首页 > 最新文献

American journal of physiology. Regulatory, integrative and comparative physiology最新文献

英文 中文
Strenuous training combined with erythropoietin induces red cell volume expansion-mediated hypervolemia and alters systemic and skeletal muscle iron homeostasis. 剧烈训练与促红细胞生成素结合会诱发红细胞体积膨胀介导的高血容量症,并改变全身和骨骼肌的铁稳态。
IF 4.6 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-06 DOI: 10.1152/ajpregu.00164.2024
Benjamin J Ryan, David E Barney, Julie L McNiff, Devin J Drummer, Emily E Howard, Jess A Gwin, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Stefan M Pasiakos, James P McClung, Lee M Margolis

Strenuous physical training increases total blood volume (BV) through expansion of plasma volume (PV) and red cell volume (RCV). In contrast, exogenous erythropoietin (EPO) treatment increases RCV but decreases PV, rendering BV stable or slightly decreased. This study aimed to determine the combined effects of strenuous training and EPO treatment on BV and markers of systemic and muscle iron homeostasis. In this longitudinal study, eight healthy nonanemic males were treated with EPO (50 IU/kg body mass, three times per week, sc) across 28 days of strenuous training (4 days/wk, exercise energy expenditures of 1,334 ± 24 kcal/day) while consuming a controlled, energy-balanced diet providing 39 ± 4 mg/day iron. Before (PRE) and after (POST) intervention, BV compartments were measured using carbon monoxide rebreathing, and markers of iron homeostasis were assessed in blood and skeletal muscle (vastus lateralis). Training + EPO increased (P < 0.01) RCV (13 ± 6%) and BV (5 ± 4%), whereas PV remained unchanged (P = 0.86). The expansion of RCV was accompanied by a large decrease in whole body iron stores, as indicated by decreased (P < 0.01) ferritin (-77 ± 10%) and hepcidin (-49 ± 23%) concentrations in plasma. Training + EPO decreased (P < 0.01) muscle protein abundance of ferritin (-25 ± 20%) and increased (P < 0.05) transferrin receptor (47 ± 56%). These novel findings illustrate that strenuous training combined with EPO results in both increased total oxygen-carrying capacity and hypervolemia in young healthy males. The decrease in plasma and muscle ferritin suggests that the marked upregulation of erythropoiesis alters systemic and tissue iron homeostasis, resulting in a decline in whole body and skeletal muscle iron stores.NEW & NOTEWORTHY Strenuous exercise training combined with erythropoietin (EPO) treatment increases blood volume, driven exclusively by red cell volume expansion. This hematological adaptation results in increased total oxygen-carrying capacity and hypervolemia. The marked upregulation of erythropoiesis with training + EPO reduces whole body iron stores and circulating hepcidin concentrations. The finding that the abundance of ferritin in muscle decreased after training + EPO suggests that muscle may release iron to support red blood cell production.

剧烈的体育训练会通过扩大血浆容量(PV)和红细胞容量(RCV)来增加总血量(BV)。相比之下,外源性促红细胞生成素(EPO)治疗会增加 RCV,但会减少 PV,从而使 BV 保持稳定或略有下降。本研究旨在确定剧烈训练和 EPO 治疗对 BV 以及全身和肌肉铁稳态指标的综合影响。在这项纵向研究中,8 名健康的非贫血男性在为期 28 天的剧烈训练(每周 4 天,运动能量消耗为 1334±24 千卡/天)中接受 EPO 治疗(50 IU/公斤体重,每周 3 次,皮下注射),同时摄入可控的能量平衡饮食,每天提供 39±4 毫克铁。在干预前(PRE)和干预后(POST),使用一氧化碳再呼吸法测量BV分区,并评估血液和骨骼肌(侧阔肌)中铁平衡的标志物。训练 + EPO 增加(p
{"title":"Strenuous training combined with erythropoietin induces red cell volume expansion-mediated hypervolemia and alters systemic and skeletal muscle iron homeostasis.","authors":"Benjamin J Ryan, David E Barney, Julie L McNiff, Devin J Drummer, Emily E Howard, Jess A Gwin, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Stefan M Pasiakos, James P McClung, Lee M Margolis","doi":"10.1152/ajpregu.00164.2024","DOIUrl":"10.1152/ajpregu.00164.2024","url":null,"abstract":"<p><p>Strenuous physical training increases total blood volume (BV) through expansion of plasma volume (PV) and red cell volume (RCV). In contrast, exogenous erythropoietin (EPO) treatment increases RCV but decreases PV, rendering BV stable or slightly decreased. This study aimed to determine the combined effects of strenuous training and EPO treatment on BV and markers of systemic and muscle iron homeostasis. In this longitudinal study, eight healthy nonanemic males were treated with EPO (50 IU/kg body mass, three times per week, sc) across 28 days of strenuous training (4 days/wk, exercise energy expenditures of 1,334 ± 24 kcal/day) while consuming a controlled, energy-balanced diet providing 39 ± 4 mg/day iron. Before (PRE) and after (POST) intervention, BV compartments were measured using carbon monoxide rebreathing, and markers of iron homeostasis were assessed in blood and skeletal muscle (vastus lateralis). Training + EPO increased (<i>P</i> < 0.01) RCV (13 ± 6%) and BV (5 ± 4%), whereas PV remained unchanged (<i>P</i> = 0.86). The expansion of RCV was accompanied by a large decrease in whole body iron stores, as indicated by decreased (<i>P</i> < 0.01) ferritin (-77 ± 10%) and hepcidin (-49 ± 23%) concentrations in plasma. Training + EPO decreased (<i>P</i> < 0.01) muscle protein abundance of ferritin (-25 ± 20%) and increased (<i>P</i> < 0.05) transferrin receptor (47 ± 56%). These novel findings illustrate that strenuous training combined with EPO results in both increased total oxygen-carrying capacity and hypervolemia in young healthy males. The decrease in plasma and muscle ferritin suggests that the marked upregulation of erythropoiesis alters systemic and tissue iron homeostasis, resulting in a decline in whole body and skeletal muscle iron stores.<b>NEW & NOTEWORTHY</b> Strenuous exercise training combined with erythropoietin (EPO) treatment increases blood volume, driven exclusively by red cell volume expansion. This hematological adaptation results in increased total oxygen-carrying capacity and hypervolemia. The marked upregulation of erythropoiesis with training + EPO reduces whole body iron stores and circulating hepcidin concentrations. The finding that the abundance of ferritin in muscle decreased after training + EPO suggests that muscle may release iron to support red blood cell production.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R473-R478"},"PeriodicalIF":4.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypertension restricts leg blood flow and aggravates neuromuscular fatigue during human locomotion in males. 高血压会限制腿部血流并加剧男性运动时的神经肌肉疲劳
IF 4.6 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-12 DOI: 10.1152/ajpregu.00117.2024
Taylor S Thurston, Joshua C Weavil, Hsuan-Yu Wan, Mark A Supiano, Philip A Kithas, Markus Amann

