥中的磷释放,而不会被消耗掉。萃取率与混合液悬浮固体浓度呈线性关系,在 25-35 °C 范围内不受温度影响。萃取后,通过钙沉淀回收释放的 P,得到高 P 含量(48%,以磷酸盐计)的产品(以无定形磷酸钙为主)。该方法的一个独特优势是甘氨酸的高回收率。重复实验表明,在四个提取 P-回收甘氨酸-再利用的循环过程中,甘氨酸的损失率为 10%。此外,与酸/碱辅助提取 P 相比,P 回收产品中的重金属含量极低,这表明该方法是一种可持续的从 WAS 中回收 P 的环境友好型策略。
{"title":"Glycine-assisted phosphorus release and recovery from waste-activated sludge†","authors":"Sheqi Cen, Yao Zou, Hang Chen, Xuhan Deng, Fu Huang, Liping Chen, Le Li, Tenghui Jin, Chaohai Wei, Lichao Nengzi and Guanglei Qiu","doi":"10.1039/D4EW00158C","DOIUrl":"10.1039/D4EW00158C","url":null,"abstract":"<p >This study reports a sustainable and green method for phosphorus (P) extraction and recovery from waste activated sludge (WAS) using glycine as a P-extraction agent. Glycine showed an extraordinary ability to induce P release from waste-activated sludge at a rate of 8.7 mg P per L per h without being consumed. The P-extraction rate was linearly related to the mixed liquor suspended solid concentration and was not affected by the temperature in the range of 25–35 °C. After extraction, the released P was recovered <em>via</em> calcium precipitation, resulting in high P-content (48%, as phosphate) products (dominated by amorphous calcium phosphate). An unparallel advantage of the method is the high recyclability of glycine. Repetitive experiments showed &lt;10% glycine loss over four P-extraction–P-recovery–glycine-reuse cycles. Additionally, extremely low heavy metal contents were observed in the P-recovery products in comparison to the acid/alkali-assisted P extraction, indicating its environmental friendliness as a sustainable strategy for P recovery from WAS.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2406-2417"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon flows and biochar stability during co-pyrolysis of human faeces with wood biomass† 人类粪便与木质生物质共同热解过程中的碳流和生物炭稳定性
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-28 DOI: 10.1039/D4EW00513A
M. E. Koulouri, M. Qiu, M. R. Templeton and G. D. Fowler

As non-sewered toilets are now the most commonly used sanitation facilities, the faecal sludge management (FSM) sector is starting to be recognised as an important actor for global carbon management. The development of systematic strategies to calculate avoided emissions and carbon storage opportunities is currently constrained by a lack of understanding of carbon flows during faecal sludge treatment. This study investigated carbon sequestration potential for faecal sludge treatment systems that involve co-pyrolysis of human faeces (HF) and wood biomass (WB) at different blending ratios HF : WB (100 : 0, 75 : 25, 50 : 50, 25 : 75, 0 : 100) and temperatures (450, 550, 650 °C). The systematic investigation of analytical biochar stability parameters and the quantification of carbon flows among pyrolysis products were carried out for the first time in the context of faecal sludge. The stability of the produced biochars was assessed based on their remaining volatility, carbon structure (H/C and O/C ratios, SEM and FTIR analyses) and oxidation resistance (chemical oxidation by H2O2 and thermal degradation by thermogravimetric analysis [R50 index]). Overall, co-pyrolysis of HF and WB improved carbon fixation and biochar stability, enhancing carbon sequestration potential compared to pyrolysis of pure faecal feedstocks. Biochars produced from 50 : 50 HF : WB blends at 550 °C had the highest carbon retention (41.1%); this feedstock blending ratio corresponds to ∼30 g dry wood added in toilets as a cover material (per user per day), based on the expected daily excretion quantities. For these conditions, the H/C, O/C ratios, H2O2 oxidation and R50 index values suggest that the produced biochars have developed an aromatic structure and are suitable for long-term carbon storage. The biochar characteristics were found to be more dependent on feedstock composition than pyrolysis temperature – provided that the temperature reached was sufficient to ensure completion of the main pyrolytic reactions (≥500 °C) – while carbon flows to the bio-oil and non-condensable gas fractions were significantly influenced by pyrolysis operational parameters (retention time and inert gas flow rate). The formation of CaCO3 was observed via SEM/EDX and can be further investigated as a potential additional carbon storage mechanism in FSM. The findings of this research can be used to create a methodological dataset to inform carbon assessments and future modelling applications, paving the way towards the establishment of carbon-negative FSM.

