Pub Date : 2025-01-01Epub Date: 2024-12-06DOI: 10.1152/ajpgi.00066.2024
Sarah Penrod, Xiaofang Tang, Changsuk Moon, Jeffrey A Whitsett, Anjaparavanda P Naren, Yunjie Huang
Membrane proteins, such as the cystic fibrosis transmembrane-conductance regulator (CFTR), play a crucial role in gastrointestinal functions and health. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3ΔIEC). EMC3ΔIEC mice were viable but notably smaller compared with their wild-type littermates. Although the intestinal structure was generally maintained, EMC3ΔIEC crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3ΔIEC enteroids. CFTR-mediated organoid swelling in EMC3ΔIEC mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.NEW & NOTEWORTHY We generated mice in which endoplasmic reticulum membrane protein complex (EMC) subunit 3 was deleted from intestinal epithelium cells and studied the molecular functions of EMC in vivo. Our findings demonstrate the importance of intestinal EMC in the biogenesis of membrane proteins in vivo, including CFTR, and highlight its critical role in maintaining intracellular calcium homeostasis and, consequently, in calcium-dependent functions in the intestine and beyond.
{"title":"EMC3 is critical for CFTR function and calcium mobilization in the mouse intestinal epithelium.","authors":"Sarah Penrod, Xiaofang Tang, Changsuk Moon, Jeffrey A Whitsett, Anjaparavanda P Naren, Yunjie Huang","doi":"10.1152/ajpgi.00066.2024","DOIUrl":"10.1152/ajpgi.00066.2024","url":null,"abstract":"<p><p>Membrane proteins, such as the cystic fibrosis transmembrane-conductance regulator (CFTR), play a crucial role in gastrointestinal functions and health. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3<sup>ΔIEC</sup>). EMC3<sup>ΔIEC</sup> mice were viable but notably smaller compared with their wild-type littermates. Although the intestinal structure was generally maintained, EMC3<sup>ΔIEC</sup> crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3<sup>ΔIEC</sup> enteroids. CFTR-mediated organoid swelling in EMC3<sup>ΔIEC</sup> mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.<b>NEW & NOTEWORTHY</b> We generated mice in which endoplasmic reticulum membrane protein complex (EMC) subunit 3 was deleted from intestinal epithelium cells and studied the molecular functions of EMC in vivo. Our findings demonstrate the importance of intestinal EMC in the biogenesis of membrane proteins in vivo, including CFTR, and highlight its critical role in maintaining intracellular calcium homeostasis and, consequently, in calcium-dependent functions in the intestine and beyond.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G72-G82"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-08DOI: 10.1152/ajpgi.00159.2024
Blanca E Callejas, James A Sousa, Kyle L Flannigan, Arthur Wang, Eve Higgins, Aydin I Herik, Shuhua Li, Sruthi Rajeev, Ryan Rosentreter, Remo Panaccione, Derek M McKay
Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to Escherichia coli. When delivered systemically (106 cells IP) to oxazolone-treated rag1-/- mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo2 epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D2 (PGD2), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo2 cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD2 activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.NEW & NOTEWORTHY A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.
{"title":"Calcitonin gene-related peptide promotes epithelial reparative and anticolitic functions of IL-4 educated human macrophages.","authors":"Blanca E Callejas, James A Sousa, Kyle L Flannigan, Arthur Wang, Eve Higgins, Aydin I Herik, Shuhua Li, Sruthi Rajeev, Ryan Rosentreter, Remo Panaccione, Derek M McKay","doi":"10.1152/ajpgi.00159.2024","DOIUrl":"10.1152/ajpgi.00159.2024","url":null,"abstract":"<p><p>Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to <i>Escherichia coli</i>. When delivered systemically (10<sup>6</sup> cells IP) to oxazolone-treated <i>rag1<sup>-/-</sup></i> mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo<sub>2</sub> epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D<sub>2</sub> (PGD<sub>2</sub>), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo<sub>2</sub> cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD<sub>2</sub> activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.<b>NEW & NOTEWORTHY</b> A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G1-G16"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-15DOI: 10.1152/ajpgi.00110.2024
Malte Hasle Nielsen, Jacob Nøhr-Meldgaard, Mathias Bonde Møllerhøj, Denise Oró, Susanne E Pors, Maja Worm Andersen, Ioannis Kamzolas, Evangelia Petsalaki, Michele Vacca, Lea Mørch Harder, James W Perfield, Sanne Veidal, Henrik H Hansen, Michael Feigh
The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.NEW & NOTEWORTHY The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.
