{"title":"Tissue-type plasminogen activator (t-PA) and single chain urokinase-type plasminogen activator (scu-PA): potential for fibrin-specific thrombolytic therapy.","authors":"D Collen","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"8 ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14237381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intravenous immunoglobulin is not only a very dramatic clinical therapy but also extremely interesting from the point of view of understanding its mechanism of action. The difficulty of delivery and especially the high cost of therapy limits its application; yet it appears to be equal to or perhaps slightly more effective than corticosteroids as a treatment of ITP and is less toxic with prolonged use. The appropriate place for its exact usage remains to be determined, and further controlled trials are urgently needed. Existing studies on its mechanisms of actions are very interesting and have furthered our understanding of the pathophysiology of ITP. Although future work may lead to further applications, initial enthusiasm for the use of IVGG in other autoimmune diseases has been limited by subsequent clinical experience.
{"title":"Intravenous immunoglobulin therapy for the treatment of idiopathic thrombocytopenic purpura.","authors":"J B Bussel","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Intravenous immunoglobulin is not only a very dramatic clinical therapy but also extremely interesting from the point of view of understanding its mechanism of action. The difficulty of delivery and especially the high cost of therapy limits its application; yet it appears to be equal to or perhaps slightly more effective than corticosteroids as a treatment of ITP and is less toxic with prolonged use. The appropriate place for its exact usage remains to be determined, and further controlled trials are urgently needed. Existing studies on its mechanisms of actions are very interesting and have furthered our understanding of the pathophysiology of ITP. Although future work may lead to further applications, initial enthusiasm for the use of IVGG in other autoimmune diseases has been limited by subsequent clinical experience.</p>","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"8 ","pages":"103-25"},"PeriodicalIF":0.0,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"14673264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An assessment of regional versus systemic thrombolytic treatment of peripheral and coronary artery thrombosis.","authors":"V J Marder, C W Francis","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"325-56"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17303943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Platelet glycoproteins.","authors":"M C Berndt, J P Caen","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"111-50"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17166975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Platelets do not adhere to surfaces to which flowing blood is normally exposed in vivo. When the lining of a blood vessel is altered or damaged, however, platelets do adhere to the injured site. Platelet adhesion is one of the first events in the formation of hemostatic plugs and thrombi, and plays a part in the development of atherosclerotic lesions. Other surfaces to which platelets adhere include particulate matter in the blood stream, bacteria and other microorganisms, the artificial surfaces of prosthetic devices, and some altered cells in the blood, particularly macrophages. The majority of investigators have studied the interaction of platelets with the subendothelium of normal vessels of young animals, or with isolated vessel wall constituents such as collagen. There are very few studies of platelet adhesion to repeatedly damaged or diseased blood vessels, although it is generally assumed that platelets interact with the connective tissue, fibrin, and cholesterol crystals in atherosclerotic lesions. Underlying the endothelium of blood vessel is the basement membrane, which has been shown to contain type IV collagen, elastin with its associated microfibrils, von Willebrand Factor, fibronectin, thrombospondin, laminin, and heparan sulfate. If only the endothelium is removed, the main structure exposed is the basement membrane with its associated proteins, but deeper injuries expose fibrillar type III collagen and microfibrils. In most studies in which large arteries have been injured by passage of a balloon catheter, basement membrane, type III collagen and the microfibrils around elastin have been exposed. Platelets do not react strongly with basement membrane and the type IV collagen in it is relatively inert. In contrast, platelets adhere firmly to type III (and type I) collagen and spread on it. Although in vitro studies have shown that platelets can interact with collagen in artificial media without plasma proteins, investigations of platelet adhesion at high shear rates indicate that von Willebrand Factor is necessary for firm platelet adhesion under these conditions. Fibronectin and thrombospondin may also have a role in platelet adhesion. However, platelets do not bind von Willebrand Factor or fibronectin until the platelets have been stimulated to release their granule contents, so these binding sites probably do not become available until the platelets have interacted with collagen or another release-inducing agent such as thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)