由于非下水道厕所是目前最常用的卫生设施,粪便污泥管理(FSM)部门开始被视为全球碳管理的重要参与者。目前,由于缺乏对粪便污泥处理过程中碳流动的了解,计算避免排放和碳封存机会的系统性战略的制定受到了限制。本研究调查了粪便污泥处理系统的碳封存潜力,该系统涉及人类粪便(HF)和木材生物质(WB)在不同混合比例 HF :WB(100:0、75:25、50:50、25:75、0:100)和温度(450、550、650 °C)。在粪便污泥方面,首次对生物炭稳定性分析参数和热解产物中碳流量的量化进行了系统研究。根据剩余挥发性、碳结构(H/C 和 O/C 比率、扫描电镜和傅立叶变换红外分析)和抗氧化性(H2O2 化学氧化和热重分析[R50 指数]热降解)评估了所生产生物炭的稳定性。总体而言,与纯粪便原料热解相比,HF 和 WB 的协同热解提高了碳固定和生物炭稳定性,增强了固碳潜力。用 50 :50 HF :在 550 °C 下,WB 混合物的碳保留率最高(41.1%);根据预计的每日排泄量,这一原料混合比例相当于在厕所中添加 30 克干木材作为覆盖材料(每个用户每天)。在这些条件下,H/C、O/C 比率、H2O2 氧化值和 R50 指数值表明,生产的生物炭已形成芳香结构,适合长期碳储存。研究发现,生物炭的特性更多地取决于原料成分而非热解温度--前提是所达到的温度足以确保完成主要热解反应(≥500 °C)--而流向生物油和不凝性气体馏分的碳则受到热解操作参数(停留时间和惰性气体流速)的显著影响。通过 SEM/EDX 观察到 CaCO3 的形成,可将其作为 FSM 中潜在的额外碳储存机制进行进一步研究。这项研究的结果可用于创建一个方法数据集,为碳评估和未来的建模应用提供信息,为建立负碳无害环境管理铺平道路。
{"title":"Carbon flows and biochar stability during co-pyrolysis of human faeces with wood biomass†","authors":"M. E. Koulouri, M. Qiu, M. R. Templeton and G. D. Fowler","doi":"10.1039/D4EW00513A","DOIUrl":"10.1039/D4EW00513A","url":null,"abstract":"<p >As non-sewered toilets are now the most commonly used sanitation facilities, the faecal sludge management (FSM) sector is starting to be recognised as an important actor for global carbon management. The development of systematic strategies to calculate avoided emissions and carbon storage opportunities is currently constrained by a lack of understanding of carbon flows during faecal sludge treatment. This study investigated carbon sequestration potential for faecal sludge treatment systems that involve co-pyrolysis of human faeces (HF) and wood biomass (WB) at different blending ratios HF : WB (100 : 0, 75 : 25, 50 : 50, 25 : 75, 0 : 100) and temperatures (450, 550, 650 °C). The systematic investigation of analytical biochar stability parameters and the quantification of carbon flows among pyrolysis products were carried out for the first time in the context of faecal sludge. The stability of the produced biochars was assessed based on their remaining volatility, carbon structure (H/C and O/C ratios, SEM and FTIR analyses) and oxidation resistance (chemical oxidation by H<small><sub>2</sub></small>O<small><sub>2</sub></small> and thermal degradation by thermogravimetric analysis [<em>R</em><small><sub>50</sub></small> index]). Overall, co-pyrolysis of HF and WB improved carbon fixation and biochar stability, enhancing carbon sequestration potential compared to pyrolysis of pure faecal feedstocks. Biochars produced from 50 : 50 HF : WB blends at 550 °C had the highest carbon retention (41.1%); this feedstock blending ratio corresponds to ∼30 g dry wood added in toilets as a cover material (per user per day), based on the expected daily excretion quantities. For these conditions, the H/C, O/C ratios, H<small><sub>2</sub></small>O<small><sub>2</sub></small> oxidation and <em>R</em><small><sub>50</sub></small> index values suggest that the produced biochars have developed an aromatic structure and are suitable for long-term carbon storage. The biochar characteristics were found to be more dependent on feedstock composition than pyrolysis temperature – provided that the temperature reached was sufficient to ensure completion of the main pyrolytic reactions (≥500 °C) – while carbon flows to the bio-oil and non-condensable gas fractions were significantly influenced by pyrolysis operational parameters (retention time and inert gas flow rate). The formation of CaCO<small><sub>3</sub></small> was observed <em>via</em> SEM/EDX and can be further investigated as a potential additional carbon storage mechanism in FSM. The findings of this research can be used to create a methodological dataset to inform carbon assessments and future modelling applications, paving the way towards the establishment of carbon-negative FSM.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2709-2722"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00513a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shallow Shell SSTA63 resin: a rapid approach to remediation of hazardous nitrate 浅壳 SSTA63 树脂:快速修复有害硝酸盐的方法
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-26 DOI: 10.1039/D4EW00584H
Elif Çendik, Mügenur Saygı, Yaşar Kemal Recepoğlu and Özgür Arar

This study examines the potential of Purolite Shallow Shell™ SSTA63 anion exchange resin for mitigating nitrate ion (NO3) contamination in aqueous environments. Through systematic experimentation, including dosage optimization, pH dependency, kinetic and desorption studies, we investigate the sorption behavior and practical applications of the resin. Results indicate that the resin effectively removes NO3 ions, with maximum efficiency achieved within 10 minutes. When 0.025 g of resin was used, 75% of NO3 was removed, whereas with 0.05 g, 89% was removed, and with 0.1 g of resin, 95% was removed. At pH 1, approximately 50% of NO3 ions were removed, with removal efficiency reaching 97% between pH 4 and 10. Sorption isotherms affirm the suitability of the Langmuir model for the current investigation. The monolayer maximum sorption capacity (qmax) value was found to be 53.65 mg g−1. The resin demonstrates robust desorption capabilities using 0.1 M hydrochloric acid (HCl), effectively desorbing NO3 above 99%, indicating easy NO3 desorption and resin regeneration. The presence of coexisting ions such as chloride (Cl), sulfate (SO42−), and phosphate (PO43−) showed a minimal impact on NO3 removal in individual binary mixtures, with efficiencies exceeding 93%, suggesting a strong selectivity of the resin towards NO3. Purolite SSTA63 anion exchange resin exhibited a high affinity for NO3 ions, even over other competing ions, despite the general trend of ion exchange resins to favor ions with a higher atomic number and valence. Overall, this resin presents a promising solution for NO3 removal, with implications for water treatment and environmental remediation.