Patients with hypertension (HTN) are characterized by exaggerated vascular resistance and mean arterial pressure (MAP) and a compromised leg blood flow (QL) response to exercise recruiting a small muscle mass. However, the impact of hypertension on peripheral hemodynamics and the development of neuromuscular fatigue during locomotor activities, which critically depends on QL, remain unknown. Eight HTN (143 ± 11 mmHg/95 ± 6 mmHg; 45 ± 13 yr) and eight matched (age and activity) controls (120 ± 6 mmHg/77 ± 7 mmHg; CTRL) performed constant-load cycling exercise at 25, 50, and 75 W (for 4 min each) and at 165 ± 41 W (for 5 min). Exercise-induced locomotor muscle fatigue was quantified as the pre- to postexercise change in quadriceps twitch-torque (ΔQtw, peripheral fatigue) and voluntary activation (ΔVA%, central fatigue). QL (Doppler ultrasound) and leg vascular conductance (LVC) were determined during cycling at 25, 50, and 75 W. Heart rate and ventilatory responses were recorded during all intensities. MAP during exercise was, on average, ∼21 mmHg higher (P = 0.002) and LVC ∼39% lower (P = 0.001) in HTN compared with CTRL. QL was consistently between 20 and 30% lower (P = 0.004), and heart rate was significantly higher in HTN. Exercise-induced peripheral (ΔQtw: -53 ± 19% vs. -25 ± 23%) and central (ΔVA%: -7 ± 5% vs. -3 ± 2%) fatigue was significantly greater in HTN compared with CTRL. In addition to an exaggerated MAP, LVC and QL were lower during exercise in HTN compared with CTRL. Given the critical role of QL in determining the development of neuromuscular fatigue, these hemodynamic impairments likely accounted for the faster development of neuromuscular fatigue characterizing hypertensive individuals during locomotor exercise. NEW & NOTEWORTHY The impact of primary hypertension on the cardiovascular and neuromuscular fatigue response to locomotor exercise is unknown. We compared central and peripheral hemodynamics and the development of central and peripheral fatigue during cycling exercise in patients with stage I/II hypertension and age- and activity-matched healthy individuals. In addition to a significantly elevated blood pressure, hypertensive patients were, compared with their nonhypertensive counterparts, also characterized by considerable leg blood flow limitations and impaired neuromuscular fatigue resistance.

高血压(HTN)患者的特点是血管阻力和平均动脉压(MAP)升高,腿部血流(QL)对运动的反应减弱,肌肉质量较小。然而,高血压对外周血流动力学的影响以及运动时神经肌肉疲劳的发展(这主要取决于 QL)仍不为人所知。八名高血压患者(143±11mmHg / 95±6mmHg;45±13岁)和八名匹配(年龄、活动)的对照组(120±6mmHg / 77±7mmHg;CTRL)分别在25、50和75瓦(各4分钟)以及165±41瓦(5分钟)下进行恒定负荷骑车运动。运动诱发的运动肌疲劳被量化为运动前与运动后股四头肌抽动扭矩(∆Qtw,外周疲劳)和自主激活(∆VA%,中枢疲劳)的变化。在 25、50 和 75 瓦的功率下骑车时测定 QL(多普勒超声)和腿部血管传导(LVC)。在所有强度下都记录了心率和呼吸反应。与 CTRL 相比,HTN 运动时的 MAP 平均高出约 21mmHg(P=0.002),LVC 低出约 39%(P=0.001)。高血压患者的 QL 持续降低 20-30%(P=0.004),心率显著升高。与 CTRL 相比,运动引起的外周(∆Qtw:-53±19% vs -25±23%)和中枢(∆VA%:-7±5% vs -3±2%)疲劳在 HTN 中明显增加。与 CTRL 相比,HTN 运动时除了 MAP 增高外,LVC 和 QL 也更低。鉴于 QL 在决定神经肌肉疲劳发展中的关键作用,这些血流动力学损伤可能是高血压患者在运动时神经肌肉疲劳发展较快的原因。
{"title":"Hypertension restricts leg blood flow and aggravates neuromuscular fatigue during human locomotion in males.","authors":"Taylor S Thurston, Joshua C Weavil, Hsuan-Yu Wan, Mark A Supiano, Philip A Kithas, Markus Amann","doi":"10.1152/ajpregu.00117.2024","DOIUrl":"10.1152/ajpregu.00117.2024","url":null,"abstract":"<p><p>Patients with hypertension (HTN) are characterized by exaggerated vascular resistance and mean arterial pressure (MAP) and a compromised leg blood flow (Q<sub>L</sub>) response to exercise recruiting a small muscle mass. However, the impact of hypertension on peripheral hemodynamics and the development of neuromuscular fatigue during locomotor activities, which critically depends on Q<sub>L</sub>, remain unknown. Eight HTN (143 ± 11 mmHg/95 ± 6 mmHg; 45 ± 13 yr) and eight matched (age and activity) controls (120 ± 6 mmHg/77 ± 7 mmHg; CTRL) performed constant-load cycling exercise at 25, 50, and 75 W (for 4 min each) and at 165 ± 41 W (for 5 min). Exercise-induced locomotor muscle fatigue was quantified as the pre- to postexercise change in quadriceps twitch-torque (Δ<i>Q</i><sub>tw</sub>, peripheral fatigue) and voluntary activation (ΔVA%, central fatigue). Q<sub>L</sub> (Doppler ultrasound) and leg vascular conductance (LVC) were determined during cycling at 25, 50, and 75 W. Heart rate and ventilatory responses were recorded during all intensities. MAP during exercise was, on average, ∼21 mmHg higher (<i>P</i> = 0.002) and LVC ∼39% lower (<i>P</i> = 0.001) in HTN compared with CTRL. Q<sub>L</sub> was consistently between 20 and 30% lower (<i>P</i> = 0.004), and heart rate was significantly higher in HTN. Exercise-induced peripheral (Δ<i>Q</i><sub>tw</sub>: -53 ± 19% vs. -25 ± 23%) and central (ΔVA%: -7 ± 5% vs. -3 ± 2%) fatigue was significantly greater in HTN compared with CTRL. In addition to an exaggerated MAP, LVC and Q<sub>L</sub> were lower during exercise in HTN compared with CTRL. Given the critical role of Q<sub>L</sub> in determining the development of neuromuscular fatigue, these hemodynamic impairments likely accounted for the faster development of neuromuscular fatigue characterizing hypertensive individuals during locomotor exercise. <b>NEW & NOTEWORTHY</b> The impact of primary hypertension on the cardiovascular and neuromuscular fatigue response to locomotor exercise is unknown. We compared central and peripheral hemodynamics and the development of central and peripheral fatigue during cycling exercise in patients with stage I/II hypertension and age- and activity-matched healthy individuals. In addition to a significantly elevated blood pressure, hypertensive patients were, compared with their nonhypertensive counterparts, also characterized by considerable leg blood flow limitations and impaired neuromuscular fatigue resistance.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R517-R524"},"PeriodicalIF":4.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spontaneous and evoked angiotensin II sniffer cell activity in the lamina terminalis in vitro. 血管紧张素 II 嗅探细胞在体外末端薄层的自发和诱发活动。
IF 4.6 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-12 DOI: 10.1152/ajpregu.00227.2023
George E Farmer, J Thomas Cunningham

Angiotensin II (ANG II) has been shown to have central nervous system effects. Although tissue renin-angiotensin systems (RAS) have been demonstrated in multiple tissues, the existence of a brain RAS is still a matter of debate. These studies test for angiotensin release from brain slices prepared from adult male Sprague-Dawley rats and male and female renin knock-out rats using Chinese hamster ovary cells modified to express both the angiotensin II type 1 receptor and a fluorescent calcium indicator. Sniffer cells were placed on the slices and calcium transients were measured from those located on or adjacent to the median preoptic nucleus with and without stimulation of the subfornical organ. Bath application of tetrodotoxin (1 µM) significantly attenuated spontaneous events while abolishing evoked sniffer cell activity. Bath application of dl-AP4 (10 µM, glutamatergic antagonist) did not affect either spontaneous or evoked release. Incubating the slices with fluorocitrate to inactive astrocytes did not influence sniffer cell activity in the MnPO. Pharmacological experiments indicate that ANG II release is largely both renin (aliskiren 10 µM) and ACE-1 (captopril 100 µM) dependent. However, experiments with brain slices prepared from male and female Renin knock-out rats suggest that alternative synthetic pathways may exist. Finally, these studies demonstrate that increases in ANG II release are observed following 7 days of chronic intermittent hypoxia. These studies suggest the existence of a tissue-specific RAS in the brain that involves canonical and alternative ANG II synthetic pathways and is upregulated in an animal model of sleep apnea.NEW & NOTEWORTHY These studies used Chinese hamster ovary cells that were cloned to express an angiotensin receptor (At1ra) and a calcium indicator (R-GECO) to detect the release of angiotensin from brain slices containing the lamina terminalis of rats. Some of the experiments use tissue from renin knockout rats. The results support the existence of an angiotensin system in the brain that may involve alternative synthetic pathways and is upregulated by intermittent hypoxia.

