首页 > 最新文献

American journal of physiology. Heart and circulatory physiology最新文献

英文 中文
The role of chondroitin sulfate in venous thrombosis, organization, and resolution. 硫酸软骨素在静脉血栓形成、组织和消退中的作用。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 Epub Date: 2025-11-24 DOI: 10.1152/ajpheart.00855.2025
Felipe F Lamenza, Chase W Kessinger
{"title":"The role of chondroitin sulfate in venous thrombosis, organization, and resolution.","authors":"Felipe F Lamenza, Chase W Kessinger","doi":"10.1152/ajpheart.00855.2025","DOIUrl":"10.1152/ajpheart.00855.2025","url":null,"abstract":"","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H46-H48"},"PeriodicalIF":4.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12757775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obesity-related elevation in circulating endothelial-derived extracellular microvesicles and endothelial fibrinolytic dysfunction. 肥胖相关的循环内皮来源的细胞外微泡升高和内皮纤溶功能障碍。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 Epub Date: 2025-12-18 DOI: 10.1152/ajpheart.00885.2025
Samuel T Ruzzene, Auburn R Berry, Vinicius P Garcia, Whitney B Valenti, João E Izaias, Kelly A Stockelman, Jared J Greiner, Andrew J Park, Brian L Stauffer, Christopher A DeSouza

The capacity of the endothelium to release tissue-type plasminogen activator (t-PA) is markedly impaired in adults with obesity, underlying their increased thrombotic risk. Circulating endothelial cell-derived microvesicles (EMVs) are systemic modulators of vascular health and disease, and are elevated with obesity. The experimental aim of this study was to determine whether circulating EMVs are associated with obesity-related endothelial fibrinolytic dysfunction. Twenty-eight sedentary, midlife and older adults (45-71 yr) were studied: 14 normal-weight (7 M/7 F; age: 55 ± 4 yr; body mass index: 23.1 ± 1.6 kg/m2) adults and 14 adults with obesity (7 M/7 F; 57 ± 8 yr; 31.9 ± 2.9 kg/m2). EMV identification (CD144+) and concentration in peripheral blood were determined by flow cytometry. Endothelial release of t-PA was determined, in vivo, in response to intrabrachial infusions of bradykinin (BK: 125-500 ng/min) and sodium nitroprusside (SNP: 2.0-8.0 µg/min). Circulating EMV levels were ∼170% higher (P < 0.001) in adults with obesity (183 ± 58 EMV/µL) compared with normal-weight (68 ± 12 EMV/µL) adults. Endothelial t-PA release in response to BK was significantly lower (∼30%) in the adults with obesity (from 0.7 ± 3.6 to 35.9 ± 15.1 ng/100 mL tissue/min) versus normal-weight adults (-0.5 ± 2.3 to 68.4 ± 21.1 ng/100 mL tissue/min). Consequently, total t-PA release (area under the BK curve) was lower (∼35%; P = 0.007) in the adults with obesity (205 ± 118 ng/100 mL tissue vs. 325 ± 97 ng/100 mL tissue). Circulating EMVs were significantly and inversely associated with both peak t-PA release (r = -0.67; P = 0.0001) and total t-PA release to BK (r = -0.53; P = 0.004). In summary, obesity-related increase in circulating EMVs is associated with diminished endothelial t-PA release. Circulating EMVs may serve as a biomarker of fibrinolytic dysfunction in adults with obesity.NEW & NOTEWORTHY Obesity is associated with profound impairment in the capacity of the vascular endothelium to release tissue-type plasminogen activator (t-PA), the primary mechanism underlying endogenous thrombolysis. Circulating endothelial cell-derived extracellular vesicles (EMVs) have been linked to endothelial dysfunction. This study demonstrates that circulating EMVs are elevated in adults with obesity and are associated with reduced endothelial t-PA release. Circulating EMVs represent a novel systemic biomarker of obesity-related endothelial fibrinolytic dysfunction and, in turn, thrombotic risk.