本研究探讨了 Purolite Shallow Shell™ SSTA63 阴离子交换树脂在减轻水环境中硝酸根离子(NO3-)污染方面的潜力。通过系统的实验,包括剂量优化、pH 值依赖性、动力学和解吸研究,我们研究了该树脂的吸附行为和实际应用。结果表明,该树脂能有效去除 NO3- 离子,并在 10 分钟内达到最高效率。使用 0.025 克树脂时,可去除 75% 的 NO3-;使用 0.05 克树脂时,可去除 89%;使用 0.1 克树脂时,可去除 95%。在 pH 值为 1 时,可去除约 50% 的 NO3-离子,在 pH 值为 4 至 10 时,去除率达到 97%。吸附等温线证实了 Langmuir 模型适用于本次研究。单层最大吸附容量(qmax)值为 53.65 mg g-1。该树脂在使用 0.1 M 盐酸(HCl)时表现出强大的解吸能力,能有效解吸 99% 以上的 NO3-,这表明 NO3-易于解吸和树脂再生。在单个二元混合物中,氯离子(Cl-)、硫酸根离子(SO42-)和磷酸根离子(PO43-)等共存离子对去除 NO3- 的影响很小,效率超过 93%,这表明该树脂对 NO3- 具有很强的选择性。Purolite SSTA63 阴离子交换树脂对 NO3- 离子表现出很高的亲和力,甚至超过了其他竞争离子,尽管离子交换树脂一般倾向于原子序数和价数较高的离子。总之,这种树脂是一种很有前景的去除 NO3- 的解决方案,对水处理和环境修复具有重要意义。
{"title":"Shallow Shell SSTA63 resin: a rapid approach to remediation of hazardous nitrate","authors":"Elif Çendik, Mügenur Saygı, Yaşar Kemal Recepoğlu and Özgür Arar","doi":"10.1039/D4EW00584H","DOIUrl":"10.1039/D4EW00584H","url":null,"abstract":"<p >This study examines the potential of Purolite Shallow Shell™ SSTA63 anion exchange resin for mitigating nitrate ion (NO<small><sub>3</sub></small><small><sup>−</sup></small>) contamination in aqueous environments. Through systematic experimentation, including dosage optimization, pH dependency, kinetic and desorption studies, we investigate the sorption behavior and practical applications of the resin. Results indicate that the resin effectively removes NO<small><sub>3</sub></small><small><sup>−</sup></small> ions, with maximum efficiency achieved within 10 minutes. When 0.025 g of resin was used, 75% of NO<small><sub>3</sub></small><small><sup>−</sup></small> was removed, whereas with 0.05 g, 89% was removed, and with 0.1 g of resin, 95% was removed. At pH 1, approximately 50% of NO<small><sub>3</sub></small><small><sup>−</sup></small> ions were removed, with removal efficiency reaching 97% between pH 4 and 10. Sorption isotherms affirm the suitability of the Langmuir model for the current investigation. The monolayer maximum sorption capacity (<em>q</em><small><sub>max</sub></small>) value was found to be 53.65 mg g<small><sup>−1</sup></small>. The resin demonstrates robust desorption capabilities using 0.1 M hydrochloric acid (HCl), effectively desorbing NO<small><sub>3</sub></small><small><sup>−</sup></small> above 99%, indicating easy NO<small><sub>3</sub></small><small><sup>−</sup></small> desorption and resin regeneration. The presence of coexisting ions such as chloride (Cl<small><sup>−</sup></small>), sulfate (SO<small><sub>4</sub></small><small><sup>2−</sup></small>), and phosphate (PO<small><sub>4</sub></small><small><sup>3−</sup></small>) showed a minimal impact on NO<small><sub>3</sub></small><small><sup>−</sup></small> removal in individual binary mixtures, with efficiencies exceeding 93%, suggesting a strong selectivity of the resin towards NO<small><sub>3</sub></small><small><sup>−</sup></small>. Purolite SSTA63 anion exchange resin exhibited a high affinity for NO<small><sub>3</sub></small><small><sup>−</sup></small> ions, even over other competing ions, despite the general trend of ion exchange resins to favor ions with a higher atomic number and valence. Overall, this resin presents a promising solution for NO<small><sub>3</sub></small><small><sup>−</sup></small> removal, with implications for water treatment and environmental remediation.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2765-2775"},"PeriodicalIF":3.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of ferrous sulfate treatment on microbially influenced corrosion of CuNi 70/30 marine pipeline alloy by sulfate reducing bacteria† 硫酸亚铁处理对受硫酸盐还原菌影响的 CuNi 70/30 海洋管道合金腐蚀的影响
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-24 DOI: 10.1039/D4EW00382A
M. A. Javed, W. C. Neil and S. A. Wade