血管紧张素 II(ANG II)已被证明对中枢神经系统有影响。虽然组织肾素-血管紧张素系统(RAS)已在多种组织中得到证实,但大脑 RAS 是否存在仍有争议。这些研究利用改良表达血管紧张素 II 1 型受体和荧光钙指示剂的 CHO 细胞,检测成年雄性 Sprague Dawley 大鼠和雌雄肾素基因敲除大鼠脑切片的血管紧张素释放情况。将嗅探细胞置于切片上,在刺激或不刺激角下器官的情况下,测量位于视前核正中或邻近视前核的嗅探细胞的钙瞬态。浴用河豚毒素(1 µM)可显著减少自发事件,同时消除诱发的嗅探细胞活动。浴用 DL-AP4(10 µM)不会影响自发或诱发的释放。用柠檬酸氟孵育切片,使星形胶质细胞失去活性,也不会影响 MnPO 中嗅探细胞的活动。药理实验表明,ANG II 的释放在很大程度上依赖于肾素(阿利克仑 10 µM)和 ACE-1(卡托普利 100 µM)。然而,用肾素基因敲除的雄性和雌性大鼠制备的脑片进行的实验表明,可能存在其他合成途径。最后,这些研究表明,慢性间歇性缺氧 7 天后,ANG II 的释放会增加。这些研究表明,大脑中存在一种组织特异性 RAS,它涉及典型和替代 ANG II 合成途径,并在睡眠呼吸暂停动物模型中被上调。
{"title":"Spontaneous and evoked angiotensin II sniffer cell activity in the lamina terminalis in vitro.","authors":"George E Farmer, J Thomas Cunningham","doi":"10.1152/ajpregu.00227.2023","DOIUrl":"10.1152/ajpregu.00227.2023","url":null,"abstract":"<p><p>Angiotensin II (ANG II) has been shown to have central nervous system effects. Although tissue renin-angiotensin systems (RAS) have been demonstrated in multiple tissues, the existence of a brain RAS is still a matter of debate. These studies test for angiotensin release from brain slices prepared from adult male Sprague-Dawley rats and male and female renin knock-out rats using Chinese hamster ovary cells modified to express both the angiotensin II type 1 receptor and a fluorescent calcium indicator. Sniffer cells were placed on the slices and calcium transients were measured from those located on or adjacent to the median preoptic nucleus with and without stimulation of the subfornical organ. Bath application of tetrodotoxin (1 µM) significantly attenuated spontaneous events while abolishing evoked sniffer cell activity. Bath application of dl-AP4 (10 µM, glutamatergic antagonist) did not affect either spontaneous or evoked release. Incubating the slices with fluorocitrate to inactive astrocytes did not influence sniffer cell activity in the MnPO. Pharmacological experiments indicate that ANG II release is largely both renin (aliskiren 10 µM) and ACE-1 (captopril 100 µM) dependent. However, experiments with brain slices prepared from male and female Renin knock-out rats suggest that alternative synthetic pathways may exist. Finally, these studies demonstrate that increases in ANG II release are observed following 7 days of chronic intermittent hypoxia. These studies suggest the existence of a tissue-specific RAS in the brain that involves canonical and alternative ANG II synthetic pathways and is upregulated in an animal model of sleep apnea.<b>NEW & NOTEWORTHY</b> These studies used Chinese hamster ovary cells that were cloned to express an angiotensin receptor (<i>At1ra</i>) and a calcium indicator (R-GECO) to detect the release of angiotensin from brain slices containing the lamina terminalis of rats. Some of the experiments use tissue from renin knockout rats. The results support the existence of an angiotensin system in the brain that may involve alternative synthetic pathways and is upregulated by intermittent hypoxia.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R486-R496"},"PeriodicalIF":4.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water deprivation induces a systemic pro-catabolic state that differentially affects oxidative and glycolytic skeletal muscles in male mice. 缺水会诱导雄性小鼠出现系统性促代谢状态,这种状态会对氧化性和糖酵解性骨骼肌产生不同的影响。
IF 2.2 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-10-28 DOI: 10.1152/ajpregu.00187.2024
João da Cruz-Filho, Daniely Messias Costa, Tatiane Oliveira Santos, Raquel Prado da Silva, Hevely Catharine Anjos-Santos, Naima Jamile Santos Marciano, Roger Rodríguez-Gúzman, Ana Beatriz Henrique-Santos, João Eduardo Conceição Melo, Daniel Badauê-Passos, David Murphy, Andre Souza Mecawi, Danilo Lustrino

Dehydration, characterized by the loss of total body water and/or electrolytes due to diseases or inadequate fluid intake, is prevalent globally but often underestimated. Its contribution to long-term chronic diseases and sarcopenia is recognized, yet the mechanisms involved in systemic and muscle protein metabolism during dehydration remain unclear. This study investigated metabolic adaptations in a 36-hour water deprivation (WD) model of mice. Male C57BL/6 mice underwent 36-h WD or pair-feeding at rest, with assessments of motor skills along with biochemical, and metabolic parameters. Dehydration was confirmed by hypernatremia, body mass loss, hyporexia, and increased activity of vasopressinergic and oxytocinergic neurons compared to controls. These results were associated with liver mass loss, decreased glycaemia, and increased cholesterolemia. Additionally, increased VO2 and a decreased respiratory exchange ratio indicated reduced carbohydrate consumption and potentially increased protein use during dehydration. Thus, skeletal muscle protein metabolism was evaluated due to its high protein content. In the oxidative muscles of the WD group, total and proteasomal proteolysis increased, which was associated with decreased Akt-mediated intracellular signaling. Interestingly, there was an increase in fiber cross-sectional area, likely due to higher muscle water content caused by increased intracellular osmolality induced by protein catabolism products. Conversely, no changes were observed in protein turnover or water content in glycolytic muscles. These findings suggest that short-term WD imposes a pro-catabolic state, depleting protein content in skeletal muscle. However, skeletal muscle may respond differently to dehydration based on its phenotype and might adapt for a limited time.