{"title":"Platelet adhesion.","authors":"M A Packham, J F Mustard","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Platelets do not adhere to surfaces to which flowing blood is normally exposed in vivo. When the lining of a blood vessel is altered or damaged, however, platelets do adhere to the injured site. Platelet adhesion is one of the first events in the formation of hemostatic plugs and thrombi, and plays a part in the development of atherosclerotic lesions. Other surfaces to which platelets adhere include particulate matter in the blood stream, bacteria and other microorganisms, the artificial surfaces of prosthetic devices, and some altered cells in the blood, particularly macrophages. The majority of investigators have studied the interaction of platelets with the subendothelium of normal vessels of young animals, or with isolated vessel wall constituents such as collagen. There are very few studies of platelet adhesion to repeatedly damaged or diseased blood vessels, although it is generally assumed that platelets interact with the connective tissue, fibrin, and cholesterol crystals in atherosclerotic lesions. Underlying the endothelium of blood vessel is the basement membrane, which has been shown to contain type IV collagen, elastin with its associated microfibrils, von Willebrand Factor, fibronectin, thrombospondin, laminin, and heparan sulfate. If only the endothelium is removed, the main structure exposed is the basement membrane with its associated proteins, but deeper injuries expose fibrillar type III collagen and microfibrils. In most studies in which large arteries have been injured by passage of a balloon catheter, basement membrane, type III collagen and the microfibrils around elastin have been exposed. Platelets do not react strongly with basement membrane and the type IV collagen in it is relatively inert. In contrast, platelets adhere firmly to type III (and type I) collagen and spread on it. Although in vitro studies have shown that platelets can interact with collagen in artificial media without plasma proteins, investigations of platelet adhesion at high shear rates indicate that von Willebrand Factor is necessary for firm platelet adhesion under these conditions. Fibronectin and thrombospondin may also have a role in platelet adhesion. However, platelets do not bind von Willebrand Factor or fibronectin until the platelets have been stimulated to release their granule contents, so these binding sites probably do not become available until the platelets have interacted with collagen or another release-inducing agent such as thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"211-88"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17458478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perturbations of the endothelium.","authors":"M B Stemerman, C Colton, E Morell","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"289-324"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17502185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From the preceding exposition it is now clear that the regulation of monocyte/macrophage PCA is dependent upon a complex network of interacting pathways, some of which amplify the response of the monocyte/macrophage, while others inhibit. In all probability many more will emerge. The construct illustrated in Figure 3, therefore, is a simplified view of the two major stimulatory pathways: the T cell-dependent pathway, activated by immune recognition and mediated by lymphokine(s); and the T cell-independent pathway, activated by direct perturbation of monocytes by such stimuli as LPS. At least 2 or 3 different PCAs can be expressed by monocyte/macrophages from different species, depending upon the anatomic site of the origin of the cell and the types of stimuli imposed. Inhibition of PCA expression is accomplished by at least one set of regulatory lipoproteins, and other inhibitory loops may be found. The result of these multiple interactions is the deposition of fibrin on the cell surface or in the surrounding milieu. It is our belief that this close relationship between coagulation reactions and inflammatory reactions, resulting in fibrin deposition, represents a fundamental host defense designed to delimit the inflammatory response. Nevertheless, the precise role of monocyte procoagulants in vivo remains unclear. A number of potential mechanisms exist for activation of coagulation in both inflammatory and neoplastic disorders, and the finding of enhanced monocyte procoagulant activity by no means establishes its importance in physiologic or, pathosphysiologic responses in vivo. Further studies, possibly with agents capable of specific inhibition of monocyte procoagulants in vivo, will be necessary to define the precise importance of these procoagulants in clinical disorders.
{"title":"Macrophage procoagulants.","authors":"R L Edwards, F R Rickles","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>From the preceding exposition it is now clear that the regulation of monocyte/macrophage PCA is dependent upon a complex network of interacting pathways, some of which amplify the response of the monocyte/macrophage, while others inhibit. In all probability many more will emerge. The construct illustrated in Figure 3, therefore, is a simplified view of the two major stimulatory pathways: the T cell-dependent pathway, activated by immune recognition and mediated by lymphokine(s); and the T cell-independent pathway, activated by direct perturbation of monocytes by such stimuli as LPS. At least 2 or 3 different PCAs can be expressed by monocyte/macrophages from different species, depending upon the anatomic site of the origin of the cell and the types of stimuli imposed. Inhibition of PCA expression is accomplished by at least one set of regulatory lipoproteins, and other inhibitory loops may be found. The result of these multiple interactions is the deposition of fibrin on the cell surface or in the surrounding milieu. It is our belief that this close relationship between coagulation reactions and inflammatory reactions, resulting in fibrin deposition, represents a fundamental host defense designed to delimit the inflammatory response. Nevertheless, the precise role of monocyte procoagulants in vivo remains unclear. A number of potential mechanisms exist for activation of coagulation in both inflammatory and neoplastic disorders, and the finding of enhanced monocyte procoagulant activity by no means establishes its importance in physiologic or, pathosphysiologic responses in vivo. Further studies, possibly with agents capable of specific inhibition of monocyte procoagulants in vivo, will be necessary to define the precise importance of these procoagulants in clinical disorders.