内皮细胞释放组织型纤溶酶原激活剂(t-PA)的能力在肥胖的成年人中明显受损,这是他们血栓形成风险增加的原因。循环内皮细胞衍生的微泡(emv)是血管健康和疾病的全身调节剂;并且随着肥胖而升高。本研究的实验目的是确定循环emv是否与肥胖相关的内皮纤溶功能障碍有关。研究对象为28名久坐不动的中年和老年人(45-71岁),其中14名体重正常(7M/7F,年龄:55±4岁,BMI: 23.1±1.6 kg/m2), 14名肥胖(7M/7F, 57±8岁,31.9±2.9 kg/m2)。流式细胞术检测EMV (CD144+)和外周血浓度。在体内,通过臂内输注缓激肽(BK: 125-500 ng/min)和硝普钠(SNP: 2.0-8.0µg/min)来测定t-PA的内皮细胞释放。循环EMV水平高出约170% (P
{"title":"Obesity-related elevation in circulating endothelial-derived extracellular microvesicles and endothelial fibrinolytic dysfunction.","authors":"Samuel T Ruzzene, Auburn R Berry, Vinicius P Garcia, Whitney B Valenti, João E Izaias, Kelly A Stockelman, Jared J Greiner, Andrew J Park, Brian L Stauffer, Christopher A DeSouza","doi":"10.1152/ajpheart.00885.2025","DOIUrl":"10.1152/ajpheart.00885.2025","url":null,"abstract":"<p><p>The capacity of the endothelium to release tissue-type plasminogen activator (t-PA) is markedly impaired in adults with obesity, underlying their increased thrombotic risk. Circulating endothelial cell-derived microvesicles (EMVs) are systemic modulators of vascular health and disease, and are elevated with obesity. The experimental aim of this study was to determine whether circulating EMVs are associated with obesity-related endothelial fibrinolytic dysfunction. Twenty-eight sedentary, midlife and older adults (45-71 yr) were studied: 14 normal-weight (7 M/7 F; age: 55 ± 4 yr; body mass index: 23.1 ± 1.6 kg/m<sup>2</sup>) adults and 14 adults with obesity (7 M/7 F; 57 ± 8 yr; 31.9 ± 2.9 kg/m<sup>2</sup>). EMV identification (CD144<sup>+</sup>) and concentration in peripheral blood were determined by flow cytometry. Endothelial release of t-PA was determined, in vivo, in response to intrabrachial infusions of bradykinin (BK: 125-500 ng/min) and sodium nitroprusside (SNP: 2.0-8.0 µg/min). Circulating EMV levels were ∼170% higher (<i>P</i> < 0.001) in adults with obesity (183 ± 58 EMV/µL) compared with normal-weight (68 ± 12 EMV/µL) adults. Endothelial t-PA release in response to BK was significantly lower (∼30%) in the adults with obesity (from 0.7 ± 3.6 to 35.9 ± 15.1 ng/100 mL tissue/min) versus normal-weight adults (-0.5 ± 2.3 to 68.4 ± 21.1 ng/100 mL tissue/min). Consequently, total t-PA release (area under the BK curve) was lower (∼35%; <i>P</i> = 0.007) in the adults with obesity (205 ± 118 ng/100 mL tissue vs. 325 ± 97 ng/100 mL tissue). Circulating EMVs were significantly and inversely associated with both peak t-PA release (<i>r</i> = -0.67; <i>P</i> = 0.0001) and total t-PA release to BK (<i>r</i> = -0.53; <i>P</i> = 0.004). In summary, obesity-related increase in circulating EMVs is associated with diminished endothelial t-PA release. Circulating EMVs may serve as a biomarker of fibrinolytic dysfunction in adults with obesity.<b>NEW & NOTEWORTHY</b> Obesity is associated with profound impairment in the capacity of the vascular endothelium to release tissue-type plasminogen activator (t-PA), the primary mechanism underlying endogenous thrombolysis. Circulating endothelial cell-derived extracellular vesicles (EMVs) have been linked to endothelial dysfunction. This study demonstrates that circulating EMVs are elevated in adults with obesity and are associated with reduced endothelial t-PA release. Circulating EMVs represent a novel systemic biomarker of obesity-related endothelial fibrinolytic dysfunction and, in turn, thrombotic risk.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H319-H326"},"PeriodicalIF":4.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145779856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise training ameliorates myocardial dysfunction through fibronectin-mediated mechanotransduction in a swine model of ischemic heart disease. 在猪缺血性心脏病模型中,运动训练通过纤维连接蛋白介导的机械转导改善心肌功能障碍。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 Epub Date: 2025-11-17 DOI: 10.1152/ajpheart.00133.2025
Yang Lee, Xin Wu, Akshaya Narayanan, Sanjukta Chakraborty, Cristine L Heaps, Mariappan Muthuchamy

Exercise training has been shown to reverse cardiac dysfunction in patients and animal models of coronary artery disease; however, the underlying mechanisms have not been fully elucidated. Transmembrane integrins that connect the extracellular matrix (ECM) and intracellular cytoskeleton are important for mechanotransduction in cardiomyocytes. We tested the hypothesis that exercise training would increase cardiac contractile function by modulating the adhesion force between integrins and ECM proteins and subsequent cell signaling and stiffness in myocytes from ischemic porcine hearts. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of adult Yucatan pigs. Animals subsequently completed either a sedentary or endurance exercise (treadmill run 5 days/wk for 14 wk) protocol, after which myocardium was isolated from nonoccluded and collateral-dependent regions. The collateral-dependent myocardial region exhibited increased fibrosis, inflammatory cytokines, and collagen I and III levels, which were ameliorated with exercise training. Exercise also increased fibronectin and β1 integrin and decreased β3 integrin levels in collateral-dependent myocardium compared with that of sedentary pigs. Atomic force microscopy revealed that an increase in fibronectin-integrin adhesion force was mediated by α5β1 and αvβ3 integrins in cardiac myocytes of exercise-trained pigs. Exercise training increased mechanical stiffness in cardiomyocytes compared with that in sedentary swine. Fibronectin- and exercise-induced force generation in trabeculae from collateral-dependent myocardium was each decreased by focal adhesion kinase (FAK) inhibition. These data demonstrate that exercise training increases force generation in cardiomyocytes by attenuating inflammation and by promoting fibronectin-mediated FAK activation, suggesting potential targeting of this mechanotransduction pathway for therapeutic development.NEW & NOTEWORTHY Exercise produces cardioprotective effects and reverses cardiac dysfunction, but underlying cellular and molecular mechanisms are not fully identified. This study revealed that endurance exercise increased fibronectin expression in the myocardium of ischemic swine hearts and enhanced myocyte adhesion with α5β1 integrin, cell stiffness, and force generation, which was blunted by focal adhesion kinase inhibition. Thus, endurance exercise reverses cardiac dysfunction by promoting fibronectin interactions with integrins supporting this mechanotransduction pathway as a potential therapeutic target.