{"title":"Characterization of six clinical drugs and dietary intervention in the nonobese CDAA-HFD mouse model of MASH and progressive fibrosis.","authors":"Malte Hasle Nielsen, Jacob Nøhr-Meldgaard, Mathias Bonde Møllerhøj, Denise Oró, Susanne E Pors, Maja Worm Andersen, Ioannis Kamzolas, Evangelia Petsalaki, Michele Vacca, Lea Mørch Harder, James W Perfield, Sanne Veidal, Henrik H Hansen, Michael Feigh","doi":"10.1152/ajpgi.00110.2024","DOIUrl":"10.1152/ajpgi.00110.2024","url":null,"abstract":"<p><p>The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.<b>NEW & NOTEWORTHY</b> The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G51-G71"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-05DOI: 10.1152/ajpgi.00252.2024
Cecelia Kelly, R Balfour Sartor, John F Rawls
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.
{"title":"Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies.","authors":"Cecelia Kelly, R Balfour Sartor, John F Rawls","doi":"10.1152/ajpgi.00252.2024","DOIUrl":"10.1152/ajpgi.00252.2024","url":null,"abstract":"<p><p>The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G17-G31"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic liver diseases and cirrhosis are associated with mood disorders. Regular exercise has various beneficial effects on multiple organs, including the liver and brain. However, the therapeutic effect of exercise on liver fibrosis concomitant with anxiety has not been evaluated. In this study, the effects of exercise training on liver fibrosis-related anxiety-like behaviors were evaluated. Male C57/BL6 mice were divided into four groups: vehicle-sedentary, vehicle-exercise, carbon tetrachloride (CCl4)-sedentary, and CCl4-exercise. Liver fibrosis was induced by CCl4 administration for 8 wk, exercise was applied in the form of voluntary wheel running. After an intervention, anxiety-like behavior was assessed using the elevated plus maze. CCl4 increased liver and serum fibrotic markers, as measured by blood analysis, histochemistry, and qRT-PCR, and these changes were attenuated by exercise training. CCl4 induced anxiety-like behavior, and the anxiolytic effects of exercise occurred in both healthy and liver-fibrotic mice. In the hippocampus, CCl4-induced changes in neuronal nitric oxide synthase (nNOS) were reversed by exercise, and exercise enhanced brain-derived neurotrophic factor (BDNF) induction, even in a state of severe liver fibrosis. These results suggested that hepatic fibrosis-related anxiety-like behaviors may be induced by excess hippocampal nNOS, and the beneficial effects of exercise could be mediated by increases in BDNF and reductions in nNOS. The percentage of fibrotic area was negatively correlated with antianxiety behavior and positively associated with hippocampal nNOS protein levels. Liver fibrosis-related anxiety-like behaviors could be alleviated through the regulation of hippocampal BDNF and nNOS via exercise training. These results support the therapeutic value of exercise by targeting the mechanisms underlying liver fibrosis and associated anxiety.NEW & NOTEWORTHY This study explores how exercise affects liver fibrosis-related anxiety in mice. Researchers found that regular exercise reversed carbon tetrachloride (CCl4)-induced liver fibrosis and reduced anxiety, even in mice with liver fibrosis. Exercise increased brain-derived neurotrophic factor (BDNF) and decreased neuronal nitric oxide synthase (nNOS) in the hippocampus. These findings suggest that exercise has therapeutic potential for treating anxiety associated with chronic liver disease by modulating specific brain factors.
