首页 > 最新文献

Environmental Science: Water Research & Technology最新文献

英文 中文
Investigation of the effect of Al2O3/water nanofluid on the performance of a thermoelectric cooler to harvest water from humid air 研究 Al2O3/水纳米流体对从潮湿空气中获取水的热电冷却器性能的影响
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-11 DOI: 10.1039/D4EW00367E
Emad Nazari, Mohammad Hassan Vakili and Mahdi Reiszadeh

One of the sources of fresh water, especially in desert and water-scarce areas is atmospheric air. Cooling the moist air and lowering its temperature to the dew point leads to the condensation of present water. This research used a thermoelectric cooler system to obtain water from humid air. Al2O3/water nanofluid was used to take the heat from the hot side of the thermoelectric cooler. Using a lab setting, the convective heat transfer coefficient of various nanofluid concentrations was determined. According to the findings, for high Reynolds numbers, the heat transfer coefficient of the nanofluid is between 5000 and 7000 W m−2 K−1. The effect of some parameters, such as velocity and humidity of the inlet air as well as the nanofluid concentration, on the amount of harvested water was studied experimentally and numerically. The results showed that increasing air humidity led to an increase in the amount of water obtained and the system's performance coefficient. The maximum amount of extracted water at a relative humidity of 20% and air temperature of 35 °C was obtained at 51.3 ml h−1 at the inlet air velocity of 1.4 m s−1 and using a nanofluid of 5 wt%. The velocity of inlet air had a significant effect on the performance coefficient of the system. Increasing the velocity from 1.1 to 1.6 m s−1 increased the COP by about 30%. In general, the research results showed that thermoelectric coolers could be used as portable devices to extract fresh water from the air, even with low humidity.

淡水的来源之一是大气中的空气,尤其是在沙漠和缺水地区。冷却潮湿的空气,将其温度降至露点,就会凝结出水。这项研究利用热电冷却器系统从潮湿空气中获取水。Al2O3 / 水纳米流体用于从热电半导体制冷片的热侧获取热量。通过实验室环境,测定了不同浓度纳米流体的对流传热系数。根据研究结果,在高雷诺数情况下,纳米流体的传热系数在 5000 至 7000 w/m2.K 之间。实验和数值研究了一些参数,如入口空气的速度和湿度以及非流体浓度对采水量的影响。结果表明,增加空气湿度可提高取水量和系统的性能系数。在相对湿度为 20%、气温为 35 oC 的条件下,当进气速度为 1.4 m/s、使用 5% 重量的纳米流体时,最大采水量为 51.3 ml/h。进气速度对系统的性能系数有显著影响。将速度从 1.1 m/s 提高到 1.6 m/s,可使 COP 提高约 30%。总之,研究结果表明,热电冷却器可用作从空气中提取淡水的便携式设备,即使在湿度较低的情况下也是如此。
{"title":"Investigation of the effect of Al2O3/water nanofluid on the performance of a thermoelectric cooler to harvest water from humid air","authors":"Emad Nazari, Mohammad Hassan Vakili and Mahdi Reiszadeh","doi":"10.1039/D4EW00367E","DOIUrl":"10.1039/D4EW00367E","url":null,"abstract":"<p >One of the sources of fresh water, especially in desert and water-scarce areas is atmospheric air. Cooling the moist air and lowering its temperature to the dew point leads to the condensation of present water. This research used a thermoelectric cooler system to obtain water from humid air. Al<small><sub>2</sub></small>O<small><sub>3</sub></small>/water nanofluid was used to take the heat from the hot side of the thermoelectric cooler. Using a lab setting, the convective heat transfer coefficient of various nanofluid concentrations was determined. According to the findings, for high Reynolds numbers, the heat transfer coefficient of the nanofluid is between 5000 and 7000 W m<small><sup>−2</sup></small> K<small><sup>−1</sup></small>. The effect of some parameters, such as velocity and humidity of the inlet air as well as the nanofluid concentration, on the amount of harvested water was studied experimentally and numerically. The results showed that increasing air humidity led to an increase in the amount of water obtained and the system's performance coefficient. The maximum amount of extracted water at a relative humidity of 20% and air temperature of 35 °C was obtained at 51.3 ml h<small><sup>−1</sup></small> at the inlet air velocity of 1.4 m s<small><sup>−1</sup></small> and using a nanofluid of 5 wt%. The velocity of inlet air had a significant effect on the performance coefficient of the system. Increasing the velocity from 1.1 to 1.6 m s<small><sup>−1</sup></small> increased the COP by about 30%. In general, the research results showed that thermoelectric coolers could be used as portable devices to extract fresh water from the air, even with low humidity.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 3035-3044"},"PeriodicalIF":3.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of advanced treatment of low concentration tetracycline wastewater in two-stage MBBR system 在两级 MBBR 系统中对低浓度四环素废水进行高级处理的研究
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-10 DOI: 10.1039/D4EW00313F
Kuaile Zhao, Hanyu Chen, Zhaoran Wang, Baozhong Zhang, Kunfeng Zhang, Huikang Zhang and Wanbin Hong

In this research, a two-stage reaction system was developed, incorporating a moving bed biofilm reactor (MBBR) and a photocatalytic reactor. This was based on the preparation of suspended graphitic carbon carriers, with the aim of investigating the system's efficacy in removing low-concentration tetracycline wastewater. Initially, the preparation conditions for the novel floating composite photocatalyst were optimized. Then the photocatalytic reaction system was constructed using this photocatalyst to remove convective dynamic tetracycline wastewater. The maximum degradation rate of tetracycline wastewater, with an influent concentration of 50 mg L−1, achieved in the photocatalytic reaction system was 99.32%. Subsequently, the working conditions of the bio-MBBR reaction system were optimized, including chemical oxygen demand (COD) and filler feeding rate. The optimal reaction conditions were then selected and combined with the photocatalytic reaction system to investigate the treatment effect on tetracycline wastewater of varying concentrations. The results indicated that even when the concentration of tetracycline (TC) in the influent water remained at 3 mg L−1 for 11 days, the average removal rates of TC, COD, total phosphorus (TP), total nitrogen (TN), and ammonia nitrogen (NH4+-N) were still 92.25%, 87.43%, 87.49%, 66.81%, and 95.72%, respectively. This suggests that the MBBR coupled photocatalytic reactor has a significant removal effect on wastewater containing low concentrations of antibiotics.