脱水的特点是由于疾病或液体摄入不足导致体内总水分和/或电解质流失,在全球普遍存在,但往往被低估。脱水对长期慢性疾病和肌肉疏松症的影响已得到公认,但脱水时全身和肌肉蛋白质代谢的相关机制仍不清楚。本研究调查了小鼠在 36 小时缺水(WD)模型中的代谢适应情况。雄性 C57BL/6 小鼠在休息状态下接受了 36 小时的 WD 或配对喂养,并对运动技能、生化和代谢参数进行了评估。与对照组相比,高钠血症、体质量下降、厌食以及血管加压素能神经元和催产素能神经元活性增加证实了脱水。这些结果与肝脏质量下降、血糖降低和胆固醇血症增加有关。此外,VO2 的增加和呼吸交换比的降低表明脱水过程中碳水化合物的消耗减少,蛋白质的使用可能增加。因此,由于骨骼肌蛋白质含量高,我们对其蛋白质代谢进行了评估。在 WD 组的氧化肌肉中,总蛋白酶体和蛋白酶体蛋白分解增加,这与 Akt 介导的细胞内信号传导减少有关。有趣的是,纤维横截面积有所增加,这可能是由于蛋白质分解产物导致细胞内渗透压升高,从而使肌肉含水量增加。相反,在糖酵解肌肉中没有观察到蛋白质周转或含水量的变化。这些研究结果表明,短期 WD 强加了一种促进分解代谢的状态,消耗了骨骼肌中的蛋白质含量。然而,骨骼肌可能会根据其表型对脱水做出不同的反应,并可能在有限的时间内适应脱水。
{"title":"Water deprivation induces a systemic pro-catabolic state that differentially affects oxidative and glycolytic skeletal muscles in male mice.","authors":"João da Cruz-Filho, Daniely Messias Costa, Tatiane Oliveira Santos, Raquel Prado da Silva, Hevely Catharine Anjos-Santos, Naima Jamile Santos Marciano, Roger Rodríguez-Gúzman, Ana Beatriz Henrique-Santos, João Eduardo Conceição Melo, Daniel Badauê-Passos, David Murphy, Andre Souza Mecawi, Danilo Lustrino","doi":"10.1152/ajpregu.00187.2024","DOIUrl":"https://doi.org/10.1152/ajpregu.00187.2024","url":null,"abstract":"<p><p>Dehydration, characterized by the loss of total body water and/or electrolytes due to diseases or inadequate fluid intake, is prevalent globally but often underestimated. Its contribution to long-term chronic diseases and sarcopenia is recognized, yet the mechanisms involved in systemic and muscle protein metabolism during dehydration remain unclear. This study investigated metabolic adaptations in a 36-hour water deprivation (WD) model of mice. Male C57BL/6 mice underwent 36-h WD or pair-feeding at rest, with assessments of motor skills along with biochemical, and metabolic parameters. Dehydration was confirmed by hypernatremia, body mass loss, hyporexia, and increased activity of vasopressinergic and oxytocinergic neurons compared to controls. These results were associated with liver mass loss, decreased glycaemia, and increased cholesterolemia. Additionally, increased VO<sub>2</sub> and a decreased respiratory exchange ratio indicated reduced carbohydrate consumption and potentially increased protein use during dehydration. Thus, skeletal muscle protein metabolism was evaluated due to its high protein content. In the oxidative muscles of the WD group, total and proteasomal proteolysis increased, which was associated with decreased Akt-mediated intracellular signaling. Interestingly, there was an increase in fiber cross-sectional area, likely due to higher muscle water content caused by increased intracellular osmolality induced by protein catabolism products. Conversely, no changes were observed in protein turnover or water content in glycolytic muscles. These findings suggest that short-term WD imposes a pro-catabolic state, depleting protein content in skeletal muscle. However, skeletal muscle may respond differently to dehydration based on its phenotype and might adapt for a limited time.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gulf toadfish (Opsanus beta) urinary bladder ion and water transport is enhanced by acclimation to higher salinity to serve water balance. 海湾蟾蜍鱼(Opsanus beta)膀胱离子和水的运输通过适应较高的盐度而得到加强,从而达到水平衡。
IF 2.2 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-10-22 DOI: 10.1152/ajpregu.00077.2024
Erik John Folkerts, Martin Grosell

Marine teleosts experience ion gain and water loss in their natural habitats. Among other tissues, the urinary bladder epithelium of marine fishes has been shown to actively transport ions to facilitate water absorption. However, transport properties of the urinary bladder epithelium of marine fishes and its plasticity in altered ambient salinities is relatively under-investigated. We describe urinary bladder epithelium electrophysiology, water flux, and expressions of ion transporters in urinary bladder tissue of Gulf toadfish (Opsanus beta) acclimated to either 35 ppt or 60 ppt seawater. Water absorption in bladder sac preparations increased ~ 350% upon acclimation to 60 ppt. Increases in water transport coincided with a significant ~ 137% increase in urinary bladder tissue mucosal-to-serosal short circuit current (Isc) and a ~ 56% decrease in tissue membrane resistance. Collectively, these metrics indicate that an active electrogenic system facilitates water absorption via Na+ (and Cl-) transport in urinary bladder tissue. Furthermore, pharmacological inhibition of urinary bladder tissue Isc and expression of a suite of ion transporters and channels previously unidentified in this tissue provide mechanistic insights into the transport processes responsible for water flux. Analysis of water transport to overall Gulf toadfish water balance reveals a modest water conservation role for the urinary bladder of ~ 0.5% of total water absorption in 35 ppt and 1.9% in 60 ppt acclimated toadfish. These results emphasize that electrogenic ion transport facilitates water-absorptive properties of the urinary bladder in Gulf toadfish - a process that is regulated to facilitate water homeostasis.

海洋远洋鱼类在其自然栖息地经历着离子增殖和水分流失。在其他组织中,海洋鱼类的膀胱上皮已被证明能主动运输离子以促进水分吸收。然而,对海洋鱼类膀胱上皮细胞的转运特性及其在环境盐度改变时的可塑性研究相对较少。我们描述了适应 35 ppt 或 60 ppt 海水的海湾蟾蜍(Opsanus beta)膀胱组织的膀胱上皮细胞电生理学、水通量和离子转运体的表达。膀胱囊制备物的吸水率在适应 60 ppt 海水后增加了约 350%。水运输量增加的同时,膀胱组织粘膜到粘膜短路电流(Isc)显著增加了约 137%,组织膜电阻下降了约 56%。这些指标共同表明,活跃的电原系统通过膀胱组织中的 Na+(和 Cl-)转运促进了水的吸收。此外,对膀胱组织 Isc 的药理抑制以及此前未在该组织中发现的一系列离子转运体和通道的表达,提供了对负责水通量的转运过程的机理认识。对海湾蟾蜍鱼总体水分平衡的水分运输分析表明,在 35 ppt 和 60 ppt 的适应蟾蜍鱼中,膀胱在总吸水量中分别占约 0.5% 和 1.9% 的比例,起着适度的保水作用。这些结果表明,电解离子转运促进了海湾蟾蜍膀胱的吸水特性--这一过程受到调控,以促进水的平衡。
{"title":"Gulf toadfish (<i>Opsanus beta</i>) urinary bladder ion and water transport is enhanced by acclimation to higher salinity to serve water balance.","authors":"Erik John Folkerts, Martin Grosell","doi":"10.1152/ajpregu.00077.2024","DOIUrl":"https://doi.org/10.1152/ajpregu.00077.2024","url":null,"abstract":"<p><p>Marine teleosts experience ion gain and water loss in their natural habitats. Among other tissues, the urinary bladder epithelium of marine fishes has been shown to actively transport ions to facilitate water absorption. However, transport properties of the urinary bladder epithelium of marine fishes and its plasticity in altered ambient salinities is relatively under-investigated. We describe urinary bladder epithelium electrophysiology, water flux, and expressions of ion transporters in urinary bladder tissue of Gulf toadfish (<i>Opsanus beta</i>) acclimated to either 35 ppt or 60 ppt seawater. Water absorption in bladder sac preparations increased ~ 350% upon acclimation to 60 ppt. Increases in water transport coincided with a significant ~ 137% increase in urinary bladder tissue mucosal-to-serosal short circuit current (<i>I<sub>sc</sub></i>) and a ~ 56% decrease in tissue membrane resistance. Collectively, these metrics indicate that an active electrogenic system facilitates water absorption via Na<sup>+</sup> (and Cl<sup>-</sup>) transport in urinary bladder tissue. Furthermore, pharmacological inhibition of urinary bladder tissue <i>I<sub>sc</sub></i> and expression of a suite of ion transporters and channels previously unidentified in this tissue provide mechanistic insights into the transport processes responsible for water flux. Analysis of water transport to overall Gulf toadfish water balance reveals a modest water conservation role for the urinary bladder of ~ 0.5% of total water absorption in 35 ppt and 1.9% in 60 ppt acclimated toadfish. These results emphasize that electrogenic ion transport facilitates water-absorptive properties of the urinary bladder in Gulf toadfish - a process that is regulated to facilitate water homeostasis.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The relationships between age, sex and exercise intensity on cerebral artery haemodynamics during isometric handgrip exercise. 等长握手运动时年龄、性别和运动强度对脑动脉血流动力学的影响。
IF 2.2 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-10-22 DOI: 10.1152/ajpregu.00014.2024
Jodie L Koep, Bert Bond, Chloe E Taylor, Alan R Barker, Stefanie L Ruediger, Faith K Pizzey, Jeff S Coombes, Tom G Bailey