运动训练已被证明可以逆转冠状动脉疾病患者和动物模型的心功能障碍;然而,其潜在机制尚未完全阐明。连接细胞外基质(ECM)和细胞内骨架的跨膜整合素对心肌细胞的机械转导很重要。我们测试了运动训练可以通过调节整合素和ECM蛋白之间的粘附力以及随后的细胞信号传导和缺血猪心脏肌细胞的硬度来增加心脏收缩功能的假设。手术将Ameroid闭塞器放置在成年尤卡坦猪左旋冠状动脉近端周围。随后,动物完成了久坐或耐力运动(跑步机跑步5天/周,持续14周)方案,之后将心肌与未闭塞和侧支依赖的区域分离。侧枝依赖性心肌区表现出纤维化、炎症细胞因子和胶原I和III水平的增加,这些都随着运动训练而改善。与久坐不动的猪相比,运动还增加了纤维连接蛋白和β1整合素,降低了侧支依赖性心肌中β3整合素的水平。原子力显微镜观察发现,α5β1和αvβ3整合素介导了运动训练猪心肌细胞中纤维连接蛋白-整合素粘附力的增加。与久坐不动的猪相比,运动训练增加了心肌细胞的机械刚度。通过局灶黏附激酶(FAK)抑制,纤维连接蛋白和运动诱导的小梁力产生均减少。这些数据表明,运动训练通过减轻炎症和促进纤维连接蛋白介导的FAK激活来增加心肌细胞的力量生成,这表明这种机械转导途径可能成为治疗发展的靶点。
{"title":"Exercise training ameliorates myocardial dysfunction through fibronectin-mediated mechanotransduction in a swine model of ischemic heart disease.","authors":"Yang Lee, Xin Wu, Akshaya Narayanan, Sanjukta Chakraborty, Cristine L Heaps, Mariappan Muthuchamy","doi":"10.1152/ajpheart.00133.2025","DOIUrl":"10.1152/ajpheart.00133.2025","url":null,"abstract":"<p><p>Exercise training has been shown to reverse cardiac dysfunction in patients and animal models of coronary artery disease; however, the underlying mechanisms have not been fully elucidated. Transmembrane integrins that connect the extracellular matrix (ECM) and intracellular cytoskeleton are important for mechanotransduction in cardiomyocytes. We tested the hypothesis that exercise training would increase cardiac contractile function by modulating the adhesion force between integrins and ECM proteins and subsequent cell signaling and stiffness in myocytes from ischemic porcine hearts. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of adult Yucatan pigs. Animals subsequently completed either a sedentary or endurance exercise (treadmill run 5 days/wk for 14 wk) protocol, after which myocardium was isolated from nonoccluded and collateral-dependent regions. The collateral-dependent myocardial region exhibited increased fibrosis, inflammatory cytokines, and collagen I and III levels, which were ameliorated with exercise training. Exercise also increased fibronectin and β1 integrin and decreased β3 integrin levels in collateral-dependent myocardium compared with that of sedentary pigs. Atomic force microscopy revealed that an increase in fibronectin-integrin adhesion force was mediated by α<sub>5</sub>β<sub>1</sub> and α<sub>v</sub>β<sub>3</sub> integrins in cardiac myocytes of exercise-trained pigs. Exercise training increased mechanical stiffness in cardiomyocytes compared with that in sedentary swine. Fibronectin- and exercise-induced force generation in trabeculae from collateral-dependent myocardium was each decreased by focal adhesion kinase (FAK) inhibition. These data demonstrate that exercise training increases force generation in cardiomyocytes by attenuating inflammation and by promoting fibronectin-mediated FAK activation, suggesting potential targeting of this mechanotransduction pathway for therapeutic development.<b>NEW & NOTEWORTHY</b> Exercise produces cardioprotective effects and reverses cardiac dysfunction, but underlying cellular and molecular mechanisms are not fully identified. This study revealed that endurance exercise increased fibronectin expression in the myocardium of ischemic swine hearts and enhanced myocyte adhesion with α<sub>5</sub>β<sub>1</sub> integrin, cell stiffness, and force generation, which was blunted by focal adhesion kinase inhibition. Thus, endurance exercise reverses cardiac dysfunction by promoting fibronectin interactions with integrins supporting this mechanotransduction pathway as a potential therapeutic target.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H31-H45"},"PeriodicalIF":4.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12915385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145538177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The endothelial glycocalyx response to Western diet: when structure improves but function falters. 内皮糖萼对西方饮食的反应:当结构改善但功能下降时。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 Epub Date: 2025-12-01 DOI: 10.1152/ajpheart.00907.2025