本研究开发了一个两级反应系统,其中包括一个移动床生物膜反应器(MBBR)和一个光催化反应器。该系统以制备悬浮石墨碳载体为基础,旨在研究该系统去除低浓度四环素废水的功效。首先,对新型悬浮复合光催化剂的制备条件进行了优化。然后,利用该光催化剂构建了光催化反应系统,用于去除对流动态四环素废水。光催化反应系统对进水浓度为 50 mg/L 的四环素废水的最大降解率为 99.32%。随后,对生物-MBBR 反应系统的工作条件进行了优化,包括化学需氧量(COD)和填料进料速率。选定最佳反应条件后,结合光催化反应系统,研究了不同浓度四环素废水的处理效果。结果表明,即使进水中的四环素(TC)浓度保持在 3 mg/L 持续 11 天,TC、COD、总磷(TP)、总氮(TN)和氨氮(NH4+-N)的平均去除率仍分别为 92.25%、87.43%、87.49%、66.81% 和 95.72%。这表明 MBBR 耦合光催化反应器对含低浓度抗生素的废水具有显著的去除效果。
{"title":"Study of advanced treatment of low concentration tetracycline wastewater in two-stage MBBR system","authors":"Kuaile Zhao, Hanyu Chen, Zhaoran Wang, Baozhong Zhang, Kunfeng Zhang, Huikang Zhang and Wanbin Hong","doi":"10.1039/D4EW00313F","DOIUrl":"10.1039/D4EW00313F","url":null,"abstract":"<p >In this research, a two-stage reaction system was developed, incorporating a moving bed biofilm reactor (MBBR) and a photocatalytic reactor. This was based on the preparation of suspended graphitic carbon carriers, with the aim of investigating the system's efficacy in removing low-concentration tetracycline wastewater. Initially, the preparation conditions for the novel floating composite photocatalyst were optimized. Then the photocatalytic reaction system was constructed using this photocatalyst to remove convective dynamic tetracycline wastewater. The maximum degradation rate of tetracycline wastewater, with an influent concentration of 50 mg L<small><sup>−1</sup></small>, achieved in the photocatalytic reaction system was 99.32%. Subsequently, the working conditions of the bio-MBBR reaction system were optimized, including chemical oxygen demand (COD) and filler feeding rate. The optimal reaction conditions were then selected and combined with the photocatalytic reaction system to investigate the treatment effect on tetracycline wastewater of varying concentrations. The results indicated that even when the concentration of tetracycline (TC) in the influent water remained at 3 mg L<small><sup>−1</sup></small> for 11 days, the average removal rates of TC, COD, total phosphorus (TP), total nitrogen (TN), and ammonia nitrogen (NH<small><sub>4</sub></small><small><sup>+</sup></small>-N) were still 92.25%, 87.43%, 87.49%, 66.81%, and 95.72%, respectively. This suggests that the MBBR coupled photocatalytic reactor has a significant removal effect on wastewater containing low concentrations of antibiotics.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2688-2697"},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From waste to resource: a multidimensional analysis of sewage sludge thermochemical treatment efficiency across temperatures† 从废物到资源:不同温度下污水污泥热化学处理效率的多维分析
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-10 DOI: 10.1039/D4EW00255E
Shiqi Liu, Guoxia Wei, Hanqiao Liu, Yuwen Zhu, Huizhen Shi and Yi Lian

Sewage sludge (SS) thermochemical treatment is considered as an effective management scheme in the transition to low carbon and sustainable development from conventional SS treatment. According to temperature and atmosphere, SS thermochemical treatment technologies are primarily categorized into thermal hydrolysis (TH), medium-temperature pyrolysis carbonization (MPC), high-temperature pyrolysis carbonization, gasification incineration, and incineration. Herein, the life cycle assessment (LCA), energy efficiency analysis (EEA), and cost–benefit analysis (CBA) methods were used to examine the environmental, energy, and economic performances of the five different SS thermochemical technologies. The LCA results indicate that MPC is environmentally favorable, with incineration being the most impactful in terms of environmental burden, MPC has a global warming potential (GWP) index of 163.63 kg CO2 eq., significantly lower than the 306.37 kg CO2 eq. impact generated by incineration. The EEA results show that the energy recovery rate increases with the temperature of thermochemical treatment. Economically, MPC has the best economic benefits, the CBA and environmental-CBA results are 97.39 and 87.17 RMB per tonne, respectively. Ultimately, scenario analyses illustrate that technological improvements by adding inorganic–organic separation pretreatment before MPC are beneficial to the reduction of environmental indicator values, especially by up to 42.48–44.21% in terms of ecological and human health hazards, with an additional economic benefit of 10.22%.

污水污泥(SS)热化学处理被认为是从传统 SS 处理向低碳和可持续发展过渡的有效管理方案。根据温度和气氛的不同,污泥热化学处理技术主要分为热水解(TH)、中温热解碳化(MPC)、高温热解碳化、气化焚烧和焚烧。本文采用生命周期评估(LCA)、能效分析(EEA)和成本效益分析(CBA)方法考察了五种不同 SS 热化学技术在环境、能源和经济方面的表现。生命周期分析结果表明,MPC 对环境有利,就环境负担而言,焚烧对环境的影响最大,MPC 的全球升温潜能值(GWP)指数为 163.63 千克二氧化碳当量,明显低于焚烧产生的 306.37 千克二氧化碳当量的影响。EEA 结果表明,能量回收率随热化学处理温度的升高而增加。在经济上,MPC 的经济效益最好,CBA 和环境-CBA 结果分别为每吨 97.39 元和 87.17 元。最终,情景分析表明,在 MPC 之前增加无机-有机分离预处理的技术改进有利于降低环境指标值,特别是在生态和人体健康危害方面,降低幅度可达 42.48%-44.21% ,额外经济效益为 10.22%。
{"title":"From waste to resource: a multidimensional analysis of sewage sludge thermochemical treatment efficiency across temperatures†","authors":"Shiqi Liu, Guoxia Wei, Hanqiao Liu, Yuwen Zhu, Huizhen Shi and Yi Lian","doi":"10.1039/D4EW00255E","DOIUrl":"10.1039/D4EW00255E","url":null,"abstract":"<p >Sewage sludge (SS) thermochemical treatment is considered as an effective management scheme in the transition to low carbon and sustainable development from conventional SS treatment. According to temperature and atmosphere, SS thermochemical treatment technologies are primarily categorized into thermal hydrolysis (TH), medium-temperature pyrolysis carbonization (MPC), high-temperature pyrolysis carbonization, gasification incineration, and incineration. Herein, the life cycle assessment (LCA), energy efficiency analysis (EEA), and cost–benefit analysis (CBA) methods were used to examine the environmental, energy, and economic performances of the five different SS thermochemical technologies. The LCA results indicate that MPC is environmentally favorable, with incineration being the most impactful in terms of environmental burden, MPC has a global warming potential (GWP) index of 163.63 kg CO<small><sub>2</sub></small> eq., significantly lower than the 306.37 kg CO<small><sub>2</sub></small> eq. impact generated by incineration. The EEA results show that the energy recovery rate increases with the temperature of thermochemical treatment. Economically, MPC has the best economic benefits, the CBA and environmental-CBA results are 97.39 and 87.17 RMB per tonne, respectively. Ultimately, scenario analyses illustrate that technological improvements by adding inorganic–organic separation pretreatment before MPC are beneficial to the reduction of environmental indicator values, especially by up to 42.48–44.21% in terms of ecological and human health hazards, with an additional economic benefit of 10.22%.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 12","pages":" 3238-3248"},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphosphazene-based hyper crosslinked polymers for efficient uranium ion removal from nuclear wastewater† 用于从核废水中高效去除铀离子的聚磷苯基超交联聚合物
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-09 DOI: 10.1039/D4EW00614C
Rimsha Khalid, Isham Areej, Faiza Ashraf, Saqlain Raza, Amin Abid, Tayyab Ahsan and Bien Tan