Age and sex may alter the cerebral blood flow (CBF) responses to acute isometric exercise, via associated elevations in mean arterial pressure (MAP) and sympathetic activation. Our aim was to determine the relationships between age, sex and exercise intensity on cerebrovascular responses to isometric handgrip exercise. In 78 healthy adults (18-80 years, N=42 female), cerebrovascular responses were assessed during two minute isometric exercise bouts at three intensities (15, 30, 45% maximal voluntary contraction). Intracranial responses of the middle cerebral artery (MCA) and posterior cerebral artery (PCA) velocity (v) were measured using transcranial Doppler ultrasound. Extracranial responses of the internal carotid artery (ICA) and vertebral artery (VA) were assessed using Duplex ultrasound. Cardiopulmonary haemodynamic and neural parameters were measured throughout, including muscle sympathetic nerve activity, end-tidal carbon dioxide, and MAP. There were significant positive relationships between exercise intensity and the cerebral responses of the MCAv (P<0.001) and PCAv (P=0.005). There were no effects of intensity on ICA and VA responses (P>0.05), despite intensity-dependent increases in MAP (P<0.001). The increased MCAv response to exercise was blunted with advancing age (P=0.01) with no influence of sex (P=0.86). The present study provides data on age, sex and intensity specific relationships with intracranial and extracranial cerebrovascular responses to isometric exercise. Despite similar ICA, VA, and PCA responses, MCAv responses were attenuated with advancing age during handgrip exercise with no sex dependent influence. Further, intracranial responses were intensity dependent, whereas extracranial blood flow, shear-stress and velocity responses were similarly increased at all intensities during handgrip exercise.

年龄和性别可能会通过相关的平均动脉压(MAP)升高和交感神经激活改变急性等长运动的脑血流(CBF)反应。我们的目的是确定年龄、性别和运动强度与脑血管对等长握力运动的反应之间的关系。在 78 名健康成年人(18-80 岁,女性 42 人)中,以三种强度(最大自主收缩 15%、30%、45%)在两分钟的等长运动中对脑血管反应进行了评估。使用经颅多普勒超声波测量了大脑中动脉(MCA)和大脑后动脉(PCA)速度(v)的颅内反应。颈内动脉(ICA)和椎动脉(VA)的颅外反应使用双工超声波进行评估。对心肺血流动力学和神经参数进行了全程测量,包括肌肉交感神经活动、潮气末二氧化碳和血压。运动强度与 MCAv 的大脑反应之间存在明显的正相关关系(P0.05),尽管 MAP 的增加与运动强度有关(P0.05)。
{"title":"The relationships between age, sex and exercise intensity on cerebral artery haemodynamics during isometric handgrip exercise.","authors":"Jodie L Koep, Bert Bond, Chloe E Taylor, Alan R Barker, Stefanie L Ruediger, Faith K Pizzey, Jeff S Coombes, Tom G Bailey","doi":"10.1152/ajpregu.00014.2024","DOIUrl":"https://doi.org/10.1152/ajpregu.00014.2024","url":null,"abstract":"<p><p>Age and sex may alter the cerebral blood flow (CBF) responses to acute isometric exercise, via associated elevations in mean arterial pressure (MAP) and sympathetic activation. Our aim was to determine the relationships between age, sex and exercise intensity on cerebrovascular responses to isometric handgrip exercise. In 78 healthy adults (18-80 years, N=42 female), cerebrovascular responses were assessed during two minute isometric exercise bouts at three intensities (15, 30, 45% maximal voluntary contraction). Intracranial responses of the middle cerebral artery (MCA) and posterior cerebral artery (PCA) velocity (v) were measured using transcranial Doppler ultrasound. Extracranial responses of the internal carotid artery (ICA) and vertebral artery (VA) were assessed using Duplex ultrasound. Cardiopulmonary haemodynamic and neural parameters were measured throughout, including muscle sympathetic nerve activity, end-tidal carbon dioxide, and MAP. There were significant positive relationships between exercise intensity and the cerebral responses of the MCAv (P<0.001) and PCAv (P=0.005). There were no effects of intensity on ICA and VA responses (P>0.05), despite intensity-dependent increases in MAP (P<0.001). The increased MCAv response to exercise was blunted with advancing age (P=0.01) with no influence of sex (P=0.86). The present study provides data on age, sex and intensity specific relationships with intracranial and extracranial cerebrovascular responses to isometric exercise. Despite similar ICA, VA, and PCA responses, MCAv responses were attenuated with advancing age during handgrip exercise with no sex dependent influence. Further, intracranial responses were intensity dependent, whereas extracranial blood flow, shear-stress and velocity responses were similarly increased at all intensities during handgrip exercise.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is muscle sympathetic nerve activity associated with cerebral blood velocity? A partial coherence analysis. 肌肉交感神经活动与脑血流速度有关吗?部分相干分析
IF 2.2 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-10-22 DOI: 10.1152/ajpregu.00112.2024
Edgar Toschi-Dias, Ricardo C Nogueira, Edna O Silva, Graziela Amaro-Vicente, Carlos E Negrão, Maria Urbana P B Rondon, Ronney B Panerai

Despite some evidence, the role of sympathetic nerve activity in the regulation of cerebral blood flow remains controversial. In humans, muscle sympathetic nervous activity (MSNA) is the only direct measure of sympathetic nerve activity that can be recorded with sufficient temporal resolution, to allow association with dynamic regulation of cerebral blood velocity (CBv). This study tested the hypothesis that MSNA is associated with the regulation of CBv at rest and during different physiological maneuvers. Nine healthy subjects underwent two sympathoexcitatory maneuvers: i) isometric handgrip exercise (HGR), and ii) cold pressor test (CPT). Mean arterial pressure (MAP, oscillometric method), CBv (transcranial Doppler ultrasound), and MSNA (microneurography) were measured continuously during experimental protocols. Ordinary and partial coherences of the MAP, CBv and MSNA time series were estimated by transfer function analysis in the low-frequency range (LF: 0.07-0.20 Hz), using MAP and MSNA as inputs and CBv as the output variable. When the influence of MSNA was taken into account, the partial coherences between MAP and CBv were considerably reduced at baseline (P<0.01), HGR (P=0.02), and CPT (P<0.01). Similarly, when the influence of MAP was taken into account, the coherence between MSNA and CBv was considerably reduced at baseline (P<0.01), HGR (P=0.02), and CPT (P=0.01), leading to the conclusion, that MSNA was associated to dynamic regulation of CBv. Partial coherence analysis is a promising method for assessing the influence of the sympathetic nervous system on cerebral hemodynamics.