This study investigates the effect of ferrous sulfate (FeSO4) treatment on protective film formation and subsequent microbially influenced corrosion (MIC) of CuNi 70/30 pipeline alloy, a material commonly used in maritime platforms. CuNi 70/30 coupons were treated with FeSO4 solution in potable water and seawater simulating a flow speed of 0.94 m s−1 for 5 d. The treated coupons exhibited a protective iron oxyhydroxide, likely lepidocrocite (γ FeOOH), film on the surface. MIC performance was evaluated in modified Baar's medium with SRB for 28 d. Results revealed thicker SRB biofilm and increased MIC pitting attack on FeSO4 treated coupons compared to untreated coupons. These findings suggest that FeSO4 treatment may exacerbate MIC susceptibility in MIC-prone environments, highlighting the importance of carefully considering corrosion mitigation strategies in maritime platform applications.

本研究调查了硫酸亚铁(FeSO4)处理对 CuNi 70/30 管道合金(一种常用于海上平台的材料)保护膜形成和随后微生物影响腐蚀(MIC)的影响。将 CuNi 70/30 试样用 FeSO4 溶液在饮用水和模拟 0.94 m s-1 流速的海水中处理 5 d。结果表明,与未处理的试样相比,FeSO4 处理过的试样上 SRB 生物膜更厚,MIC 点蚀更严重。这些研究结果表明,FeSO4 处理可能会加剧 MIC 易发环境中的 MIC 易感性,从而突出了在海洋平台应用中仔细考虑腐蚀缓解策略的重要性。
{"title":"Effect of ferrous sulfate treatment on microbially influenced corrosion of CuNi 70/30 marine pipeline alloy by sulfate reducing bacteria†","authors":"M. A. Javed, W. C. Neil and S. A. Wade","doi":"10.1039/D4EW00382A","DOIUrl":"10.1039/D4EW00382A","url":null,"abstract":"<p >This study investigates the effect of ferrous sulfate (FeSO<small><sub>4</sub></small>) treatment on protective film formation and subsequent microbially influenced corrosion (MIC) of CuNi 70/30 pipeline alloy, a material commonly used in maritime platforms. CuNi 70/30 coupons were treated with FeSO<small><sub>4</sub></small> solution in potable water and seawater simulating a flow speed of 0.94 m s<small><sup>−1</sup></small> for 5 d. The treated coupons exhibited a protective iron oxyhydroxide, likely lepidocrocite (γ FeOOH), film on the surface. MIC performance was evaluated in modified Baar's medium with SRB for 28 d. Results revealed thicker SRB biofilm and increased MIC pitting attack on FeSO<small><sub>4</sub></small> treated coupons compared to untreated coupons. These findings suggest that FeSO<small><sub>4</sub></small> treatment may exacerbate MIC susceptibility in MIC-prone environments, highlighting the importance of carefully considering corrosion mitigation strategies in maritime platform applications.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2597-2614"},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel graphene oxide–microalgae hybrid material for the removal of pentavalent arsenic from natural water and industrial wastewater 用于去除天然水和工业废水中五价砷的新型氧化石墨烯-微藻混合材料
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-23 DOI: 10.1039/D4EW00308J
Eliana S. Lemos, Evelyn M. Valdés Rodríguez, Adrián Bonilla Petriciolet, Andrea M. Ray and Leticia B. Escudero

In this study, a hybrid bionanomaterial (GO@Di) composed of Dictyosphaerium sp. microalgae and graphene oxide (GO) was synthesized for the first time to be used as an adsorbent for the removal of pentavalent arsenic (As(V)) from aqueous solutions. GO@Di was characterized by analytical techniques including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), pH at point of zero charge (pHPZC), and BET surface analysis. Solution pH, adsorbent mass, initial concentration of the pollutant, and ionic strength were evaluated and optimized to identify the best conditions for As(V) removal using GO@Di. A removal efficiency of 69% and an adsorption capacity of 885 mg g−1 were obtained under the optimal conditions of pH 3, 1 mg of GO@Di and initial As(V) concentration of 50 mg L−1. The adsorption kinetics were also analyzed, reaching the equilibrium at 120 min. The experimental kinetic results were correlated with the pseudo-second order model. Equilibrium data were fitted with the Brunauer–Emmett–Teller (BET) isotherm model. Regeneration studies indicated that GO@Di could be re-used efficiently up to 4 adsorption/desorption cycles. Finally, GO@Di was applied to real samples of natural waters and industrial effluents, obtaining removal percentages between 52 and 95%, which demonstrated the promising potential of GO@Di to depollute complex aqueous matrices containing As(V). Future studies will focus on the removal of other arsenical species using GO@Di and its implementation in dynamic adsorption systems.