Colin J Gimblet, Gary L Pierce
{"title":"The endothelial glycocalyx response to Western diet: when structure improves but function falters.","authors":"Colin J Gimblet, Gary L Pierce","doi":"10.1152/ajpheart.00907.2025","DOIUrl":"10.1152/ajpheart.00907.2025","url":null,"abstract":"","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H73-H74"},"PeriodicalIF":4.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145653021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human fetal circulating factors from pregnancies complicated by obesity upregulate genes associated with pathological hypertrophy in neonatal rat cardiomyocytes. 妊娠合并肥胖的人类胎儿循环因子上调与新生大鼠心肌细胞病理性肥大相关的基因。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2026-01-01 Epub Date: 2025-11-21 DOI: 10.1152/ajpheart.00375.2025
Owen R Vaughan, Andrew Goodspeed, Carmen C Sucharov, Theresa L Powell, Thomas Jansson

Obesity in pregnant women increases offspring cardiovascular risk and causes fetal cardiac dysfunction. The underpinning mechanisms remain unclear. We hypothesized that circulating factors in serum from fetuses of women with obesity induce pathological cardiomyocyte hypertrophy. Pregnant women with obesity or healthy weight were recruited at term and provided umbilical cord serum and placentas, which were used for isolation of primary trophoblast cells. Primary cardiomyocytes were isolated from neonatal rats. Compared with cord serum from healthy weight women, cord serum from women with obesity upregulated cardiomyocyte mRNA expression of atrial natriuretic factor (Anf) and brain natriuretic peptide (Bnp) and increased the ratio of β-to α-myosin heavy chain expression (Myh7:Myh6), when it was supplemented into the culture medium. This effect was prevented by treating the cord serum with heat-freeze cycling and DNase or RNase digestion. Separately, conditioned medium from trophoblast cells from women with obesity increased cardiomyocyte Anf expression without altering Bnp or Myh7:Myh6. MicroRNAs miR-142 and miR-17, which are associated with cardiac function, were increased in abundance in extracellular vesicles isolated from cord serum from women with obesity. However, miR-142-3p, miR-142-5p, and miR-17-5p did not increase Anf, Bnp, or Myh7:Myh6 expression when they were transfected into cardiomyocytes. Neither cord serum nor the upregulated microRNAs from women with obesity altered cardiomyocyte size. The results show that human fetal circulating and placenta-derived factors induce gene expression hallmarks of pathological hypertrophy in cardiomyocytes and may mediate cardiac dysfunction in children of women with obesity.NEW & NOTEWORTHY Obesity in pregnant women increases risk for heart problems in their children. This study treated heart cells growing in a dish with blood plasma from the umbilical cords of newborn babies. Plasma from babies of women with obesity activated genes linked to heart failure. This means we could design treatments targeting plasma molecules, like microRNAs, or the way the placenta releases them. This could improve children's heart health if the mother has obesity.