This study focuses on the removal of uranium ions from nuclear wastewater by fabricating inorganic–organic hybrid cyclic and linear polyphosphazene based polymers. Synthesized HCP-A and HCP-B had BET surface areas of 497.06 m2 g−1 and 410.75 m2 g−1, respectively, while the pore size distribution (PSD) was in the range of 1–20 nm. The maximum removal efficiency of uranium by HCP-A and HCP-B for a lab prepared sample was found to be 97.6% and 95.2%, respectively, at pH 6, a contact period of 80 minutes, an adsorbent weight of 0.6 g, and a temperature of 25 °C, while for a nuclear wastewater sample, it was 83.9% and 79.8%, respectively. Lone pair–cation interactions, metal ligand complexation, hydrogen bonding, cation–pi interactions and electrostatic interactions were responsible for adsorption. The point of zero charge (PZC) for both HCPs was at pH 4.6. The optimal uranium uptake capacities of HCP-A and HCP-B were found to be 714.28 mg g−1 and 555.56 mg g−1, respectively. The Freundlich model was the best match for uranium adsorption by both HCPs, with R2 values of 0.9775 and 0.9931, respectively. Adsorption kinetics study exhibited that it fitted a pseudo 2nd order kinetic model with R2 values of 0.9446 for HCP-A and 0.9882 for HCP-B. The uranium uptake process was found to be spontaneous and exothermic in nature. For HCP-A and HCP-B, a Gibbs free energy (ΔG) of −1.516 kJ mol−1 and −0.27 kJ mol−1, enthalpy change (ΔH) of −41.59 kJ mol−1 and −40.65 kJ mol−1, and entropy change (ΔS) of −0.134 kJ mol−1 K−1 and −0.136 kJ mol−1 K−1, respectively, were observed. The reusability of HCPs with a minor decrease (2% and 1%) in their adsorption capability suggests that they can be used in industrial level applications.

本研究的重点是通过制造一种无机-有机杂化环状和线性聚磷酸盐基聚合物来去除核废水中的铀离子。合成的 HCP-A 和 HCP-B 的 BET 表面积分别为 497.06 m2/g 和 410.75 m2/g,孔径分布(PSD)在 1 至 20 nm 之间。在 pH 值为 6、接触时间为 80 分钟、吸附剂重量为 0.6 克、温度为 25 ℃ 的条件下,HCP-A 和 HCP-B 对实验室制备的样品中铀的最大去除率分别为 97.6% 和 95.2%,而对实验室制备的核废水样品的去除率分别为 83.9% 和 79.8%。孤对-阳离子相互作用、金属配体络合、氢键、阳离子-阴离子相互作用和静电作用是吸附的原因。两种 HCP 的零电荷点(PZC)都在 pH 值为 4.6 时。HCP-A 和 HCP-B 的最佳铀吸收能力分别为 714.28 毫克/克和 555.56 毫克/克。Freundlich 模型是两种 HCP 对铀吸附的最佳匹配模型,其 R2 值分别为 0.9775 和 0.9931。吸附动力学研究表明,HCP-A 和 HCP-B 符合伪二阶动力学模型,R2 值分别为 0.9446 和 0.9882。铀的吸收过程具有自发和放热的性质。对于 HCP-A 和 HCP-B,吉布斯自由能(ΔG)分别为 -1.516 kJ ¬mol-1 和 -0.27 kJ -mol-1,焓变(ΔH)分别为 -41.59 kJ ¬mol-1 和 -40.65 kJ ¬mol-1,熵变(ΔS)分别为 -0.134 kJ ¬mol-1 ¬K-1 和 -0.136 kJ ¬mol-1 ¬K-1。HCP 的吸附能力略有下降(2% 和 1%),但仍可重复使用,这表明它们可用于工业领域。
{"title":"Polyphosphazene-based hyper crosslinked polymers for efficient uranium ion removal from nuclear wastewater†","authors":"Rimsha Khalid, Isham Areej, Faiza Ashraf, Saqlain Raza, Amin Abid, Tayyab Ahsan and Bien Tan","doi":"10.1039/D4EW00614C","DOIUrl":"10.1039/D4EW00614C","url":null,"abstract":"<p >This study focuses on the removal of uranium ions from nuclear wastewater by fabricating inorganic–organic hybrid cyclic and linear polyphosphazene based polymers. Synthesized HCP-A and HCP-B had BET surface areas of 497.06 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> and 410.75 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>, respectively, while the pore size distribution (PSD) was in the range of 1–20 nm. The maximum removal efficiency of uranium by HCP-A and HCP-B for a lab prepared sample was found to be 97.6% and 95.2%, respectively, at pH 6, a contact period of 80 minutes, an adsorbent weight of 0.6 g, and a temperature of 25 °C, while for a nuclear wastewater sample, it was 83.9% and 79.8%, respectively. Lone pair–cation interactions, metal ligand complexation, hydrogen bonding, cation–pi interactions and electrostatic interactions were responsible for adsorption. The point of zero charge (PZC) for both HCPs was at pH 4.6. The optimal uranium uptake capacities of HCP-A and HCP-B were found to be 714.28 mg g<small><sup>−1</sup></small> and 555.56 mg g<small><sup>−1</sup></small>, respectively. The Freundlich model was the best match for uranium adsorption by both HCPs, with <em>R</em><small><sup>2</sup></small> values of 0.9775 and 0.9931, respectively. Adsorption kinetics study exhibited that it fitted a pseudo 2nd order kinetic model with <em>R</em><small><sup>2</sup></small> values of 0.9446 for HCP-A and 0.9882 for HCP-B. The uranium uptake process was found to be spontaneous and exothermic in nature. For HCP-A and HCP-B, a Gibbs free energy (Δ<em>G</em>) of −1.516 kJ mol<small><sup>−1</sup></small> and −0.27 kJ mol<small><sup>−1</sup></small>, enthalpy change (Δ<em>H</em>) of −41.59 kJ mol<small><sup>−1</sup></small> and −40.65 kJ mol<small><sup>−1</sup></small>, and entropy change (Δ<em>S</em>) of −0.134 kJ mol<small><sup>−1</sup></small> K<small><sup>−1</sup></small> and −0.136 kJ mol<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, respectively, were observed. The reusability of HCPs with a minor decrease (2% and 1%) in their adsorption capability suggests that they can be used in industrial level applications.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2961-2980"},"PeriodicalIF":3.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation behavior of hydrogen isotopes via water pervaporation using proton conductive membranes† 利用质子传导膜通过水蒸气分离氢同位素的行为
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-05 DOI: 10.1039/D4EW00330F
Chan Woo Park, Sung-Wook Kim, Hyung-Ju Kim, Euna Jeong and In-Ho Yoon