尽管有一些证据表明,交感神经活动在调节脑血流中的作用仍存在争议。在人体中,肌肉交感神经活动(MSNA)是唯一能以足够高的时间分辨率记录交感神经活动的直接测量指标,可将其与脑血流速度(CBv)的动态调节联系起来。本研究测试了 MSNA 与静息状态和不同生理动作时的 CBv 调节相关的假设。九名健康受试者接受了两种交感兴奋操作:i)等长手握运动(HGR)和 ii)冷压试验(CPT)。在实验过程中,连续测量了平均动脉压(MAP,示波法)、CBv(经颅多普勒超声)和 MSNA(微神经电图)。以 MAP 和 MSNA 为输入变量,以 CBv 为输出变量,通过低频范围(LF:0.07-0.20 Hz)的传递函数分析估算了 MAP、CBv 和 MSNA 时间序列的普通一致性和部分一致性。当考虑到 MSNA 的影响时,MAP 和 CBv 之间的部分相干性在基线(PP=0.02)、CPT(PPP=0.02)和 CPT(P=0.01)时显著降低,从而得出结论,MSNA 与 CBv 的动态调节有关。部分相干分析是评估交感神经系统对脑血流动力学影响的一种有前途的方法。
{"title":"Is muscle sympathetic nerve activity associated with cerebral blood velocity? A partial coherence analysis.","authors":"Edgar Toschi-Dias, Ricardo C Nogueira, Edna O Silva, Graziela Amaro-Vicente, Carlos E Negrão, Maria Urbana P B Rondon, Ronney B Panerai","doi":"10.1152/ajpregu.00112.2024","DOIUrl":"https://doi.org/10.1152/ajpregu.00112.2024","url":null,"abstract":"<p><p>Despite some evidence, the role of sympathetic nerve activity in the regulation of cerebral blood flow remains controversial. In humans, muscle sympathetic nervous activity (MSNA) is the only direct measure of sympathetic nerve activity that can be recorded with sufficient temporal resolution, to allow association with dynamic regulation of cerebral blood velocity (CBv). This study tested the hypothesis that MSNA is associated with the regulation of CBv at rest and during different physiological maneuvers. Nine healthy subjects underwent two sympathoexcitatory maneuvers: <i>i</i>) isometric handgrip exercise (HGR), and <i>ii</i>) cold pressor test (CPT). Mean arterial pressure (MAP, oscillometric method), CBv (transcranial Doppler ultrasound), and MSNA (microneurography) were measured continuously during experimental protocols. Ordinary and partial coherences of the MAP, CBv and MSNA time series were estimated by transfer function analysis in the low-frequency range (LF: 0.07-0.20 Hz), using MAP and MSNA as inputs and CBv as the output variable. When the influence of MSNA was taken into account, the partial coherences between MAP and CBv were considerably reduced at baseline (<i>P</i><0.01), HGR (<i>P</i>=0.02), and CPT (<i>P</i><0.01). Similarly, when the influence of MAP was taken into account, the coherence between MSNA and CBv was considerably reduced at baseline (<i>P</i><0.01), HGR (<i>P</i>=0.02), and CPT (<i>P</i>=0.01), leading to the conclusion, that MSNA was associated to dynamic regulation of CBv. Partial coherence analysis is a promising method for assessing the influence of the sympathetic nervous system on cerebral hemodynamics.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Profiling growth performance, insulin-like growth factors (IGFs), and IGF-binding proteins (IGFBPs) in rainbow trout lacking IGFBP-2b. 分析缺乏 IGFBP-2b 的虹鳟的生长性能、胰岛素样生长因子(IGFs)和 IGF 结合蛋白(IGFBPs)。
IF 2.2 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-10-14 DOI: 10.1152/ajpregu.00209.2024
Beth M Cleveland, Ayaka Izutsu, Yuika Ushizawa, Lisa Radler, Munetaka Shimizu

Insulin-like growth factor binding proteins (IGFBP) regulate insulin-like growth factor (IGF) signaling, but IGFBP-specific functions are not well characterized in fishes. A line of rainbow trout (Oncorhynchus mykiss) lacking a functional IGFBP-2b was produced using gene editing and subsequent breeding to an F2 generation. This loss-of-function model (2bKO) was subjected to either continuous feeding or feed deprivation (3 wk) followed by refeeding (1 wk). During continuous feeding, the 2bKO line displayed faster specific growth rate for both body weight and fork length, higher feed intake, and reduced feed conversion ratio compared to a wild type (WT) line. However, loss of IGFBP-2b did not affect the feed deprivation or refeeding response in terms of weight loss or weight gain, respectively. Several components of the IGF/IGFBP system were affected by loss of IGFBP2b. Total serum IGF-1 in the 2bKO line was reduced to 0.5 - 0.8-fold of the WT line although the concentration of free serum IGF-1 was not affected. Gene expression differences include reduced abundance of igfbp1a1, igfbp1b2, igfbp5b2, and igfbp6b1 transcripts, and elevated igf2 and igfbp6b2 transcripts in liver of the 2bKO line. Collectively, these findings suggest that although IGFBP-2b is a carrier of circulating IGF-1 in salmonids, the presence of IGFBP-2a and compensatory responses of other IGF/IGFBP system components support an anabolic response that improved growth performance in the loss-of-function model.

胰岛素样生长因子结合蛋白(IGFBP)可调节胰岛素样生长因子(IGF)信号传导,但在鱼类中,IGFBP的特异性功能尚不十分明确。我们利用基因编辑技术培育出了缺乏功能性 IGFBP-2b 的虹鳟鱼(Oncorhynchus mykiss)品系,并随后培育出了 F2 代。对这种功能缺失模型(2bKO)进行持续喂养或饲料剥夺(3 周),然后再喂养(1 周)。与野生型(WT)品系相比,在连续饲喂期间,2bKO 品系的体重和叉长的特定生长速度更快,饲料摄入量更高,饲料转化率降低。然而,IGFBP-2b的缺失并不影响饲料剥夺或再喂养对体重减轻或体重增加的反应。IGF/IGFBP系统的几个组成部分受到IGFBP-2b缺失的影响。虽然游离血清 IGF-1 的浓度未受影响,但 2bKO 株系的血清总 IGF-1 降低到 WT 株系的 0.5 - 0.8 倍。基因表达差异包括 2bKO 株系肝脏中 igfbp1a1、igfbp1b2、igfbp5b2 和 igfbp6b1 转录本的丰度降低,igf2 和 igfbp6b2 转录本升高。总之,这些发现表明,虽然 IGFBP-2b 是鲑鱼体内循环 IGF-1 的载体,但 IGFBP-2a 的存在和其他 IGF/IGFBP 系统成分的代偿反应支持合成代谢反应,从而改善了功能缺失模型的生长性能。
{"title":"Profiling growth performance, insulin-like growth factors (IGFs), and IGF-binding proteins (IGFBPs) in rainbow trout lacking IGFBP-2b.","authors":"Beth M Cleveland, Ayaka Izutsu, Yuika Ushizawa, Lisa Radler, Munetaka Shimizu","doi":"10.1152/ajpregu.00209.2024","DOIUrl":"https://doi.org/10.1152/ajpregu.00209.2024","url":null,"abstract":"<p><p>Insulin-like growth factor binding proteins (IGFBP) regulate insulin-like growth factor (IGF) signaling, but IGFBP-specific functions are not well characterized in fishes. A line of rainbow trout (<i>Oncorhynchus mykiss</i>) lacking a functional IGFBP-2b was produced using gene editing and subsequent breeding to an F2 generation. This loss-of-function model (2bKO) was subjected to either continuous feeding or feed deprivation (3 wk) followed by refeeding (1 wk). During continuous feeding, the 2bKO line displayed faster specific growth rate for both body weight and fork length, higher feed intake, and reduced feed conversion ratio compared to a wild type (WT) line. However, loss of IGFBP-2b did not affect the feed deprivation or refeeding response in terms of weight loss or weight gain, respectively. Several components of the IGF/IGFBP system were affected by loss of IGFBP2b. Total serum IGF-1 in the 2bKO line was reduced to 0.5 - 0.8-fold of the WT line although the concentration of free serum IGF-1 was not affected. Gene expression differences include reduced abundance of <i>igfbp1a1</i>, <i>igfbp1b2</i>, <i>igfbp5b2</i>, and <i>igfbp6b1</i> transcripts, and elevated <i>igf2</i> and <i>igfbp6b2</i> transcripts in liver of the 2bKO line. Collectively, these findings suggest that although IGFBP-2b is a carrier of circulating IGF-1 in salmonids, the presence of IGFBP-2a and compensatory responses of other IGF/IGFBP system components support an anabolic response that improved growth performance in the loss-of-function model.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease. 利拉鲁肽通过下调TLR4/MyD88/NF-kappaB途径改善糖尿病肾病的炎症和纤维化。
IF 2.2 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI: 10.1152/ajpregu.00083.2024
Linjing Huang, Tingting Lin, Meizhen Shi, Peiwen Wu