{"title":"Exercise training ameliorates carbon tetrachloride-induced liver fibrosis and anxiety-like behaviors.","authors":"Yuki Tomiga, Kenichi Tanaka, Joji Kusuyama, Akiko Takano, Yasuki Higaki, Keizo Anzai, Hirokazu Takahashi","doi":"10.1152/ajpgi.00161.2024","DOIUrl":"10.1152/ajpgi.00161.2024","url":null,"abstract":"<p><p>Chronic liver diseases and cirrhosis are associated with mood disorders. Regular exercise has various beneficial effects on multiple organs, including the liver and brain. However, the therapeutic effect of exercise on liver fibrosis concomitant with anxiety has not been evaluated. In this study, the effects of exercise training on liver fibrosis-related anxiety-like behaviors were evaluated. Male C57/BL6 mice were divided into four groups: vehicle-sedentary, vehicle-exercise, carbon tetrachloride (CCl<sub>4</sub>)-sedentary, and CCl<sub>4</sub>-exercise. Liver fibrosis was induced by CCl<sub>4</sub> administration for 8 wk, exercise was applied in the form of voluntary wheel running. After an intervention, anxiety-like behavior was assessed using the elevated plus maze. CCl<sub>4</sub> increased liver and serum fibrotic markers, as measured by blood analysis, histochemistry, and qRT-PCR, and these changes were attenuated by exercise training. CCl<sub>4</sub> induced anxiety-like behavior, and the anxiolytic effects of exercise occurred in both healthy and liver-fibrotic mice. In the hippocampus, CCl<sub>4</sub>-induced changes in neuronal nitric oxide synthase (nNOS) were reversed by exercise, and exercise enhanced brain-derived neurotrophic factor (BDNF) induction, even in a state of severe liver fibrosis. These results suggested that hepatic fibrosis-related anxiety-like behaviors may be induced by excess hippocampal nNOS, and the beneficial effects of exercise could be mediated by increases in BDNF and reductions in nNOS. The percentage of fibrotic area was negatively correlated with antianxiety behavior and positively associated with hippocampal nNOS protein levels. Liver fibrosis-related anxiety-like behaviors could be alleviated through the regulation of hippocampal BDNF and nNOS via exercise training. These results support the therapeutic value of exercise by targeting the mechanisms underlying liver fibrosis and associated anxiety.<b>NEW & NOTEWORTHY</b> This study explores how exercise affects liver fibrosis-related anxiety in mice. Researchers found that regular exercise reversed carbon tetrachloride (CCl<sub>4</sub>)-induced liver fibrosis and reduced anxiety, even in mice with liver fibrosis. Exercise increased brain-derived neurotrophic factor (BDNF) and decreased neuronal nitric oxide synthase (nNOS) in the hippocampus. These findings suggest that exercise has therapeutic potential for treating anxiety associated with chronic liver disease by modulating specific brain factors.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G850-G860"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-27DOI: 10.1152/ajpgi.00033.2024
Haley N Patton, Hanyu Zhang, Garrett A Wood, Bijay Guragain, Nipuni D Nagahawatte, Linley A Nisbet, Leo K Cheng, Gregory P Walcott, Jack M Rogers
Gastric peristalsis is governed by electrical "slow waves" generally assumed to travel from proximal to distal stomach (antegrade propagation) in symmetric rings. Although alternative slow-wave patterns have been correlated with gastric disorders, their mechanisms and how they alter contractions remain understudied. Optical electromechanical mapping, a developing field in cardiac electrophysiology, images electrical and mechanical physiology simultaneously. Here, we translate this technology to the in vivo porcine stomach. Stomachs were surgically exposed and a fluorescent dye (di-4-ANEQ(F)PTEA) that transduces the membrane potential (Vm) was injected through the right gastroepiploic artery. Fluorescence was excited by LEDs and imaged with one or two 256 × 256 pixel cameras. Motion artifact was corrected using a marker-based motion-tracking method and excitation ratiometry, which cancels common-mode artifact. Tracking marker