In this study, we investigated pervaporative hydrogen isotope separation behaviors in proton-conductive membranes. Perfluorosulfonic acid (Nafion) and polybenzimidazole membranes exhibited similar hydrogen isotope separation factors, with varying water permeation fluxes based on membrane type and thickness. Increasing temperature improved water permeation flux, while the H/D separation factor remained unaffected. The highest H/D separation factor (1.086) was achieved with a single layer of Nafion at reduced vacuum, surpassing the 16O/18O separation factor (1.015). The observed H/D separation behavior is attributed to the mobility difference between hydrons (H+ and D+) rather than bulk water diffusion (H3O+ and H2DO+). Experiments with heavy metal-exchanged Nafion membranes suggested a negligible contribution of direct H/D ion exchange of sulfonic acid to the overall H/D separation factor. Additionally, water pervaporation through two membranes increased the H/D separation factor.

在这项研究中,我们研究了质子传导膜中氢同位素的渗透分离行为。全氟磺酸(Nafion)膜和聚苯并咪唑膜表现出相似的氢同位素分离因子,而水的渗透通量则因膜的类型和厚度而异。温度升高可提高水渗透通量,而氢/水分离因数不受影响。在真空度降低的情况下,单层 Nafion 实现了最高的 H/D 分离因子(1.086),超过了 16O/18O 分离因子(1.015)。所观察到的 H/D 分离行为归因于氢子(H+ 和 D+)之间的迁移率差异,而非大量水的扩散(H3O+ 和 H2DO+)。重金属交换 Nafion 膜的实验表明,磺酸的直接 H/D 离子交换对整个 H/D 分离因子的贡献微乎其微。此外,水通过两层膜的渗透增加了 H/D 分离系数。
{"title":"Separation behavior of hydrogen isotopes via water pervaporation using proton conductive membranes†","authors":"Chan Woo Park, Sung-Wook Kim, Hyung-Ju Kim, Euna Jeong and In-Ho Yoon","doi":"10.1039/D4EW00330F","DOIUrl":"10.1039/D4EW00330F","url":null,"abstract":"<p >In this study, we investigated pervaporative hydrogen isotope separation behaviors in proton-conductive membranes. Perfluorosulfonic acid (Nafion) and polybenzimidazole membranes exhibited similar hydrogen isotope separation factors, with varying water permeation fluxes based on membrane type and thickness. Increasing temperature improved water permeation flux, while the H/D separation factor remained unaffected. The highest H/D separation factor (1.086) was achieved with a single layer of Nafion at reduced vacuum, surpassing the <small><sup>16</sup></small>O/<small><sup>18</sup></small>O separation factor (1.015). The observed H/D separation behavior is attributed to the mobility difference between hydrons (H<small><sup>+</sup></small> and D<small><sup>+</sup></small>) rather than bulk water diffusion (H<small><sub>3</sub></small>O<small><sup>+</sup></small> and H<small><sub>2</sub></small>DO<small><sup>+</sup></small>). Experiments with heavy metal-exchanged Nafion membranes suggested a negligible contribution of direct H/D ion exchange of sulfonic acid to the overall H/D separation factor. Additionally, water pervaporation through two membranes increased the H/D separation factor.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2787-2795"},"PeriodicalIF":3.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of nanomaterials in advanced membrane technologies for groundwater purification 纳米材料在地下水净化先进膜技术中的作用
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-04 DOI: 10.1039/D4EW00353E
Manoj Chandra Garg, Sheetal Kumari and Neeraj Malik

Access to clean and potable groundwater is paramount for sustaining human health and ecological balance. Traditional groundwater purification techniques often fall short in addressing emerging contaminants and increasing water scarcity challenges. As per the World Health Organization (WHO), around 2 billion individuals worldwide rely on a drinking water source that is contaminated with faeces. In India, approximately 163 million individuals do not have access to potable water, rendering it a notable concern. Advanced membrane technologies have emerged as promising solutions for groundwater purification due to their efficiency, cost-effectiveness, and adaptability. In recent years, the incorporation of nanomaterials such as graphene, carbon nanotubes, metal nanoparticles, and nanocomposites into membrane structures has revolutionized the field of groundwater purification. These nanomaterials offer unique properties, including a high surface area, tuneable surface chemistry, and exceptional mechanical strength, which significantly enhance membrane separation processes. Their application has resulted in improved removal efficiencies for various contaminants, including heavy metals, organic pollutants, and microorganisms. This review provides an overview of recent advancements in membrane-based groundwater purification, with a specific focus on the integration of nanomaterials to enhance membrane performance. It explores the key mechanisms by which nanomaterial-enhanced membranes enhance groundwater purification, including increased adsorption capacity, reduced fouling, and improved selectivity. Moreover, the environmental sustainability of these advanced membranes is discussed, highlighting their potential to reduce energy consumption and chemical usage compared to conventional purification methods. Additionally, this review sheds light on the challenges and prospects associated with implementing nanomaterial-enhanced membranes at a larger scale, considering factors such as scalability, cost-effectiveness, and regulatory compliance. It also emphasizes the need for interdisciplinary research collaborations among materials scientists, engineers, and environmental experts to address these challenges effectively.