孕妇肥胖会增加后代患心血管疾病的风险,并导致胎儿心功能障碍。其基本机制尚不清楚。我们假设肥胖妇女胎儿血清中的循环因子诱导病理性心肌细胞肥大。在足月招募肥胖或体重正常的孕妇,并提供脐带血清和胎盘,用于分离原代滋养细胞。从新生大鼠中分离原代心肌细胞。与健康体重女性脐带血清相比,肥胖女性脐带血清添加到培养基中后,可上调心肌细胞心房利钠因子(Anf)和脑利钠肽(Bnp) mRNA表达,并增加β -肌球蛋白重链表达比(Myh7:Myh6)。用热冻循环和脱氧核糖核酸酶或脱氧核糖核酸酶消化处理脐带血清可以防止这种影响。另外,来自肥胖女性的滋养细胞的条件培养基增加了心肌细胞Anf的表达,但没有改变Bnp或Myh7:Myh6。与心功能相关的microrna miR-142和miR-17在肥胖女性脐带血分离的细胞外囊泡中丰度增加。然而,miR-142-3p、miR-142-5p和miR-17-5p转染到心肌细胞后,并没有增加Anf、Bnp或Myh7:Myh6的表达。来自肥胖女性的脐带血清和上调的microrna都没有改变心肌细胞的大小。结果表明,人类胎儿循环和胎盘源性因子诱导心肌细胞病理性肥大的基因表达标志,并可能介导肥胖妇女儿童的心功能障碍。
{"title":"Human fetal circulating factors from pregnancies complicated by obesity upregulate genes associated with pathological hypertrophy in neonatal rat cardiomyocytes.","authors":"Owen R Vaughan, Andrew Goodspeed, Carmen C Sucharov, Theresa L Powell, Thomas Jansson","doi":"10.1152/ajpheart.00375.2025","DOIUrl":"10.1152/ajpheart.00375.2025","url":null,"abstract":"<p><p>Obesity in pregnant women increases offspring cardiovascular risk and causes fetal cardiac dysfunction. The underpinning mechanisms remain unclear. We hypothesized that circulating factors in serum from fetuses of women with obesity induce pathological cardiomyocyte hypertrophy. Pregnant women with obesity or healthy weight were recruited at term and provided umbilical cord serum and placentas, which were used for isolation of primary trophoblast cells. Primary cardiomyocytes were isolated from neonatal rats. Compared with cord serum from healthy weight women, cord serum from women with obesity upregulated cardiomyocyte mRNA expression of atrial natriuretic factor (<i>Anf</i>) and brain natriuretic peptide (<i>Bnp</i>) and increased the ratio of β-to α-myosin heavy chain expression (<i>Myh7:Myh6</i>), when it was supplemented into the culture medium. This effect was prevented by treating the cord serum with heat-freeze cycling and DNase or RNase digestion. Separately, conditioned medium from trophoblast cells from women with obesity increased cardiomyocyte <i>Anf</i> expression without altering <i>Bnp</i> or <i>Myh7:Myh6</i>. MicroRNAs miR-142 and miR-17, which are associated with cardiac function, were increased in abundance in extracellular vesicles isolated from cord serum from women with obesity. However, miR-142-3p, miR-142-5p, and miR-17-5p did not increase <i>Anf</i>, <i>Bnp,</i> or <i>Myh7:Myh6</i> expression when they were transfected into cardiomyocytes. Neither cord serum nor the upregulated microRNAs from women with obesity altered cardiomyocyte size. The results show that human fetal circulating and placenta-derived factors induce gene expression hallmarks of pathological hypertrophy in cardiomyocytes and may mediate cardiac dysfunction in children of women with obesity.<b>NEW & NOTEWORTHY</b> Obesity in pregnant women increases risk for heart problems in their children. This study treated heart cells growing in a dish with blood plasma from the umbilical cords of newborn babies. Plasma from babies of women with obesity activated genes linked to heart failure. This means we could design treatments targeting plasma molecules, like microRNAs, or the way the placenta releases them. This could improve children's heart health if the mother has obesity.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H124-H136"},"PeriodicalIF":4.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12719755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145562456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Thermal Monitoring to a Reactive Hyperemia: Potential Mechanisms and Clinical Relevance Among Patients with Heart Failure with Reduced Ejection Fraction. 反应性充血的数字热监测:射血分数降低的心力衰竭患者的潜在机制和临床相关性。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-12-31 DOI: 10.1152/ajpheart.00980.2025
Molly K Courish, Myles W O'Brien
{"title":"Digital Thermal Monitoring to a Reactive Hyperemia: Potential Mechanisms and Clinical Relevance Among Patients with Heart Failure with Reduced Ejection Fraction.","authors":"Molly K Courish, Myles W O'Brien","doi":"10.1152/ajpheart.00980.2025","DOIUrl":"https://doi.org/10.1152/ajpheart.00980.2025","url":null,"abstract":"","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145861633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cigarette exposure lights the NLPR3 inflammasome pathway to atrial fibrillation. 香烟暴露可激活NLPR3炎性小体心房纤颤通路。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-12-01 Epub Date: 2025-11-04 DOI: 10.1152/ajpheart.00834.2025
Patience Ofosuah, TingTing Hong