displacement also enabled gastric deformation to be measured. We validated detection of electrical activation and Vm morphology against alternative nonoptical technologies. Nonantegrade slow waves and propagation direction differences between the anterior and posterior stomach were commonly present in our data. However, sham experiments suggest they were a feature of the animal preparation and not an artifact of optical mapping. In experiments to demonstrate the method's capabilities, we found that repolarization did not always follow at a fixed time behind activation "wavefronts," which could be a factor in dysrhythmia. Contraction strength and the latency between electrical activation and contraction differed between antegrade and nonantegrade propagation. In conclusion, optical electromechanical mapping, which simultaneously images electrical and mechanical activity, enables novel questions regarding normal and abnormal gastric physiology to be explored.NEW & NOTEWORTHY This article introduces a novel method for imaging gastric electrophysiology and mechanical function simultaneously in anesthetized, open-abdomen pigs. We demonstrate it by observing propagating slow-wave depolarization and repolarization along with the strength, spatial distribution, and direction of contractions. In addition, we observe that in this animal preparation, slow waves often do not propagate from the proximal to distal stomach and are frequently asymmetric between the anterior and posterior sides of the stomach.
胃蠕动受电 "慢波 "支配,一般假定慢波以对称环形方式从胃近端向远端传播(前向传播)。虽然另类慢波模式与胃部疾病有关,但其机制及其如何改变收缩仍未得到充分研究。光学机电图谱是心脏电生理学的一个新兴领域,可同时对电生理学和机械生理学进行成像。在这里,我们将这一技术应用于体内猪胃。手术暴露胃部,通过右胃外膜动脉注入能转导膜电位(Vm)的荧光染料(di-4-ANEQ(F)PTEA)。荧光由 LED 激发,并用一台或两台 256x256 像素相机成像。运动伪影通过基于标记的运动跟踪方法和激发比率法进行校正,从而消除共模伪影。跟踪标记物位移还能测量胃变形。我们对照其他非光学技术对电激活和 Vm 形态的检测进行了验证。在我们的数据中,前胃和后胃之间普遍存在非后向慢波和传播方向差异。然而,假实验表明它们是动物制备的一个特征,而不是光学绘图的伪影。在证明该方法能力的实验中,我们发现再极化并不总是在激活 "波前 "后的固定时间进行,这可能是导致心律失常的一个因素。收缩强度和电激活与收缩之间的潜伏期在逆行传播和非逆行传播之间存在差异。总之,光学机电绘图可同时对电活动和机械活动进行成像,从而探索有关正常和异常胃生理的新问题。
{"title":"Simultaneous optical imaging of gastric slow waves and contractions in the in vivo porcine stomach.","authors":"Haley N Patton, Hanyu Zhang, Garrett A Wood, Bijay Guragain, Nipuni D Nagahawatte, Linley A Nisbet, Leo K Cheng, Gregory P Walcott, Jack M Rogers","doi":"10.1152/ajpgi.00033.2024","DOIUrl":"10.1152/ajpgi.00033.2024","url":null,"abstract":"<p><p>Gastric peristalsis is governed by electrical \"slow waves\" generally assumed to travel from proximal to distal stomach (antegrade propagation) in symmetric rings. Although alternative slow-wave patterns have been correlated with gastric disorders, their mechanisms and how they alter contractions remain understudied. Optical electromechanical mapping, a developing field in cardiac electrophysiology, images electrical and mechanical physiology simultaneously. Here, we translate this technology to the in vivo porcine stomach. Stomachs were surgically exposed and a fluorescent dye (di-4-ANEQ(F)PTEA) that transduces the membrane potential (<i>V</i><sub>m</sub>) was injected through the right gastroepiploic artery. Fluorescence was excited by LEDs and imaged with one or two 256 × 256 pixel cameras. Motion artifact was corrected using a marker-based motion-tracking method and excitation ratiometry, which cancels common-mode artifact. Tracking marker displacement also enabled gastric deformation to be measured. We validated detection of electrical activation and <i>V</i><sub>m</sub> morphology against alternative nonoptical technologies. Nonantegrade slow waves and propagation direction differences between the anterior and posterior stomach were commonly present in our data. However, sham experiments suggest they were a feature of the animal preparation and not an artifact of optical mapping. In experiments to demonstrate the method's capabilities, we found that repolarization did not always follow at a fixed time behind activation \"wavefronts,\" which could be a factor in dysrhythmia. Contraction strength and the latency between electrical activation and contraction differed between antegrade and nonantegrade propagation. In conclusion, optical electromechanical mapping, which simultaneously images electrical and mechanical activity, enables novel questions regarding normal and abnormal gastric physiology to be explored.