获得清洁、可饮用的地下水对于维持人类健康和生态平衡至关重要。传统的地下水净化技术往往无法应对新出现的污染物和日益严峻的缺水挑战。据世界卫生组织(WHO)统计,全球约有 20 亿人的饮用水源受到粪便污染。在印度,约有 1.63 亿人无法获得饮用水,这是一个值得关注的问题。先进的膜技术因其效率高、成本效益高和适应性强而成为净化地下水的有前途的解决方案。近年来,将石墨烯、碳纳米管、金属纳米颗粒和纳米复合材料等纳米材料融入膜结构已在地下水净化领域掀起了一场革命。这些纳米材料具有独特的性能,包括高表面积、可调整的表面化学性质和优异的机械强度,可显著增强膜分离过程。它们的应用提高了对各种污染物(包括重金属、有机污染物和微生物)的去除效率。本综述概述了基于膜的地下水净化的最新进展,特别侧重于纳米材料的集成以提高膜的性能。它探讨了纳米材料增强膜提高地下水净化能力的关键机制,包括增加吸附能力、减少污垢和提高选择性。此外,还讨论了这些先进膜的环境可持续性,强调与传统净化方法相比,它们具有降低能耗和化学品使用量的潜力。此外,考虑到可扩展性、成本效益和监管合规性等因素,本综述阐明了在更大规模上实施纳米材料增强膜所面临的挑战和前景。它还强调了材料科学家、工程师和环境专家之间开展跨学科研究合作的必要性,以有效地应对这些挑战。
{"title":"Role of nanomaterials in advanced membrane technologies for groundwater purification","authors":"Manoj Chandra Garg, Sheetal Kumari and Neeraj Malik","doi":"10.1039/D4EW00353E","DOIUrl":"10.1039/D4EW00353E","url":null,"abstract":"<p >Access to clean and potable groundwater is paramount for sustaining human health and ecological balance. Traditional groundwater purification techniques often fall short in addressing emerging contaminants and increasing water scarcity challenges. As per the World Health Organization (WHO), around 2 billion individuals worldwide rely on a drinking water source that is contaminated with faeces. In India, approximately 163 million individuals do not have access to potable water, rendering it a notable concern. Advanced membrane technologies have emerged as promising solutions for groundwater purification due to their efficiency, cost-effectiveness, and adaptability. In recent years, the incorporation of nanomaterials such as graphene, carbon nanotubes, metal nanoparticles, and nanocomposites into membrane structures has revolutionized the field of groundwater purification. These nanomaterials offer unique properties, including a high surface area, tuneable surface chemistry, and exceptional mechanical strength, which significantly enhance membrane separation processes. Their application has resulted in improved removal efficiencies for various contaminants, including heavy metals, organic pollutants, and microorganisms. This review provides an overview of recent advancements in membrane-based groundwater purification, with a specific focus on the integration of nanomaterials to enhance membrane performance. It explores the key mechanisms by which nanomaterial-enhanced membranes enhance groundwater purification, including increased adsorption capacity, reduced fouling, and improved selectivity. Moreover, the environmental sustainability of these advanced membranes is discussed, highlighting their potential to reduce energy consumption and chemical usage compared to conventional purification methods. Additionally, this review sheds light on the challenges and prospects associated with implementing nanomaterial-enhanced membranes at a larger scale, considering factors such as scalability, cost-effectiveness, and regulatory compliance. It also emphasizes the need for interdisciplinary research collaborations among materials scientists, engineers, and environmental experts to address these challenges effectively.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2628-2645"},"PeriodicalIF":3.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of capacitive deionization technology in water treatment and coupling technology: a review 电容去离子技术在水处理和耦合技术中的应用:综述
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-04 DOI: 10.1039/D4EW00413B
Shumin He, Tong Zhu, Youzhao Wang, Wei Xiong, Xiaolong Gao and Enbo Zhang

Due to the growing demand for water in human society, the shortage of water resources has become the bottleneck of ecological civilization construction and social and economic sustainable development. Therefore, the circulation and development of water resources are important measures to ensure water resources and water security. Capacitive deionization technology (CDI) offers numerous advantages, including high efficiency, energy savings, ease of operation, and renewability. It has been actively developed as a promising new technology. Following decades of research, the application of CDI has become increasingly widespread. Most of the existing literature reviews, however, are only related to seawater desalination. Consequently, this paper mainly emphasizes the most current research progress in various application fields of CDI in water treatment. The focus of this paper is on the application principles and progress of CDI in water treatment, introducing and analyzing potential research findings of CDI in water desalination, water softening, removal of heavy metals, purification of industrial wastewater, and removal of nutrients. The summary and comparison include CDI and other ion treatment technologies, such as reverse osmosis, electrodialysis, and membrane distillation. Secondly, the latest research progress on CDI coupling technology is discussed. Finally, some suggestions on the presentation present the progress of CDI technology and the prospects for the future.