本研究首次合成了一种由 Dictyosphaerium sp. 微藻和氧化石墨烯(GO)组成的混合仿生材料(GO@Di),并将其用作去除水溶液中五价砷(As(V))的吸附剂。通过傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDS)、零电荷点 pH 值(pHPZC)和 BET 表面分析等分析技术对 GO@Di 进行了表征。对溶液 pH 值、吸附剂质量、污染物初始浓度和离子强度进行了评估和优化,以确定使用 GO@Di 去除 As(V) 的最佳条件。在 pH 值为 3、GO@Di 为 1 毫克、As(V) 初始浓度为 50 毫克/升的最佳条件下,去除率为 69%,吸附容量为 885 毫克/克。同时还分析了吸附动力学,在 120 分钟时达到平衡。实验动力学结果与伪二阶模型相关联。平衡数据与布鲁纳-艾美特-泰勒(BET)等温线模型进行了拟合。再生研究表明,GO@Di 可以有效地重复使用,最多可进行 4 次吸附/解吸循环。最后,将 GO@Di 应用于天然水体和工业废水的实际样品,获得了 52% 至 95% 的去除率,这表明 GO@Di 在去除含 As(V) 的复杂水基质方面具有巨大的潜力。未来的研究将侧重于利用 GO@Di 去除其他砷物种,并将其应用于动态吸附系统。
{"title":"A novel graphene oxide–microalgae hybrid material for the removal of pentavalent arsenic from natural water and industrial wastewater","authors":"Eliana S. Lemos, Evelyn M. Valdés Rodríguez, Adrián Bonilla Petriciolet, Andrea M. Ray and Leticia B. Escudero","doi":"10.1039/D4EW00308J","DOIUrl":"10.1039/D4EW00308J","url":null,"abstract":"<p >In this study, a hybrid bionanomaterial (GO@Di) composed of <em>Dictyosphaerium</em> sp. microalgae and graphene oxide (GO) was synthesized for the first time to be used as an adsorbent for the removal of pentavalent arsenic (As(<small>V</small>)) from aqueous solutions. GO@Di was characterized by analytical techniques including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), pH at point of zero charge (pH<small><sub>PZC</sub></small>), and BET surface analysis. Solution pH, adsorbent mass, initial concentration of the pollutant, and ionic strength were evaluated and optimized to identify the best conditions for As(<small>V</small>) removal using GO@Di. A removal efficiency of 69% and an adsorption capacity of 885 mg g<small><sup>−1</sup></small> were obtained under the optimal conditions of pH 3, 1 mg of GO@Di and initial As(<small>V</small>) concentration of 50 mg L<small><sup>−1</sup></small>. The adsorption kinetics were also analyzed, reaching the equilibrium at 120 min. The experimental kinetic results were correlated with the pseudo-second order model. Equilibrium data were fitted with the Brunauer–Emmett–Teller (BET) isotherm model. Regeneration studies indicated that GO@Di could be re-used efficiently up to 4 adsorption/desorption cycles. Finally, GO@Di was applied to real samples of natural waters and industrial effluents, obtaining removal percentages between 52 and 95%, which demonstrated the promising potential of GO@Di to depollute complex aqueous matrices containing As(<small>V</small>). Future studies will focus on the removal of other arsenical species using GO@Di and its implementation in dynamic adsorption systems.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2796-2808"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field evaluation of a biochar-amended stormwater filtration system for retention of nutrients, metals, and Escherichia coli† 实地评估生物炭添加剂雨水过滤系统对营养物质、金属和大肠埃希氏菌的截留作用
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-22 DOI: 10.1039/D4EW00390J
Bridget A. Ulrich, Karina Weelborg, Tadele M. Haile, Udai B. Singh and Joe Magner

The objective of this study was to assess the impacts of biochar and iron-enhanced sand (IES) on the comprehensive contaminant retention performance of a field-scale stormwater filtration system. The system distributed runoff from a parking lot into three filters containing sand, sand amended with biochar (custom-produced via pyrolysis of red pine wood chips at 550 °C), or IES. Over the first two field seasons of operation flow into the testbed and out of each filter were continuously monitored, and influent and effluent samples were collected during 21 precipitation events and analyzed for various contaminants and water quality parameters. To account for variations in flow distribution between the filters, long-term filter performance was assessed based on comparison of apparent cumulative input and output contaminant loads over the study duration (i.e., apparent cumulative contaminant retention). The IES filter showed the most effective phosphorous retention performance (>90% net retention of total phosphorus, TP), reflecting results from previous studies. The biochar-amended filter showed improved retention of zinc and total inorganic nitrogen (TIN) relative to the sand filter, which may be attributed to: (i) enhanced electrostatic interactions between zinc and oxygen-containing functional groups on the biochar surface, and (ii) improved attenuation of ammonia-N due to reduced nitrification and/or enhanced adsorption of ammonium. The biochar-amended filter did not show improved retention of total organic carbon or Escherichia coli, in contrast to some previous studies, potentially due to differences in biochar material properties (e.g., reduced hydrophobic interactions due to the custom biochar's relatively polar surface chemistry) or operational conditions (e.g., differences in flow rate or biofilm development between the filters). These findings demonstrate the complexities surrounding the application of biochar as a stormwater filter material for broad contaminant removal, and warrant the development of best practice recommendations for biochar selection and performance testing.