<b>NEW & NOTEWORTHY</b> This article introduces a novel method for imaging gastric electrophysiology and mechanical function simultaneously in anesthetized, open-abdomen pigs. We demonstrate it by observing propagating slow-wave depolarization and repolarization along with the strength, spatial distribution, and direction of contractions. In addition, we observe that in this animal preparation, slow waves often do not propagate from the proximal to distal stomach and are frequently asymmetric between the anterior and posterior sides of the stomach.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G765-G782"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-08DOI: 10.1152/ajpgi.00173.2024
Camilla Venturin, Luca Fabris
{"title":"Machine learning application to histology for the study of cholangiopathies (BiliQML): A chance to put liver biopsy back to its former glory?","authors":"Camilla Venturin, Luca Fabris","doi":"10.1152/ajpgi.00173.2024","DOIUrl":"10.1152/ajpgi.00173.2024","url":null,"abstract":"","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G733-G736"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-29DOI: 10.1152/ajpgi.00302.2024
David K Meyerholz, David A Stoltz
{"title":"Gallbladder mucoceles in dogs: a novel form of acquired CFTR dysfunction causing localized cystic fibrosis-like disease.","authors":"David K Meyerholz, David A Stoltz","doi":"10.1152/ajpgi.00302.2024","DOIUrl":"10.1152/ajpgi.00302.2024","url":null,"abstract":"","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G847-G849"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cirrhosis, which represents the end stage of liver fibrosis, remains a life-threatening condition without effective treatment. Therefore, prevention of the progression of liver fibrosis through lifestyle habits such as diet and exercise is crucial. The functional food AHCC, a standardized extract of cultured Lentinula edodes mycelia produced by Amino Up Co., Ltd. (Sapporo, Japan)] has been reported to be effective in improving the pathophysiology of various liver diseases. In this study, the aim was to analyze the influence of AHCC on hepatic stellate cells, which are responsible for liver fibrosis. Eight-week-old male C57BL6/j mice were induced with liver fibrosis by intraperitoneal injection of carbon tetrachloride. Simultaneously, they were orally administered 3% AHCC to investigate its impact on the progression of liver fibrosis. Using the human hepatic stellate cell (HHSteC) line, we analyzed the influence of AHCC on the expression of molecules related to hepatic stellate cell activation. The administration of AHCC resulted in reduced expression of collagen1a, α smooth muscle actin (αSMA), and heat shock protein 47 in the liver. Furthermore, the expression of cytoglobin, a marker for quiescent hepatic stellate cells, was enhanced. In vitro study, it was confirmed that AHCC inhibited αSMA by inducing cytoglobin via upregulating the stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway through Toll-like receptor (TLR) 2. In addition, AHCC suppressed collagen1a production by hepatic stellate cells through TLR4-NF-κβ pathway. AHCC was suggested to suppress hepatic fibrosis by inhibition of hepatic stellate cells activation. Daily intake of AHCC from mild fibrotic stages may have the potential to prevent the progression of liver fibrosis.NEW & NOTEWORTHY AHCC, a standardized extract of cultured Lentinula edodes mycelia, suppresses liver fibrosis progression by induction of cytoglobin via the Toll-like receptor 2 (TLR2)-stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway and the inhibition of collagen production via the TLR4-NFκβ pathway in hepatic stellate cells. Daily oral administration of AHCC from the stage of MASLD may have the potential to prevent disease progression to MASH with fibrosis.