由于人类社会对水的需求日益增长,水资源短缺已成为生态文明建设和经济社会可持续发展的瓶颈。因此,水资源的循环与开发是保障水资源和水安全的重要措施。电容式去离子技术(CDI)具有高效、节能、易操作、可再生等诸多优点。作为一项前景广阔的新技术,它得到了积极的发展。经过几十年的研究,电容式去离子技术的应用日益广泛。然而,现有的文献综述大多只涉及海水淡化。因此,本文主要强调 CDI 在水处理各个应用领域的最新研究进展。本文的重点是 CDI 在水处理中的应用原理和进展。介绍并分析了 CDI 在海水淡化、水软化、重金属去除、工业废水净化和营养物质去除等方面的潜在研究成果。总结和比较了 CDI 和其他离子处理技术,如反渗透、电渗析和膜蒸馏。其次,讨论了 CDI 耦合技术的最新研究进展。最后,对 CDI 技术提出了一些建议。
{"title":"Application of capacitive deionization technology in water treatment and coupling technology: a review","authors":"Shumin He, Tong Zhu, Youzhao Wang, Wei Xiong, Xiaolong Gao and Enbo Zhang","doi":"10.1039/D4EW00413B","DOIUrl":"10.1039/D4EW00413B","url":null,"abstract":"<p >Due to the growing demand for water in human society, the shortage of water resources has become the bottleneck of ecological civilization construction and social and economic sustainable development. Therefore, the circulation and development of water resources are important measures to ensure water resources and water security. Capacitive deionization technology (CDI) offers numerous advantages, including high efficiency, energy savings, ease of operation, and renewability. It has been actively developed as a promising new technology. Following decades of research, the application of CDI has become increasingly widespread. Most of the existing literature reviews, however, are only related to seawater desalination. Consequently, this paper mainly emphasizes the most current research progress in various application fields of CDI in water treatment. The focus of this paper is on the application principles and progress of CDI in water treatment, introducing and analyzing potential research findings of CDI in water desalination, water softening, removal of heavy metals, purification of industrial wastewater, and removal of nutrients. The summary and comparison include CDI and other ion treatment technologies, such as reverse osmosis, electrodialysis, and membrane distillation. Secondly, the latest research progress on CDI coupling technology is discussed. Finally, some suggestions on the presentation present the progress of CDI technology and the prospects for the future.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2313-2340"},"PeriodicalIF":3.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of chloride transport on the bioelectrochemical remediation of nitrate-contaminated groundwater† 氯离子迁移对硝酸盐污染地下水生物电化学修复的影响
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-04 DOI: 10.1039/D4EW00335G
Hanyu Tang, McKenzie Burns and Mohan Qin

Nitrate is a common groundwater contaminant, primarily caused by the leaching of fertilizers. It poses a risk to human health, prompting the USEPA to set a drinking water limit of 10 mg L−1. Membrane-based bioelectrochemical systems (MBES) are effective treatment mechanisms for remediation of nitrate-rich groundwater. However, there is a knowledge gap surrounding how chloride ions as competing ions impact nitrate removal mechanisms and kinetics. In this study, nitrate-rich groundwater was fed into the cathode side of an MBES equipped with an anion exchange membrane (AEM). Nitrate ions were subsequently transported to the anolyte, where microbe-mediated reduction to N2 was achieved. The system performance was evaluated under varied catholyte nitrate and chloride concentrations as well as with different applied current densities. The MBES consistently achieved nitrate removal efficiencies of at least 85% with catholyte nitrate concentrations ranging from 14 mg L−1 NO3-N to 56 mg L−1 NO3-N. Notably, the highest nitrate removal rate of 8.28 ± 0.01 mg NO3-N L−1 h−1 was achieved when the catholyte influent nitrate concentration was 56 mg L−1 NO3-N. The nitrate removal behavior in the MBES can be characterized as a pseudo-first-order reaction. The presence of chloride ions, acting as model competing ions to nitrate, was found to decrease the rate of nitrate removal. Additionally, we found that diffusion is the primary driving force for nitrate removal, with electromigration slightly enhancing nitrate transport across the membrane in the MBES. When actual groundwater was used as the catholyte, 90.6 ± 12.1% nitrate was removed and the removal rate reached 5.3 ± 0.4 mg L−1 h−1 NO3-N, demonstrating the high efficiency of this MBES in treating nitrate-contaminated groundwater.

硝酸盐是一种常见的地下水污染物,主要由肥料沥滤造成。它对人类健康构成风险,促使美国环保局将饮用水限值设定为 10 mg L-1。膜生物电化学系统(MBES)是修复富含硝酸盐的地下水的有效处理机制。然而,在氯离子作为竞争离子如何影响硝酸盐去除机制和动力学方面还存在知识空白。在这项研究中,富含硝酸盐的地下水被送入配有阴离子交换膜(AEM)的 MBES 阴极侧。硝酸根离子随后被输送到阳极溶液中,在微生物的介导下还原成 N2。在不同的电解质硝酸盐和氯化物浓度以及不同的应用电流密度条件下,对该系统的性能进行了评估。在溶液硝酸盐浓度为 14 mg L-1 NO3--N 至 56 mg L-1 NO3--N 的情况下,MBES 的硝酸盐去除率始终保持在 85% 以上。值得注意的是,当阴溶液进水硝酸盐浓度为 56 mg L-1 NO3--N 时,硝酸盐去除率最高,为 8.28 ± 0.01 mg NO3--N L-1 h-1。MBES 中的硝酸盐去除行为可归结为伪一阶反应。作为硝酸盐的竞争离子,氯离子的存在会降低硝酸盐的去除率。此外,我们还发现,扩散是硝酸盐去除的主要驱动力,而在 MBES 中,电迁移略微增强了硝酸盐的跨膜迁移。当使用实际地下水作为电解质时,硝酸盐的去除率为 90.6 ± 12.1%,去除率达到 5.3 ± 0.4 mg L-1 h-1 NO3--N,这表明该 MBES 在处理受硝酸盐污染的地下水方面具有很高的效率。
{"title":"Effects of chloride transport on the bioelectrochemical remediation of nitrate-contaminated groundwater†","authors":"Hanyu Tang, McKenzie Burns and Mohan Qin","doi":"10.1039/D4EW00335G","DOIUrl":"10.1039/D4EW00335G","url":null,"abstract":"<p >Nitrate is a common groundwater contaminant, primarily caused by the leaching of fertilizers. It poses a risk to human health, prompting the USEPA to set a drinking water limit of 10 mg L<small><sup>−1</sup></small>. Membrane-based bioelectrochemical systems (MBES) are effective treatment mechanisms for remediation of nitrate-rich groundwater. However, there is a knowledge gap surrounding how chloride ions as competing ions impact nitrate removal mechanisms and kinetics. In this study, nitrate-rich groundwater was fed into the cathode side of an MBES equipped with an anion exchange membrane (AEM). Nitrate ions were subsequently transported to the anolyte, where microbe-mediated reduction to N<small><sub>2</sub></small> was achieved. The system performance was evaluated under varied catholyte nitrate and chloride concentrations as well as with different applied current densities. The MBES consistently achieved nitrate removal efficiencies of at least 85% with catholyte nitrate concentrations ranging from 14 mg L<small><sup>−1</sup></small> NO<small><sub>3</sub></small><small><sup>−</sup></small>-N to 56 mg L<small><sup>−1</sup></small> NO<small><sub>3</sub></small><small><sup>−</sup></small>-N. Notably, the highest nitrate removal rate of 8.28 ± 0.01 mg NO<small><sub>3</sub></small><small><sup>−</sup></small>-N L<small><sup>−1</sup></small> h<small><sup>−1</sup></small> was achieved when the catholyte influent nitrate concentration was 56 mg L<small><sup>−1</sup></small> NO<small><sub>3</sub></small><small><sup>−</sup></small>-N. The nitrate removal behavior in the MBES can be characterized as a pseudo-first-order reaction. The presence of chloride ions, acting as model competing ions to nitrate, was found to decrease the rate of nitrate removal. Additionally, we found that diffusion is the primary driving force for nitrate removal, with electromigration slightly enhancing nitrate transport across the membrane in the MBES. When actual groundwater was used as the catholyte, 90.6 ± 12.1% nitrate was removed and the removal rate reached 5.3 ± 0.4 mg L<small><sup>−1</sup></small> h<small><sup>−1</sup></small> NO<small><sub>3</sub></small><small><sup>−</sup></small>-N, demonstrating the high efficiency of this MBES in treating nitrate-contaminated groundwater.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2776-2786"},"PeriodicalIF":3.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of benzylamines during chlorination and chloramination† 苄胺在氯化和氯化过程中的降解
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-03 DOI: 10.1039/D4EW00556B
Chih-Hsien Lin, Wei-Hsiang Chen and William A. Mitch

