The extracellular matrix (ECM) of cementum resembles other mineralized tissues in composition; however, its physiology is unique, and it contains molecules that have not been detected in other tissues. Cementum components influence the activities of periodontal cells, and they manifest selectivity toward some periodontal cell types over others. In light of emerging evidence that the ECM determines how cells respond to environmental stimuli, we hypothesize that the local environment of the cementum matrix plays a pivotal role in maintaining the homeostasis of cementum under healthy conditions. The structural integrity and biochemical composition of the cementum matrix are severely compromised in periodontal disease, and the provisional matrix generated during periodontal healing is different from that of cementum. We propose that, for new cementum and attachment formation during periodontal regeneration, the local environment must be conducive for the recruitment and function of cementum-forming cells, and that the wound matrix is favorable for repair rather than regeneration. How cementum components may regulate and participate in cementum regeneration, possible new regenerative therapies using these principles, and models of cementoblastic cells are discussed.
Dental calculus is composed of inorganic components and organic matrix. Brushite, dicalcium phosphate dihydrate, octacalcium phosphate, hydroxyapatite, and whitlockite form the mineral part of dental calculus. Salivary proteins selectively adsorb on the tooth surface to form an acquired pellicle. It is followed by the adherence of various oral micro-organisms. Fimbriae, flagella, and some other surface proteins are essential for microbial adherence. Microbial co-aggregation and co-adhesion enable some micro-organisms, which are incapable of adhering, to adhere to the pellicle-coated tooth surface. Once organisms attach to the tooth surface, new genes could be expressed so that mature dental plaque can form and biofilm bacteria assume increased resistance to antimicrobial agents. Supersaturation of saliva and plaque fluid with respect to calcium phosphates is the driving force for plaque mineralization. Both salivary flow rate and plaque pH appear to influence the saturation degree of calcium phosphates. Acidic phospholipids and specific proteolipids present in cell membranes play a key role in microbial mineralization. The roles of crystal growth inhibitors, promoters, and organic acids in calculus formation are discussed. Application of biofilm culture systems in plaque mineralization is concisely reviewed. Anti-calculus agents used--centering on triclosan plus polyvinyl methyl ether/maleic acid copolymer, pyrophosphate plus polyvinyl methyl ether/maleic acid copolymer, and zinc ion-in commercial dentifrices are also discussed in this paper.