{"title":"AHCC inhibited hepatic stellate cells activation by regulation of cytoglobin induction via TLR2-SAPK/JNK pathway and collagen production via TLR4-NF-κβ pathway.","authors":"Hayato Urushima, Tsutomu Matsubara, Gu Qiongya, Atsuko Daikoku, Misako Takayama, Chiho Kadono, Hikaru Nakai, Yukinobu Ikeya, Hideto Yuasa, Kazuo Ikeda","doi":"10.1152/ajpgi.00134.2024","DOIUrl":"10.1152/ajpgi.00134.2024","url":null,"abstract":"<p><p>Cirrhosis, which represents the end stage of liver fibrosis, remains a life-threatening condition without effective treatment. Therefore, prevention of the progression of liver fibrosis through lifestyle habits such as diet and exercise is crucial. The functional food AHCC, a standardized extract of cultured Lentinula edodes mycelia produced by Amino Up Co., Ltd. (Sapporo, Japan)] has been reported to be effective in improving the pathophysiology of various liver diseases. In this study, the aim was to analyze the influence of AHCC on hepatic stellate cells, which are responsible for liver fibrosis. Eight-week-old male C57BL6/j mice were induced with liver fibrosis by intraperitoneal injection of carbon tetrachloride. Simultaneously, they were orally administered 3% AHCC to investigate its impact on the progression of liver fibrosis. Using the human hepatic stellate cell (HHSteC) line, we analyzed the influence of AHCC on the expression of molecules related to hepatic stellate cell activation. The administration of AHCC resulted in reduced expression of collagen1a, α smooth muscle actin (αSMA), and heat shock protein 47 in the liver. Furthermore, the expression of cytoglobin, a marker for quiescent hepatic stellate cells, was enhanced. In vitro study, it was confirmed that AHCC inhibited αSMA by inducing cytoglobin via upregulating the stress-activated protein kinase/Jun NH<sub>2</sub>-terminal kinase (SAPK/JNK) pathway through Toll-like receptor (TLR) 2. In addition, AHCC suppressed collagen1a production by hepatic stellate cells through TLR4-NF-κβ pathway. AHCC was suggested to suppress hepatic fibrosis by inhibition of hepatic stellate cells activation. Daily intake of AHCC from mild fibrotic stages may have the potential to prevent the progression of liver fibrosis.<b>NEW & NOTEWORTHY</b> AHCC, a standardized extract of cultured <i>Lentinula edodes</i> mycelia, suppresses liver fibrosis progression by induction of cytoglobin via the Toll-like receptor 2 (TLR2)-stress-activated protein kinase/Jun NH<sub>2</sub>-terminal kinase (SAPK/JNK) pathway and the inhibition of collagen production via the TLR4-NFκβ pathway in hepatic stellate cells. Daily oral administration of AHCC from the stage of MASLD may have the potential to prevent disease progression to MASH with fibrosis.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G741-G753"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-15DOI: 10.1152/ajpgi.00146.2024
N E Diether, A Kommadath, J M Fouhse, R T Zijlstra, P Stothard, B P Willing
The postweaning period in pigs is a critical window where nutritional interventions are implemented to prevent postweaning diarrhea (PWD) and antibiotic use. One common strategy is feeding low-protein diets immediately following weaning. This intervention may reduce protein fermentation and pathogen proliferation, therefore decreasing the incidence of postweaning diarrhea. These effects may also be mitigated by providing dietary fiber. However, studies examining the role of protein and fiber on gastrointestinal microbiota and metabolism are complicated by the presence of other substrates, including polyphenols and antinutritional factors in complex ingredients. In this study, semipurified diets formulated to meet nutrient requirements were fed to 40 weaned pigs (n = 10/diet) to examine the effects of high protein (HP), high fiber (HF), or both (HFHP) compared with a control (CON) diet with industry-standard crude protein and fiber content. Critical alterations in host metabolism and cecal transcriptome were