本研究的目的是评估生物炭和铁质强化砂(IES)对现场规模雨水过滤系统的综合污染物截留性能的影响。该系统将停车场的径流分流到三个过滤器中,过滤器中分别装有沙子、生物炭(通过在 550 °C 下热解红松木屑定制生产)或 IES。在运行的前两个季节,对进入试验台和流出每个过滤器的流量进行了连续监测,并在 21 次降水过程中收集了进水和出水样本,分析了各种污染物和水质参数。为了考虑过滤器之间流量分布的变化,根据研究期间的表观累积输入和输出污染物负荷(即表观累积污染物滞留量)的比较,对过滤器的长期性能进行了评估。IES 过滤器显示出最有效的磷截留性能(总磷净截留率达 90%),反映了之前研究的结果。与砂滤器相比,经生物炭改良的滤器对锌和无机氮总量(TIN)的截留效果更好,这可能归因于(i) 生物炭表面的锌和含氧官能团之间的静电相互作用增强,(ii) 由于硝化作用减弱和/或氨的吸附作用增强,氨氮的衰减得到改善。与之前的一些研究相比,经生物炭改良的过滤器对总有机碳或大肠埃希氏菌的截留率并没有提高,这可能是由于生物炭材料特性的不同(例如,定制生物炭相对极性的表面化学性质减少了疏水相互作用)或运行条件的不同(例如,过滤器之间流速或生物膜发展的不同)造成的。这些研究结果表明,将生物炭用作雨水过滤材料以广泛去除污染物的应用非常复杂,因此有必要为生物炭的选择和性能测试制定最佳实践建议。
{"title":"Field evaluation of a biochar-amended stormwater filtration system for retention of nutrients, metals, and Escherichia coli†","authors":"Bridget A. Ulrich, Karina Weelborg, Tadele M. Haile, Udai B. Singh and Joe Magner","doi":"10.1039/D4EW00390J","DOIUrl":"10.1039/D4EW00390J","url":null,"abstract":"<p >The objective of this study was to assess the impacts of biochar and iron-enhanced sand (IES) on the comprehensive contaminant retention performance of a field-scale stormwater filtration system. The system distributed runoff from a parking lot into three filters containing sand, sand amended with biochar (custom-produced <em>via</em> pyrolysis of red pine wood chips at 550 °C), or IES. Over the first two field seasons of operation flow into the testbed and out of each filter were continuously monitored, and influent and effluent samples were collected during 21 precipitation events and analyzed for various contaminants and water quality parameters. To account for variations in flow distribution between the filters, long-term filter performance was assessed based on comparison of apparent cumulative input and output contaminant loads over the study duration (<em>i.e.</em>, apparent cumulative contaminant retention). The IES filter showed the most effective phosphorous retention performance (&gt;90% net retention of total phosphorus, TP), reflecting results from previous studies. The biochar-amended filter showed improved retention of zinc and total inorganic nitrogen (TIN) relative to the sand filter, which may be attributed to: (i) enhanced electrostatic interactions between zinc and oxygen-containing functional groups on the biochar surface, and (ii) improved attenuation of ammonia-N due to reduced nitrification and/or enhanced adsorption of ammonium. The biochar-amended filter did not show improved retention of total organic carbon or <em>Escherichia coli</em>, in contrast to some previous studies, potentially due to differences in biochar material properties (<em>e.g.</em>, reduced hydrophobic interactions due to the custom biochar's relatively polar surface chemistry) or operational conditions (<em>e.g.</em>, differences in flow rate or biofilm development between the filters). These findings demonstrate the complexities surrounding the application of biochar as a stormwater filter material for broad contaminant removal, and warrant the development of best practice recommendations for biochar selection and performance testing.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2546-2558"},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection and infectivity of SARS-CoV-2 in Korean municipal wastewater facilities and characterization of environmental factors influencing wastewater-bound SARS-CoV-2† 韩国城市污水设施中 SARS-CoV-2 的检测和感染性以及影响污水中 SARS-CoV-2 的环境因素的特征描述
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-22 DOI: 10.1039/D4EW00334A
Jayun Kim, Yoon-ji Kim, Sook-young Lee, Jae-Ku Oem, Subin Kim, Keugtae Kim, Woosik Jung, Sungpyo Kim, Dong-Hwan Jeong, Minjoo Lee, Soo-Hyung Lee, Hyunook Kim and Joonhong Park