Inflammation and fibrosis play important roles in diabetic kidney disease (DKD). Previous studies have shown that glucagon-like peptide-1 receptor (GLP-1R) agonists had renal protective effects. However, the mechanisms are not clear. The present study explored the effect of liraglutide (LR), a GLP-1R agonist, on the downregulation of glomerular inflammation and fibrosis in DKD by regulating the Toll-like receptor (TLR)4/myeloid differentiation marker 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in mesangial cells (MCs). In vitro, rat MCs were cultured in high glucose (HG). We found that liraglutide treatment significantly reduced the HG-mediated activation of the TLR4/MYD88/NF-κB signaling pathway, extracellular matrix (ECM)-related proteins, and inflammatory factors. A combination of TLR4 inhibitor (TAK242) and liraglutide did not synergistically inhibit inflammatory factors and ECM proteins. Furthermore, in the presence of TLR4 siRNA, liraglutide significantly blunted HG-induced expression of fibronectin protein and inflammatory factors. Importantly, TLR4 selective agonist LPS or TLR4 overexpression eliminated the improvement effects of liraglutide on the HG-induced response. In vivo, administration of liraglutide for 8 wk significantly improved the glomerular damage in streptozotocin-induced diabetic mice and reduced the expression of TLR4/MYD88/NF-κB signaling proteins, ECM protein, and inflammatory factors in renal cortex. TLR4-/- diabetic mice showed significant amelioration in urine protein excretion rate, glomerular pathological damage, inflammation, and fibrosis. Liraglutide attenuated glomerular hypertrophy, renal fibrosis, and inflammatory response in TLR4-/- diabetic mice. Taken together, our findings suggest that TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory response and ECM protein proliferation in DKD. Liraglutide alleviates inflammation and fibrosis by downregulating the TLR4/MYD88/NF-κB signaling pathway in MCs.NEW & NOTEWORTHY Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has renoprotective effect in diabetic kidney disease (DKD). In DKD, TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory responses and extracellular matrix (ECM) protein proliferation. Liraglutide attenuates renal inflammation and overexpression of ECM proteins by inhibiting TLR4/MYD88/NF-κB signaling pathway. Therefore, we have identified a new mechanism that contributes to the renal protection of GLP-1RA, thus helping to design innovative treatment strategies for diabetic patients with various complications.

炎症和纤维化在糖尿病肾病(DKD)中起着重要作用。以往的研究表明,胰高血糖素样肽-1 受体(GLP-1R)激动剂具有保护肾脏的作用。然而,其机制尚不清楚。本研究探讨了利拉鲁肽(一种 GLP-1R 激动剂)通过调节间质细胞(MCs)中的 TLR4/MyD88/NF-kappaB 信号通路对下调 DKD 肾小球炎症和纤维化的影响。在体外,大鼠系膜细胞在高糖(HG)条件下培养。我们发现,利拉鲁肽治疗能显著减少 HG 介导的 TLR4/MYD88/NF-κB 信号通路、细胞外基质(ECM)相关蛋白和炎症因子的激活。TLR4 抑制剂(TAK242)和利拉鲁肽的组合并不能协同抑制炎症因子和 ECM 蛋白。此外,在 TLR4 siRNA 存在的情况下,利拉鲁肽能明显减弱 HG 诱导的纤连蛋白和炎症因子的表达。重要的是,TLR4选择性激动剂--LPS或TLR4过表达消除了利拉鲁肽对HG诱导反应的改善作用。在体内,服用利拉鲁肽 8 周可显著改善链脲佐菌素诱导的糖尿病小鼠的肾小球损伤,并减少肾皮质中 TLR4/MYD88/NF-κB 信号蛋白、ECM 蛋白和炎症因子的表达。TLR4-/-糖尿病小鼠的尿蛋白排泄率、肾小球病理损伤、炎症和纤维化均有显著改善。利拉鲁肽减轻了TLR4-/-糖尿病小鼠的肾小球肥大、肾脏纤维化和炎症反应。综上所述,我们的研究结果表明,TLR4/MYD88/NF-κB 信号传导参与了 DKD 中炎症反应和 ECM 蛋白增殖的调控。利拉鲁肽通过下调 MCs 的 TLR4/MYD88/NF-κB 信号通路,缓解炎症和纤维化。
{"title":"Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease.","authors":"Linjing Huang, Tingting Lin, Meizhen Shi, Peiwen Wu","doi":"10.1152/ajpregu.00083.2024","DOIUrl":"10.1152/ajpregu.00083.2024","url":null,"abstract":"<p><p>Inflammation and fibrosis play important roles in diabetic kidney disease (DKD). Previous studies have shown that glucagon-like peptide-1 receptor (GLP-1R) agonists had renal protective effects. However, the mechanisms are not clear. The present study explored the effect of liraglutide (LR), a GLP-1R agonist, on the downregulation of glomerular inflammation and fibrosis in DKD by regulating the Toll-like receptor (TLR)4/myeloid differentiation marker 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in mesangial cells (MCs). In vitro, rat MCs were cultured in high glucose (HG). We found that liraglutide treatment significantly reduced the HG-mediated activation of the TLR4/MYD88/NF-κB signaling pathway, extracellular matrix (ECM)-related proteins, and inflammatory factors. A combination of TLR4 inhibitor (TAK242) and liraglutide did not synergistically inhibit inflammatory factors and ECM proteins. Furthermore, in the presence of TLR4 siRNA, liraglutide significantly blunted HG-induced expression of fibronectin protein and inflammatory factors. Importantly, TLR4 selective agonist LPS or TLR4 overexpression eliminated the improvement effects of liraglutide on the HG-induced response. In vivo, administration of liraglutide for 8 wk significantly improved the glomerular damage in streptozotocin-induced diabetic mice and reduced the expression of TLR4/MYD88/NF-κB signaling proteins, ECM protein, and inflammatory factors in renal cortex. TLR4<sup>-/-</sup> diabetic mice showed significant amelioration in urine protein excretion rate, glomerular pathological damage, inflammation, and fibrosis. Liraglutide attenuated glomerular hypertrophy, renal fibrosis, and inflammatory response in TLR4<sup>-/-</sup> diabetic mice. Taken together, our findings suggest that TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory response and ECM protein proliferation in DKD. Liraglutide alleviates inflammation and fibrosis by downregulating the TLR4/MYD88/NF-κB signaling pathway in MCs.<b>NEW & NOTEWORTHY</b> Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has renoprotective effect in diabetic kidney disease (DKD). In DKD, TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory responses and extracellular matrix (ECM) protein proliferation. Liraglutide attenuates renal inflammation and overexpression of ECM proteins by inhibiting TLR4/MYD88/NF-κB signaling pathway. Therefore, we have identified a new mechanism that contributes to the renal protection of GLP-1RA, thus helping to design innovative treatment strategies for diabetic patients with various complications.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R410-R422"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The independent effects of hydrostatic pressure and hypercapnic breathing during water immersion on ventilatory sensitivity and cerebrovascular reactivity. 浸水期间静水压和高碳酸血症呼吸对通气敏感性和脑血管反应性的独立影响。
IF 2.2 3区 医学 Q3 PHYSIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI: 10.1152/ajpregu.00008.2024
James R Sackett, Zachary J Schlader, David Hostler, Blair D Johnson