identified in response to the CON diet. Diets with lower protein levels (CON and HF) induced alteration in transcripts from the serine synthesis pathways and integrated stress response in cecal tissue alongside systemic increases in metabolic pathways related to lysine degradation. High protein diets did not induce increases in gastrointestinal pathogen abundance. These results challenge the practice of feeding low-protein diets postweaning, by demonstrating a detrimental effect on intestinal cell function and muscle accretion. This suggests that with careful ingredient selection, increased dietary protein postweaning could improve pig health and growth compared with a standard diet.NEW & NOTEWORTHY Although low-protein diets are commonly used for weaned pigs and are thought to decrease diarrhea incidence, this study showed that low-protein diets may induce muscle catabolism and intestinal epithelial stress response. Eventhough high-protein diets increased protein fermentation by gut microbes, no increase in diarrhea was detected. Protein fermentation was mitigated by fiber while still supporting growth and intestinal epithelial cell function, suggesting new strategies for feeding weaned pigs with careful ingredient selection.
{"title":"Increased dietary protein rather than fiber supports key metabolic and intestinal tissue functions in pigs, without increasing postweaning diarrhea.","authors":"N E Diether, A Kommadath, J M Fouhse, R T Zijlstra, P Stothard, B P Willing","doi":"10.1152/ajpgi.00146.2024","DOIUrl":"10.1152/ajpgi.00146.2024","url":null,"abstract":"<p><p>The postweaning period in pigs is a critical window where nutritional interventions are implemented to prevent postweaning diarrhea (PWD) and antibiotic use. One common strategy is feeding low-protein diets immediately following weaning. This intervention may reduce protein fermentation and pathogen proliferation, therefore decreasing the incidence of postweaning diarrhea. These effects may also be mitigated by providing dietary fiber. However, studies examining the role of protein and fiber on gastrointestinal microbiota and metabolism are complicated by the presence of other substrates, including polyphenols and antinutritional factors in complex ingredients. In this study, semipurified diets formulated to meet nutrient requirements were fed to 40 weaned pigs (<i>n</i> = 10/diet) to examine the effects of high protein (HP), high fiber (HF), or both (HFHP) compared with a control (CON) diet with industry-standard crude protein and fiber content. Critical alterations in host metabolism and cecal transcriptome were identified in response to the CON diet. Diets with lower protein levels (CON and HF) induced alteration in transcripts from the serine synthesis pathways and integrated stress response in cecal tissue alongside systemic increases in metabolic pathways related to lysine degradation. High protein diets did not induce increases in gastrointestinal pathogen abundance. These results challenge the practice of feeding low-protein diets postweaning, by demonstrating a detrimental effect on intestinal cell function and muscle accretion. This suggests that with careful ingredient selection, increased dietary protein postweaning could improve pig health and growth compared with a standard diet.<b>NEW & NOTEWORTHY</b> Although low-protein diets are commonly used for weaned pigs and are thought to decrease diarrhea incidence, this study showed that low-protein diets may induce muscle catabolism and intestinal epithelial stress response. Eventhough high-protein diets increased protein fermentation by gut microbes, no increase in diarrhea was detected. Protein fermentation was mitigated by fiber while still supporting growth and intestinal epithelial cell function, suggesting new strategies for feeding weaned pigs with careful ingredient selection.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G818-G831"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}