{"title":"Cigarette exposure lights the NLPR3 inflammasome pathway to atrial fibrillation.","authors":"Patience Ofosuah, TingTing Hong","doi":"10.1152/ajpheart.00834.2025","DOIUrl":"10.1152/ajpheart.00834.2025","url":null,"abstract":"","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H1536-H1538"},"PeriodicalIF":4.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145443632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental trajectories predictive of stillbirth in a longitudinal mouse model of fetal growth restriction. 胎儿生长受限小鼠纵向模型的发育轨迹预测死产。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-12-01 Epub Date: 2025-11-03 DOI: 10.1152/ajpheart.00627.2025
Anastasia Smolina, Anum Rahman, Lindsay Cahill, Christopher K Macgowan, Mike Seed, John Kingdom, John G Sled

Fetal growth restriction (FGR) secondary to placental insufficiency often leads to morbidity and mortality in the perinatal period. Fetal adaptations such as "brain sparing" blood flow redistribution offer some protection, but predicting whether a fetus in this state will survive is challenging. The goal of this research was to identify vascular responses predictive of stillbirth or hypoxia based on serial Doppler ultrasound measurement in a mouse model of FGR. We performed serial Doppler ultrasound observations of fetal blood flow redistribution in a murine model of FGR, where prolongation of pregnancy was induced pharmacologically with progesterone in 56 CD-1 mice. Observations were made at E18.5 (physiologic term), E19.5 (term +1), and E20.5 (term +2). Flow velocity waveforms were obtained from the middle cerebral artery (MCA), ductus arteriosus (DA), main pulmonary artery (MPA), ductus venosus (DV), umbilical artery (UA), and umbilical vein (UV). Following euthanasia, pimonidazole immunohistochemistry quantified tissue hypoxia. Among 56 pregnancies, the strongest predictor of stillbirth was low DA peak systolic velocity at E19.5 (<217 mm/s, P = 0.021, R2 = 0.52). Among survivors, cerebral hypoxia was predicted by elevated MCA peak systolic (>26.6 mm/s, P = 0.022, R2 = 0.59) and end-diastolic velocity (>10.1 mm/s, P = 0.043, R2 = 0.53, whereas high MPA flow (>0.73 mL/min, P = 0.029, R2 = 0.51) predicted hepatic hypoxia. Overall, fetuses with a weaker pulmonary blood flow redistribution response were found to have worse outcomes, despite cerebral vasodilation. This minimally invasive murine model offers valuable insights into this pathophysiology of FGR-related stillbirth and highlights the prognostic potential of assessing fetal brain flow and pulmonary perfusion in tandem during sonographic surveillance of high-risk pregnancies.NEW & NOTEWORTHY Fetal growth restriction, often caused by placental disease, is an important cause of fetal injury and stillbirth. Understanding how the fetus adapts under these conditions is key to predicting survival. Here we report physiological adaptations in a mouse of model of fetal growth restriction that predict the risk of stillbirth.

背景:继发于胎盘功能不全的胎儿生长受限(FGR)常导致围产期的发病和死亡。胎儿的适应性,如“脑保留”的血流再分配,提供了一些保护,但预测这种状态下的胎儿是否能存活是具有挑战性的。目的:通过对FGR小鼠模型的连续多普勒超声测量,确定预测死产或缺氧的血管反应。方法:连续多普勒超声观察CD-1小鼠FGR模型胎儿血流再分布,孕激素诱导小鼠延长妊娠。在E18.5(生理期)、E19.5(第1期)和E20.5(第2期)进行观察。获取大脑中动脉(MCA)、动脉导管(DA)、肺动脉主干(MPA)、静脉导管(DV)、脐动脉(UA)、脐静脉(UV)血流波形。牺牲后,吡咪唑免疫组化定量组织缺氧。结果:56例妊娠中,死产的最强预测因子为低DA峰值收缩期流速E19.5 (26.6 mm/s, p=0.022, R²=0.59)和舒张末期流速(>10.1 mm/s, p=0.043, R²=0.53),而高MPA流速(>0.73 mL/min, p=0.029, R²=0.51)预测肝缺氧。总的来说,尽管脑血管舒张,肺血流再分配反应较弱的胎儿的结局更差。结论:这种微创小鼠模型为fgr相关死产的病理生理学提供了有价值的见解,并强调了在高危妊娠超声监测期间评估胎儿脑流量和肺灌注的预后潜力。
{"title":"Developmental trajectories predictive of stillbirth in a longitudinal mouse model of fetal growth restriction.","authors":"Anastasia Smolina, Anum Rahman, Lindsay Cahill, Christopher K Macgowan, Mike Seed, John Kingdom, John G Sled","doi":"10.1152/ajpheart.00627.2025","DOIUrl":"10.1152/ajpheart.00627.2025","url":null,"abstract":"<p><p>Fetal growth restriction (FGR) secondary to placental insufficiency often leads to morbidity and mortality in the perinatal period. Fetal adaptations such as \"brain sparing\" blood flow redistribution offer some protection, but predicting whether a fetus in this state will survive is challenging. The goal of this research was to identify vascular responses predictive of stillbirth or hypoxia based on serial Doppler ultrasound measurement in a mouse model of FGR. We performed serial Doppler ultrasound observations of fetal blood flow redistribution in a murine model of FGR, where prolongation of pregnancy was induced pharmacologically with progesterone in 56 CD-1 mice. Observations were made at E18.5 (physiologic term), E19.5 (term +1), and E20.5 (term +2). Flow