</p>","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"183-209"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17458477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biology of human megakaryocytes: recent developments.","authors":"E M Rabellino","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"151-66"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17303942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The protein C anticoagulant pathway provides many new insights into control mechanisms for regulating coagulation. The observation that protein C deficiency is associated with thrombotic tendencies in the heterozygote (106-109) and early, lethal thrombosis in the homozygote (110, 111) points to the importance of the system as a major regulatory pathway. The complexity of the system has only recently begun to emerge. Thrombin activation of protein C at the endothelial cell surface requires not only the synthesis of thrombomodulin but the coupling of the receptor to a protein C binding site. It is reasonable to assume that an inherited or acquired deficiency in thrombomodulin might lead to thrombotic tendencies. This aspect of the system may explain, in part, the association between vascular disease and thrombosis. Once activated, protein C has an almost total dependence on protein S to express anticoagulant activity. (98) This suggests that deficiencies of protein S may also be associated with thrombotic tendencies. Protein S offers an additional intriguing property. Protein S, a regulatory protein of the coagulation system, is found both free and associated with C4BP, a regulatory protein of the complement system. The high affinity, very stable interaction between these components (85) suggests that the interaction is likely to be involved in regulation. (89) The importance of the interaction remains to be demonstrated, but clearly this is a potential direct link between major control proteins of the coagulation and complement system. Clinical studies suggest that protein C and/or thrombomodulin might be effective therapeutically. Certainly, protein C supplementation during the onset of oral anticoagulant therapy would be expected to circumvent the transient rapid decrease in protein C levels that may influence the early effectiveness of oral anticoagulants. (119) In addition to the systems clinical importance, protein C, its activation, and its function offer a variety of intriguing biochemical problems. For instance, how does thrombomodulin alter the specificity of thrombin? What is the protein C binding site on the cell surface, and what role does Factor Va or its degradation products play in the formation and regulation of this site? How does protein S facilitate activated protein C anticoagulant activity and what roles do membrane surfaces play in this system? What role does beta-hydroxyaspartic acid play in protein C activation and function? How does activated protein C influence fibrinolytic activity? The answers to these questions will undoubtedly add to our understanding of the fundamental mechanisms involved in regulating blood coagulation.(ABSTRACT TRUNCATED AT 400 WORDS)
{"title":"Protein C.","authors":"C T Esmon","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The protein C anticoagulant pathway provides many new insights into control mechanisms for regulating coagulation. The observation that protein C deficiency is associated with thrombotic tendencies in the heterozygote (106-109) and early, lethal thrombosis in the homozygote (110, 111) points to the importance of the system as a major regulatory pathway. The complexity of the system has only recently begun to emerge. Thrombin activation of protein C at the endothelial cell surface requires not only the synthesis of thrombomodulin but the coupling of the receptor to a protein C binding site. It is reasonable to assume that an inherited or acquired deficiency in thrombomodulin might lead to thrombotic tendencies. This aspect of the system may explain, in part, the association between vascular disease and thrombosis. Once activated, protein C has an almost total dependence on protein S to express anticoagulant activity. (98) This suggests that deficiencies of protein S may also be associated with thrombotic tendencies. Protein S offers an additional intriguing property. Protein S, a regulatory protein of the coagulation system, is found both free and associated with C4BP, a regulatory protein of the complement system. The high affinity, very stable interaction between these components (85) suggests that the interaction is likely to be involved in regulation. (89) The importance of the interaction remains to be demonstrated, but clearly this is a potential direct link between major control proteins of the coagulation and complement system. Clinical studies suggest that protein C and/or thrombomodulin might be effective therapeutically. Certainly, protein C supplementation during the onset of oral anticoagulant therapy would be expected to circumvent the transient rapid decrease in protein C levels that may influence the early effectiveness of oral anticoagulants. (119) In addition to the systems clinical importance, protein C, its activation, and its function offer a variety of intriguing biochemical problems. For instance, how does thrombomodulin alter the specificity of thrombin? What is the protein C binding site on the cell surface, and what role does Factor Va or its degradation products play in the formation and regulation of this site? How does protein S facilitate activated protein C anticoagulant activity and what roles do membrane surfaces play in this system? What role does beta-hydroxyaspartic acid play in protein C activation and function? How does activated protein C influence fibrinolytic activity? The answers to these questions will undoubtedly add to our understanding of the fundamental mechanisms involved in regulating blood coagulation.(ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"25-54"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17166976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Angiogenesis.","authors":"T Maciag","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":76372,"journal":{"name":"Progress in hemostasis and thrombosis","volume":"7 ","pages":"167-82"},"PeriodicalIF":0.0,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"17151994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}