Head-out water immersion (HOWI) induces ventilatory and hemodynamic changes, which may be a result of hydrostatic pressure, augmented arterial CO2 tension, or a combination of both. We hypothesized that the hydrostatic pressure and elevated CO2 tension that occur during HOWI will contribute to an augmented ventilatory sensitivity to CO2 and an attenuated cerebrovascular reactivity to CO2 during water immersion. Twelve subjects [age: 24 ± 3 yr, body mass index (BMI): 25 ± 3 kg/m2] completed HOWI, waist water immersion with CO2 (WWI + CO2), and WWI, where a rebreathing test was conducted at baseline, 10, 30, and 60 min, and postimmersion. End-tidal pressure of carbon dioxide ([Formula: see text]), minute ventilation, expired gases, blood pressure, heart rate, and middle cerebral artery blood velocity were recorded continuously. [Formula: see text] increased throughout all visits (P ≤ 0.011), was similar during HOWI and WWI + CO2 (P ≥ 0.264), and was greater during WWI + CO2 versus WWI at 10, 30, and 60 min (P < 0.001). When HOWI vs. WWI + CO2 were compared, the change in ventilatory sensitivity to CO2 was different at 10 (0.59 ± 0.34 vs. 0.06 ± 0.23 L/min/mmHg; P < 0.001), 30 (0.58 ± 0.46 vs. 0.15 ± 0.25 L/min/mmHg; P < 0.001), and 60 min (0.63 ± 0.45 vs. 0.16 ± 0.34 L/min/mmHg; P < 0.001), whereas there were no differences between conditions for cerebrovascular reactivity to CO2 (P ≥ 0.163). When WWI + CO2 versus WWI were compared, ventilatory sensitivity to CO2 was not different between conditions (P ≥ 0.642), whereas the change in cerebrovascular reactivity to CO2 was different at 30 min (-0.56 ± 0.38 vs. -0.30 ± 0.25 cm/s/mmHg; P = 0.010). These data indicate that during HOWI, ventilatory sensitivity to CO2 increases due to the hydrostatic pressure, whereas cerebrovascular reactivity to CO2 decreases due to the combined effects of immersion.NEW & NOTEWORTHY Although not fully elucidated, the ventilatory and hemodynamic alterations during water immersion appear to be a result of the combined effects of immersion (i.e., elevated [Formula: see text], central hypervolemia, increased cerebral perfusion, increased work of breathing, etc.). Our findings demonstrate that an augmented ventilatory sensitivity to CO2 during immersion may be due to the hydrostatic pressure across the chest wall, whereas an attenuated cerebrovascular reactivity to CO2 may be due to the combined effects of immersion.

头部向外浸入水中(HOWI)会引起通气和血液动力学变化,这可能是静水压、动脉二氧化碳张力升高或两者共同作用的结果。我们假设,在 HOWI 过程中出现的静水压和二氧化碳张力升高将有助于增强通气对二氧化碳的敏感性,并减弱浸水过程中脑血管对二氧化碳的反应性。12 名受试者(年龄:24±3 岁,体重指数:25±3 kg/m2)分别完成了 HOWI、腰部水浸二氧化碳(WWI+CO2)和 WWI,并在基线、10、30 和 60 分钟及之后进行了再呼吸测试。连续记录 PETCO2、分钟通气量、呼出气体、血压、心率和大脑中动脉血速。PETCO2 在所有检查中均有所增加(p£0.011),在 HOWI 和 WWI+CO2 期间相匹配(p³0.264),并且在 10、30 和 60 分钟时 WWI+CO2 与 WWI 相比更大(p2),通气对 CO2 的敏感性在 10 分钟时的变化不同(0.59±0.34 vs. 0.06±0.23 L/min/mmHg,p2(p³0.163)。当比较 WWI+CO2 与 WWI 时,通气对 CO2 的敏感性在不同条件下没有差异(p³0.642),而脑血管对 CO2 的反应性变化在 30 分钟时有差异(-0.56±0.38 vs. -0.30±0.25 cm/s/mmHg,p=0.010)。这些数据表明,在 HOWI 期间,通气对二氧化碳的敏感性因静水压而增加,而脑血管对二氧化碳的反应性则因浸泡的综合影响而降低。
{"title":"The independent effects of hydrostatic pressure and hypercapnic breathing during water immersion on ventilatory sensitivity and cerebrovascular reactivity.","authors":"James R Sackett, Zachary J Schlader, David Hostler, Blair D Johnson","doi":"10.1152/ajpregu.00008.2024","DOIUrl":"10.1152/ajpregu.00008.2024","url":null,"abstract":"<p><p>Head-out water immersion (HOWI) induces ventilatory and hemodynamic changes, which may be a result of hydrostatic pressure, augmented arterial CO<sub>2</sub> tension, or a combination of both. We hypothesized that the hydrostatic pressure and elevated CO<sub>2</sub> tension that occur during HOWI will contribute to an augmented ventilatory sensitivity to CO<sub>2</sub> and an attenuated cerebrovascular reactivity to CO<sub>2</sub> during water immersion. Twelve subjects [age: 24 ± 3 yr, body mass index (BMI): 25 ± 3 kg/m<sup>2</sup>] completed HOWI, waist water immersion with CO<sub>2</sub> (WWI + CO<sub>2</sub>), and WWI, where a rebreathing test was conducted at baseline, 10, 30, and 60 min, and postimmersion. End-tidal pressure of carbon dioxide ([Formula: see text]), minute ventilation, expired gases, blood pressure, heart rate, and middle cerebral artery blood velocity were recorded continuously. [Formula: see text] increased throughout all visits (<i>P</i> ≤ 0.011), was similar during HOWI and WWI + CO<sub>2</sub> (<i>P</i> ≥ 0.264), and was greater during WWI + CO<sub>2</sub> versus WWI at 10, 30, and 60 min (<i>P</i> < 0.001). When HOWI vs. WWI + CO<sub>2</sub> were compared, the change in ventilatory sensitivity to CO<sub>2</sub> was different at 10 (0.59 ± 0.34 vs. 0.06 ± 0.23 L/min/mmHg; <i>P</i> < 0.001), 30 (0.58 ± 0.46 vs. 0.15 ± 0.25 L/min/mmHg; <i>P</i> < 0.001), and 60 min (0.63 ± 0.45 vs. 0.16 ± 0.34 L/min/mmHg; <i>P</i> < 0.001), whereas there were no differences between conditions for cerebrovascular reactivity to CO<sub>2</sub> (<i>P</i> ≥ 0.163). When WWI + CO<sub>2</sub> versus WWI were compared, ventilatory sensitivity to CO<sub>2</sub> was not different between conditions (<i>P</i> ≥ 0.642), whereas the change in cerebrovascular reactivity to CO<sub>2</sub> was different at 30 min (-0.56 ± 0.38 vs. -0.30 ± 0.25 cm/s/mmHg; <i>P</i> = 0.010). These data indicate that during HOWI, ventilatory sensitivity to CO<sub>2</sub> increases due to the hydrostatic pressure, whereas cerebrovascular reactivity to CO<sub>2</sub> decreases due to the combined effects of immersion.<b>NEW & NOTEWORTHY</b> Although not fully elucidated, the ventilatory and hemodynamic alterations during water immersion appear to be a result of the combined effects of immersion (i.e., elevated [Formula: see text], central hypervolemia, increased cerebral perfusion, increased work of breathing, etc.). Our findings demonstrate that an augmented ventilatory sensitivity to CO<sub>2</sub> during immersion may be due to the hydrostatic pressure across the chest wall, whereas an attenuated cerebrovascular reactivity to CO<sub>2</sub> may be due to the combined effects of immersion.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R457-R472"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Regulatory, integrative and comparative physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1