velocity waveforms were obtained from the middle cerebral artery (MCA), ductus arteriosus (DA), main pulmonary artery (MPA), ductus venosus (DV), umbilical artery (UA), and umbilical vein (UV). Following euthanasia, pimonidazole immunohistochemistry quantified tissue hypoxia. Among 56 pregnancies, the strongest predictor of stillbirth was low DA peak systolic velocity at E19.5 (<217 mm/s, <i>P</i> = 0.021, <i>R</i><sup>2</sup> = 0.52). Among survivors, cerebral hypoxia was predicted by elevated MCA peak systolic (>26.6 mm/s, <i>P</i> = 0.022, <i>R</i><sup>2</sup> = 0.59) and end-diastolic velocity (>10.1 mm/s, <i>P</i> = 0.043, <i>R</i><sup>2</sup> = 0.53, whereas high MPA flow (>0.73 mL/min, <i>P</i> = 0.029, <i>R</i><sup>2</sup> = 0.51) predicted hepatic hypoxia. Overall, fetuses with a weaker pulmonary blood flow redistribution response were found to have worse outcomes, despite cerebral vasodilation. This minimally invasive murine model offers valuable insights into this pathophysiology of FGR-related stillbirth and highlights the prognostic potential of assessing fetal brain flow and pulmonary perfusion in tandem during sonographic surveillance of high-risk pregnancies.<b>NEW & NOTEWORTHY</b> Fetal growth restriction, often caused by placental disease, is an important cause of fetal injury and stillbirth. Understanding how the fetus adapts under these conditions is key to predicting survival. Here we report physiological adaptations in a mouse of model of fetal growth restriction that predict the risk of stillbirth.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H1706-H1715"},"PeriodicalIF":4.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145436745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Female sex hormones do not drive the sex-specific mechanisms of obesity-related hypertension. 女性性激素不驱动肥胖相关高血压的性别特异性机制。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-12-01 Epub Date: 2025-11-04 DOI: 10.1152/ajpheart.00630.2025
Candee T Barris, Taylor C Kress, Galina Antonova, Coleton R Jordan, Austin Newman, Jessica L Faulkner, Muhammad I Saeed, Simone Kennard, Eric J Belin de Chantemèle

The global rise in obesity parallels the increasing rates of hypertension and cardiovascular disease (CVD). These trends, and recent clinical and experimental data, have revealed that obesity abolishes the protection from CVD typically conferred by female sex, predisposing young, premenopausal women to vascular dysfunction and hypertension. Findings from our group demonstrated that, in females, obesity induces hypertension via activation of the leptin-aldosterone-mineralocorticoid receptor (MR) axis. However, the origin of this sex-specific mechanism remains unknown. Based on the known effects of estrogen on blood pressure (BP) and vascular function, we tested the contribution of sex hormones. Sham and ovariectomy (OVX) surgeries were conducted in obese female agouti yellow mice to preserve or deplete female sex hormones, respectively. OVX did not significantly alter blood pressure (BP) nor autonomic control of BP or adrenal aldosterone synthase (CYP11B2) expression; however, it impaired endothelial relaxation with no further alterations to vascular function. Chronic leptin receptor blockade decreased BP in both sham and OVX mice and restored endothelium-dependent relaxation, suggesting a lack of contribution of female sex hormones to the mechanism of hypertension. Stimulation of HAC15 and human primary adrenocortical cells with female and male sex steroid hormones did not alter CYP11B2 expression. Furthermore, quantification of CYP11B2 expression in discarded human adrenal glands revealed increases with obesity in women in comparison to men and no alterations with menopause in obese hypertensive women. Collectively, these findings support that female sex hormones do not regulate aldosterone production nor do they drive the sex-specific mechanism underlying obesity-associated hypertension.NEW & NOTEWORTHY Obesity induces hypertension in females through the leptin-aldosterone-mineralocorticoid axis; however, the origin of this sex-specific mechanism remains unknown. Utilizing obese female mice, ovariectomy did not significantly impair blood pressure (BP), vascular function, or aldosterone synthase, whereas leptin receptor blockade lowered BP and restored vascular reactivity. In human cells and tissues, sex hormones did not alter aldosterone synthase expression. These data indicate that sex hormones do not drive the sex difference in the mechanism of obesity-associated hypertension.