Wastewater-based epidemiology can track infectious diseases and COVID-19 surges. There is variability in viral signals from wastewater owing to numerous sample processing and virus detection methods, and many factors including characteristics of wastewater treatment plants (WWTPs) should be considered to consistently associate the signals with COVID-19 prevalence. This study optimized the virus detection method, validated the use of a process-control virus, investigated 22 WWTPs across South Korea (covering approximately 20% of the population) during two periods (24.8 versus 2027.4 weekly COVID-19 cases per 100 000 people), tested the infectivity of SARS-CoV-2 in wastewater, and characterized the environmental factors influencing wastewater-bound SARS-CoV-2 and local COVID-19 using data-driven models (DDMs). The most sensitive virus quantification methods were selected (PEG precipitation and commercial kits for RT-qPCR detection, approximately 39% more sensitive) by comparing various methods. Using a surrogate virus showed reduced variation (approximately 24%) between the intra- and inter-laboratory results. The number of WWTPs with positive detection of SARS-CoV-2 in raw wastewater increased (four to twenty) as the national COVID-19 cases peaked. SARS-CoV-2 is more likely to be detected in moderately sized facilities located in populated areas with sanitary sewer systems. In addition, results of infectivity testing suggested no potential for COVID-19 transmission through wastewater. The DDMs indicated that the air temperature, water quality, and number of COVID-19 cases were related to the SARS-CoV-2 in wastewater. Community COVID-19 cases were predicted (test performance: 0.703–0.970) with the data on wastewater viral load and other variables implying that these factors should be monitored for wastewater surveillance.

以废水为基础的流行病学可追踪传染病和 COVID-19 的激增。由于样本处理和病毒检测方法繁多,废水中的病毒信号存在变异,要将信号与 COVID-19 流行率联系起来,应考虑包括污水处理厂(WWTP)特征在内的多种因素。本研究优化了病毒检测方法,验证了过程控制病毒的使用,调查了韩国 22 家污水处理厂(覆盖约 20% 的人口)在两个时期的情况(每 10 万人中 COVID-19 每周病例数分别为 24.8 例和 2027.4 例),检测了废水中 SARS-CoV-2 的感染性,并使用数据驱动模型(DDM)描述了影响废水中 SARS-CoV-2 和当地 COVID-19 的环境因素。通过比较各种方法,选出了最灵敏的病毒定量方法(PEG 沉淀法和 RT-qPCR 检测商业试剂盒,灵敏度高出约 39%)。使用替代病毒可减少实验室内和实验室间结果的差异(约 24%)。随着全国 COVID-19 病例达到高峰,原废水中检测出 SARS-CoV-2 呈阳性的污水处理厂数量也在增加(从四家增加到二十家)。SARS-CoV-2 更有可能在位于人口稠密地区、拥有卫生下水道系统的中等规模设施中检测到。此外,传染性测试结果表明 COVID-19 没有通过废水传播的可能性。DDM 表明,空气温度、水质和 COVID-19 病例数与废水中的 SARS-CoV-2 有关。社区 COVID-19 病例与废水病毒载量和其他变量数据的预测结果(测试性能:0.703-0.970)表明,在废水监测中应监测这些因素。
{"title":"Detection and infectivity of SARS-CoV-2 in Korean municipal wastewater facilities and characterization of environmental factors influencing wastewater-bound SARS-CoV-2†","authors":"Jayun Kim, Yoon-ji Kim, Sook-young Lee, Jae-Ku Oem, Subin Kim, Keugtae Kim, Woosik Jung, Sungpyo Kim, Dong-Hwan Jeong, Minjoo Lee, Soo-Hyung Lee, Hyunook Kim and Joonhong Park","doi":"10.1039/D4EW00334A","DOIUrl":"10.1039/D4EW00334A","url":null,"abstract":"<p >Wastewater-based epidemiology can track infectious diseases and COVID-19 surges. There is variability in viral signals from wastewater owing to numerous sample processing and virus detection methods, and many factors including characteristics of wastewater treatment plants (WWTPs) should be considered to consistently associate the signals with COVID-19 prevalence. This study optimized the virus detection method, validated the use of a process-control virus, investigated 22 WWTPs across South Korea (covering approximately 20% of the population) during two periods (24.8 <em>versus</em> 2027.4 weekly COVID-19 cases per 100 000 people), tested the infectivity of SARS-CoV-2 in wastewater, and characterized the environmental factors influencing wastewater-bound SARS-CoV-2 and local COVID-19 using data-driven models (DDMs). The most sensitive virus quantification methods were selected (PEG precipitation and commercial kits for RT-qPCR detection, approximately 39% more sensitive) by comparing various methods. Using a surrogate virus showed reduced variation (approximately 24%) between the intra- and inter-laboratory results. The number of WWTPs with positive detection of SARS-CoV-2 in raw wastewater increased (four to twenty) as the national COVID-19 cases peaked. SARS-CoV-2 is more likely to be detected in moderately sized facilities located in populated areas with sanitary sewer systems. In addition, results of infectivity testing suggested no potential for COVID-19 transmission through wastewater. The DDMs indicated that the air temperature, water quality, and number of COVID-19 cases were related to the SARS-CoV-2 in wastewater. Community COVID-19 cases were predicted (test performance: 0.703–0.970) with the data on wastewater viral load and other variables implying that these factors should be monitored for wastewater surveillance.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2752-2764"},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical and molecular characteristics of urban wastewater dissolved organic matter: insights into their correlations† 城市污水溶解有机物的光学和分子特征:对其相关性的深入了解