As widely used industrial ingredients and products of the biodegradation of benzalkonium chloride disinfectants, benzylamines are expected to occur in municipal wastewater effluents and other wastewater-impacted waters, but their fate during chlorine or chloramine disinfection is unclear. This study characterized the degradation pathways of benzylamine, N-methylbenzylamine and N,N-dimethylbenzylamine during chlorination and chloramination. The dominant reaction pathways during chlorination involved chlorine transfer to the benzylamine nitrogen followed by hydrochloric acid elimination to form an imine and hydrolysis of the imine to form an aldehyde and lower order amine. Benzylamine formed benzaldehyde in preference to benzonitrile. For N-methylbenzylamine and N,N-dimethylbenzylamine, hydrochloric acid elimination between the benzyl nitrogen and the methyl substituent formed formaldehyde and either benzylamine or N-methylbenzylamine, while elimination between the nitrogen and the benzyl substituent formed benzaldehyde and either monomethylamine or dimethylamine. Similar products were observed during chloramination, but over longer timescales. Formation of products involving halogenation of the aromatic ring was not observed. Of highest toxicological concern was the 34% molar yield of NDMA that formed during chloramination of N,N-dimethylbenzylamine in concert with benzyl alcohol by a pathway occurring in parallel to the imine formation and hydrolysis pathway. Based on these reaction pathways, a strategy to reduce NDMA formation within potable reuse facilities was validated using laboratory-scale versions of the reverse osmosis and ultraviolet light processes used in potable reuse trains. The strategy involved treating fully nitrified wastewater influents to these facilities with free chlorine for 5 min to degrade N,N-dimethylbenzylamine and other potent NDMA precursors prior to the addition of ammonia to form chloramines used to control biofouling within these facilities.

作为广泛使用的工业成分和苯扎氯铵消毒剂的生物降解产物,苄胺预计会出现在城市污水和其他受废水影响的水体中,但它们在氯消毒或氯胺消毒过程中的去向尚不清楚。这项研究描述了苄胺、N-甲基苄胺和 N,N-二甲基苄胺在氯化和氯消毒过程中的降解途径。氯化过程中的主要反应途径是氯转移到苄胺氮上,然后盐酸消除形成亚胺,亚胺水解形成醛和低阶胺。苄胺形成的苯甲醛优于苯甲腈。对于 N-甲基苄胺和 N,N-二甲基苄胺,苄基氮和甲基取代基之间的盐酸消去会形成甲醛和苄胺或 N-甲基苄胺,而氮和苄基取代基之间的消去会形成苯甲醛和一甲胺或二甲胺。在氯化过程中也观察到了类似的产物,但时间尺度更长。没有观察到涉及芳香环卤化的产物。最值得关注的毒理学问题是,在 N,N-二甲基苄胺与苄醇的氯化反应中,NDMA 的摩尔产率为 34%,其形成途径与亚胺的形成和水解途径平行。根据这些反应途径,利用实验室规模的反渗透和紫外线工艺,对减少饮用水回用设施中 NDMA 形成的策略进行了验证。该策略包括先用游离氯对这些设施的完全硝化废水进水进行 5 分钟的处理,以降解 N,N-二甲基苄胺和其他强效 NDMA 前体,然后再加入氨气形成氯胺,用于控制这些设施内的生物污垢。
{"title":"Degradation of benzylamines during chlorination and chloramination†","authors":"Chih-Hsien Lin, Wei-Hsiang Chen and William A. Mitch","doi":"10.1039/D4EW00556B","DOIUrl":"10.1039/D4EW00556B","url":null,"abstract":"<p >As widely used industrial ingredients and products of the biodegradation of benzalkonium chloride disinfectants, benzylamines are expected to occur in municipal wastewater effluents and other wastewater-impacted waters, but their fate during chlorine or chloramine disinfection is unclear. This study characterized the degradation pathways of benzylamine, <em>N</em>-methylbenzylamine and <em>N</em>,<em>N</em>-dimethylbenzylamine during chlorination and chloramination. The dominant reaction pathways during chlorination involved chlorine transfer to the benzylamine nitrogen followed by hydrochloric acid elimination to form an imine and hydrolysis of the imine to form an aldehyde and lower order amine. Benzylamine formed benzaldehyde in preference to benzonitrile. For <em>N</em>-methylbenzylamine and <em>N</em>,<em>N</em>-dimethylbenzylamine, hydrochloric acid elimination between the benzyl nitrogen and the methyl substituent formed formaldehyde and either benzylamine or <em>N</em>-methylbenzylamine, while elimination between the nitrogen and the benzyl substituent formed benzaldehyde and either monomethylamine or dimethylamine. Similar products were observed during chloramination, but over longer timescales. Formation of products involving halogenation of the aromatic ring was not observed. Of highest toxicological concern was the 34% molar yield of NDMA that formed during chloramination of <em>N</em>,<em>N</em>-dimethylbenzylamine in concert with benzyl alcohol by a pathway occurring in parallel to the imine formation and hydrolysis pathway. Based on these reaction pathways, a strategy to reduce NDMA formation within potable reuse facilities was validated using laboratory-scale versions of the reverse osmosis and ultraviolet light processes used in potable reuse trains. The strategy involved treating fully nitrified wastewater influents to these facilities with free chlorine for 5 min to degrade <em>N</em>,<em>N</em>-dimethylbenzylamine and other potent NDMA precursors prior to the addition of ammonia to form chloramines used to control biofouling within these facilities.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2655-2664"},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of birnessite-type manganese oxides by biofilms from oxygen-supplemented biological activated carbon (BAC) filters† 补氧生物活性炭(BAC)过滤器中的生物膜产生白桦石型锰氧化物
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-02 DOI: 10.1039/D4EW00208C
Amanda Larasati, Olga Bernadet, Gert Jan W. Euverink, H. Pieter J. van Veelen and Maria Cristina Gagliano