全球肥胖率的上升与高血压和心血管疾病(CVD)发病率的上升是同步的。这些趋势以及最近的临床和实验数据表明,肥胖消除了通常由女性赋予的对心血管疾病的保护,使年轻、绝经前妇女易患血管功能障碍和高血压。我们小组的研究结果表明,在女性中,肥胖通过激活瘦素-醛固酮-矿化皮质激素受体(MR)轴诱导高血压。然而,这种性别特异性机制的起源仍然未知。基于已知的雌激素对血压和血管功能的影响,我们测试了性激素的作用。对肥胖雌性豚鼠分别进行假卵巢切除术和卵巢切除术(OVX)以保存或消耗雌性性激素。OVX没有显著改变血压(BP)、自主控制血压或肾上腺醛固酮合成酶(CYP11B2)表达;然而,它损害了内皮舒张,没有进一步改变血管功能。慢性瘦素受体阻断可降低sham和OVX小鼠的血压,恢复内皮依赖性松弛,提示雌性性激素在高血压的机制中缺乏贡献。雌性和雄性类固醇激素刺激HAC15和人原代肾上腺皮质细胞不改变CYP11B2的表达。此外,对丢弃的人肾上腺中CYP11B2表达的定量分析显示,与男性相比,女性肥胖时CYP11B2表达增加,而肥胖高血压女性绝经时CYP11B2表达没有变化。总的来说,这些发现支持女性性激素不调节醛固酮的产生,也不驱动肥胖相关高血压的性别特异性机制。
{"title":"Female sex hormones do not drive the sex-specific mechanisms of obesity-related hypertension.","authors":"Candee T Barris, Taylor C Kress, Galina Antonova, Coleton R Jordan, Austin Newman, Jessica L Faulkner, Muhammad I Saeed, Simone Kennard, Eric J Belin de Chantemèle","doi":"10.1152/ajpheart.00630.2025","DOIUrl":"10.1152/ajpheart.00630.2025","url":null,"abstract":"<p><p>The global rise in obesity parallels the increasing rates of hypertension and cardiovascular disease (CVD). These trends, and recent clinical and experimental data, have revealed that obesity abolishes the protection from CVD typically conferred by female sex, predisposing young, premenopausal women to vascular dysfunction and hypertension. Findings from our group demonstrated that, in females, obesity induces hypertension via activation of the leptin-aldosterone-mineralocorticoid receptor (MR) axis. However, the origin of this sex-specific mechanism remains unknown. Based on the known effects of estrogen on blood pressure (BP) and vascular function, we tested the contribution of sex hormones. Sham and ovariectomy (OVX) surgeries were conducted in obese female agouti yellow mice to preserve or deplete female sex hormones, respectively. OVX did not significantly alter blood pressure (BP) nor autonomic control of BP or adrenal aldosterone synthase (CYP11B2) expression; however, it impaired endothelial relaxation with no further alterations to vascular function. Chronic leptin receptor blockade decreased BP in both sham and OVX mice and restored endothelium-dependent relaxation, suggesting a lack of contribution of female sex hormones to the mechanism of hypertension. Stimulation of HAC15 and human primary adrenocortical cells with female and male sex steroid hormones did not alter CYP11B2 expression. Furthermore, quantification of CYP11B2 expression in discarded human adrenal glands revealed increases with obesity in women in comparison to men and no alterations with menopause in obese hypertensive women. Collectively, these findings support that female sex hormones do not regulate aldosterone production nor do they drive the sex-specific mechanism underlying obesity-associated hypertension.<b>NEW & NOTEWORTHY</b> Obesity induces hypertension in females through the leptin-aldosterone-mineralocorticoid axis; however, the origin of this sex-specific mechanism remains unknown. Utilizing obese female mice, ovariectomy did not significantly impair blood pressure (BP), vascular function, or aldosterone synthase, whereas leptin receptor blockade lowered BP and restored vascular reactivity. In human cells and tissues, sex hormones did not alter aldosterone synthase expression. These data indicate that sex hormones do not drive the sex difference in the mechanism of obesity-associated hypertension.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H1526-H1535"},"PeriodicalIF":4.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12694611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145443687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collagen VIII: a new guardian of endothelial cell identity in atherosclerosis. 胶原VIII:动脉粥样硬化中内皮细胞身份的新守护者。
IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-12-01 Epub Date: 2025-10-25 DOI: 10.1152/ajpheart.00810.2025
Ishita Kathuria, Ravi Varma Aithabathula, Bhupesh Singla
{"title":"Collagen VIII: a new guardian of endothelial cell identity in atherosclerosis.","authors":"Ishita Kathuria, Ravi Varma Aithabathula, Bhupesh Singla","doi":"10.1152/ajpheart.00810.2025","DOIUrl":"10.1152/ajpheart.00810.2025","url":null,"abstract":"","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H1693-H1695"},"PeriodicalIF":4.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12594533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145370085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Heart and circulatory physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1