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-22 DOI: 10.1039/D4EW00519H
Jiangyong Chu and Zhenliang Liao

Urban domestic wastewater is a significant source of dissolved organic matter (DOM) in aquatic environments, critically impacting urban water quality. This study integrates the optical properties and molecular features of DOM, providing a comprehensive understanding of its behavior in urban sanitary sewage. Utilizing ultraviolet-visible (UV-vis) spectroscopy, three-dimensional synchronous fluorescence spectroscopy, and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), we establish a robust bidirectional correlation between optical properties and molecular characteristics. Our findings reveal that urban domestic wastewater is predominantly composed of protein-like substances and microbial humic components, rich in heteroatoms and homologous compounds. The established correlations between optical and molecular features validate the DOM characterization system, demonstrating consistency between photochemical properties and molecular characteristics. Molecules related to photochemical parameters align with high H/C and low O/C ratio regions. The correlation analysis indicates that the highly associated areas are the fluorescent domains of protein-like materials and microbially derived humic-like substances. This innovative approach provides actionable insights for urban water quality management, highlighting the critical role of these methods in effective environmental monitoring.

城市生活污水是水生环境中溶解有机物(DOM)的重要来源,对城市水质造成了严重影响。本研究综合了 DOM 的光学特性和分子特征,为全面了解其在城市生活污水中的行为提供了依据。利用紫外-可见(UV-vis)光谱、三维同步荧光光谱和超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF-MS),我们在光学特性和分子特征之间建立了稳健的双向相关性。我们的研究结果表明,城市生活污水主要由蛋白质类物质和微生物腐殖质成分组成,富含杂原子和同源化合物。光学特征与分子特征之间建立的相关性验证了 DOM 表征系统,证明了光化学特征与分子特征之间的一致性。与光化学参数相关的分子与高 H/C 比值和低 O/C 比值区域一致。相关性分析表明,高度相关的区域是蛋白质类物质的荧光域和微生物衍生的腐殖类物质。这种创新方法为城市水质管理提供了可操作的见解,突出了这些方法在有效环境监测中的关键作用。
{"title":"Optical and molecular characteristics of urban wastewater dissolved organic matter: insights into their correlations†","authors":"Jiangyong Chu and Zhenliang Liao","doi":"10.1039/D4EW00519H","DOIUrl":"10.1039/D4EW00519H","url":null,"abstract":"<p >Urban domestic wastewater is a significant source of dissolved organic matter (DOM) in aquatic environments, critically impacting urban water quality. This study integrates the optical properties and molecular features of DOM, providing a comprehensive understanding of its behavior in urban sanitary sewage. Utilizing ultraviolet-visible (UV-vis) spectroscopy, three-dimensional synchronous fluorescence spectroscopy, and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), we establish a robust bidirectional correlation between optical properties and molecular characteristics. Our findings reveal that urban domestic wastewater is predominantly composed of protein-like substances and microbial humic components, rich in heteroatoms and homologous compounds. The established correlations between optical and molecular features validate the DOM characterization system, demonstrating consistency between photochemical properties and molecular characteristics. Molecules related to photochemical parameters align with high H/C and low O/C ratio regions. The correlation analysis indicates that the highly associated areas are the fluorescent domains of protein-like materials and microbially derived humic-like substances. This innovative approach provides actionable insights for urban water quality management, highlighting the critical role of these methods in effective environmental monitoring.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2559-2576"},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Science: Water Research & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1