Biological oxidation of manganese (Mn) by bacteria results in the formation of biogenic Mn oxides (MnOx), which are known to be strong oxidants and effective catalysts. Manganese-oxidizing bacteria (MnOB) often develop in engineered systems for water treatment under oligotrophic conditions. In this study, we investigated the MnOB within biofilms sampled in two different seasons from full-scale oxygen-supplemented biological activated carbon (BAC) filters performing the complete removal of Mn from wastewater. By applying a novel batch enrichment approach ensuring the continuous presence of soluble Mn, after 42 days the start-up microbial community grew into thick, floccular biofilms efficiently oxidizing Mn2+ into numerous black nodules. The amount of Mn oxidized was quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES). X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) revealed that the MnOx formed was a birnessite-type (δ-MnO2) with a crystalline, nanoflower structure. Comparison of the microbial community composition before and after the enrichment by means of 16S rRNA gene amplicon sequencing showed increases of members of the orders Rhizobiales and Burkholderiales, and identified among the most abundant some bacterial groups which have rarely or never been associated with Mn oxidation before (Rhodococcus, Ellin6067, Planctomycetota Pir4 lineage, Rhizobiales A0839 and Amb-16S-1323). This study unravels the potential of production of crystalline MnOx by mixed-microbial communities which uniquely generate in a man-made biofilter. The new insights provided implement the knowledge in the field, with the perspective to design innovative biotechnologies to remove recalcitrant compounds where MnOB find optimal growth conditions to produce catalytic forms of MnOx.

细菌对锰(Mn)的生物氧化作用会形成生物锰氧化物(MnOx),众所周知,锰氧化物是一种强氧化剂和有效的催化剂。锰氧化细菌(MnOB)经常在低营养条件下的水处理工程系统中生长。在这项研究中,我们调查了在两个不同季节从完全去除废水中锰的全规模氧气补充生物活性碳(BAC)过滤器中取样的生物膜内的锰氧化细菌。通过采用一种新颖的分批富集方法,确保可溶性锰的持续存在,42 天后,启动微生物群落长成厚厚的絮状生物膜,将 Mn2+ 有效氧化成无数黑色结节。利用电感耦合等离子体光发射光谱(ICP-OES)对氧化锰的数量进行了量化。X 射线衍射(XRD)分析和扫描电子显微镜(SEM)显示,形成的氧化锰是一种具有结晶状纳米花结构的桦烯石型(δ-MnO2)。通过 16S rRNA 基因扩增片段测序法比较了富集前后的微生物群落组成,结果显示根瘤菌目和伯克霍尔德菌目成员有所增加,并在最丰富的细菌群中发现了一些以前很少或从未与锰氧化有关的细菌群(Rhodococcus、Ellin6067、Planctomycetota Pir4 系、根瘤菌 A0839 和 Amb-16S-1323)。这项研究揭示了在人造生物滤池中独特产生的混合微生物群落生产晶体氧化锰的潜力。所提供的新见解丰富了该领域的知识,有助于设计创新的生物技术来清除难降解的化合物,使 MnOB 找到最佳的生长条件来生产催化形式的氧化锰。
{"title":"Production of birnessite-type manganese oxides by biofilms from oxygen-supplemented biological activated carbon (BAC) filters†","authors":"Amanda Larasati, Olga Bernadet, Gert Jan W. Euverink, H. Pieter J. van Veelen and Maria Cristina Gagliano","doi":"10.1039/D4EW00208C","DOIUrl":"10.1039/D4EW00208C","url":null,"abstract":"<p >Biological oxidation of manganese (Mn) by bacteria results in the formation of biogenic Mn oxides (MnOx), which are known to be strong oxidants and effective catalysts. Manganese-oxidizing bacteria (MnOB) often develop in engineered systems for water treatment under oligotrophic conditions. In this study, we investigated the MnOB within biofilms sampled in two different seasons from full-scale oxygen-supplemented biological activated carbon (BAC) filters performing the complete removal of Mn from wastewater. By applying a novel batch enrichment approach ensuring the continuous presence of soluble Mn, after 42 days the start-up microbial community grew into thick, floccular biofilms efficiently oxidizing Mn<small><sup>2+</sup></small> into numerous black nodules. The amount of Mn oxidized was quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES). X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) revealed that the MnOx formed was a birnessite-type (δ-MnO<small><sub>2</sub></small>) with a crystalline, nanoflower structure. Comparison of the microbial community composition before and after the enrichment by means of 16S rRNA gene amplicon sequencing showed increases of members of the orders <em>Rhizobiales</em> and <em>Burkholderiales</em>, and identified among the most abundant some bacterial groups which have rarely or never been associated with Mn oxidation before (<em>Rhodococcus</em>, <em>Ellin6067</em>, <em>Planctomycetota</em> Pir4 lineage, <em>Rhizobiales</em> A0839 and Amb-16S-1323). This study unravels the potential of production of crystalline MnOx by mixed-microbial communities which uniquely generate in a man-made biofilter. The new insights provided implement the knowledge in the field, with the perspective to design innovative biotechnologies to remove recalcitrant compounds where MnOB find optimal growth conditions to produce catalytic forms of MnOx.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2844-2857"},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Science: Water Research & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1