Pub Date : 2025-01-24DOI: 10.1152/ajpgi.00194.2024
Elizabeth C Rose, Jeremy M Simon, Ismael Gomez-Martinez, Scott T Magness, Jack Odle, Anthony T Blikslager, Amanda L Ziegler
Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs underwent single cell transcriptomics and predicted upstream regulator CSF-1 was interrogated in our model. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation by colony stimulating factor-1 (CSF-1). We validated age-dependent induction of CSF-1 by ischemia and documented that CSF-1 and CSF1R co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued neonates. Further, the CSF-1 blockade reduced restitution in vitro, and CSF-1 improved barrier function in injured neonatal pig in preliminary ex vivo experiments. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model.
{"title":"Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine.","authors":"Elizabeth C Rose, Jeremy M Simon, Ismael Gomez-Martinez, Scott T Magness, Jack Odle, Anthony T Blikslager, Amanda L Ziegler","doi":"10.1152/ajpgi.00194.2024","DOIUrl":"10.1152/ajpgi.00194.2024","url":null,"abstract":"<p><p>Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs underwent single cell transcriptomics and predicted upstream regulator CSF-1 was interrogated in our model. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation by colony stimulating factor-1 (CSF-1). We validated age-dependent induction of <i>CSF-1</i> by ischemia and documented that CSF-1 and CSF1R co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued neonates. Further, the CSF-1 blockade reduced restitution <i>in vitro</i>, and CSF-1 improved barrier function in injured neonatal pig in preliminary <i>ex vivo</i> experiments. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1152/ajpgi.00353.2024
David J Matye, Huaiwen Wang, Yifeng Wang, Lei Xiong, Tiangang Li
Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes. However, the mechanisms mediating the glucose lowering effect of bile acid sequestrants are still incompletely understood. Here we showed that ChTM treatment decreased hepatic glucose production in Western diet-fed mice with paradoxically induced hepatic gluconeogenic genes. Cysteine dioxygenase type 1 (CDO1) mediates cysteine conversion to taurine and its expression is repressed by bile acids. We show that ChTM induced hepatic CDO1 and selectively reduced hepatic cysteine availability. Knockdown of liver CDO1 increased liver cysteine and glucose production in mice, while hepatocytes cultured in cystine-deficient medium showed reduced glucose production. By using dietary protein restricted and cystine-modified Western diets that selectively alter hepatic cysteine availability, we found that reduced hepatic cysteine availability strongly inhibited glucose production in mice. Interestingly, chronic dietary protein restriction also prevented Western diet-induced obesity, which was fully reversed by restoring dietary cystine intake alone. Consistently, reduced cysteine availability dose dependently inhibited adipogenesis in vitro. In conclusion, we report that the glucose lowering effect of bile acid sequestrants are mediated by a CDO1-induced hepatic cysteine restriction mimetic effect. Furthermore, the anti-obesity effect of dietary protein restriction is largely mediated by reduced dietary cysteine intake.
{"title":"Bile acid sequestrant inhibits gluconeogenesis via inducing hepatic cysteine dioxygenase type 1 to reduce cysteine availability.","authors":"David J Matye, Huaiwen Wang, Yifeng Wang, Lei Xiong, Tiangang Li","doi":"10.1152/ajpgi.00353.2024","DOIUrl":"https://doi.org/10.1152/ajpgi.00353.2024","url":null,"abstract":"<p><p>Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes. However, the mechanisms mediating the glucose lowering effect of bile acid sequestrants are still incompletely understood. Here we showed that ChTM treatment decreased hepatic glucose production in Western diet-fed mice with paradoxically induced hepatic gluconeogenic genes. Cysteine dioxygenase type 1 (CDO1) mediates cysteine conversion to taurine and its expression is repressed by bile acids. We show that ChTM induced hepatic CDO1 and selectively reduced hepatic cysteine availability. Knockdown of liver CDO1 increased liver cysteine and glucose production in mice, while hepatocytes cultured in cystine-deficient medium showed reduced glucose production. By using dietary protein restricted and cystine-modified Western diets that selectively alter hepatic cysteine availability, we found that reduced hepatic cysteine availability strongly inhibited glucose production in mice. Interestingly, chronic dietary protein restriction also prevented Western diet-induced obesity, which was fully reversed by restoring dietary cystine intake alone. Consistently, reduced cysteine availability dose dependently inhibited adipogenesis in vitro. In conclusion, we report that the glucose lowering effect of bile acid sequestrants are mediated by a CDO1-induced hepatic cysteine restriction mimetic effect. Furthermore, the anti-obesity effect of dietary protein restriction is largely mediated by reduced dietary cysteine intake.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1152/ajpgi.00170.2024
Cristiane H Baggio, Judie Shang, Larissa L Périco, Raquel C Dos Santos, Marilyn H Gordon, Bruna B Da Luz, Matthew Stephens, Adamara M Nascimento, Maria Fernanda P Werner, Pierre-Yves von der Weid, Thales R Cipriani, Wallace K MacNaughton
Mucosal healing is the primary goal for Inflammatory Bowel Diseases (IBD) treatment. We previously showed the direct beneficial effects of rhamnogalacturonan (RGal) on intestinal epithelial barrier function. Here, we aimed to evaluate the effect of RGal in intestinal epithelial wound healing. Confluent cancer cell lines and colonoid monolayers were wounded, treated with RGal for 48 h and assessed using a live cell imaging system. Proliferation and apoptosis of cells were evaluated using EdU and TUNEL assays, respectively. Antagonists and inhibitors were used to determine the receptor and signaling pathways involved. Female and male mice with DSS-induced colitis were treated orally with RGal for 7 days during the recovery phase. RGal enhanced wound healing in Caco-2, T84 and primary cells by increasing cell migration. Inhibition of pre-transcriptional signaling pathways FAK, Src, PI3K, Rho family, and JNK reversed the RGal-induced wound healing. RNAseq data from Caco-2 and primary cells treated with RGal showed the upregulation of NF-κB pathway at 12 h. Actinomycin D, Bay 11-7082 or JSH-23, and NS-398 treatment significantly reversed the effect of RGal on wound healing, confirming that the response was also transcriptionally dependent and involved NF-κB signaling and downstream COX-2 protein activity. RGal treatment of male mice enhanced recovery from DSS colitis. RGal promoted wound healing in cancer and primary cells by increasing cell migration and accelerated epithelial mucosal healing in male mice. Our findings show a novel mechanism of action of RGal in wound healing that could help in mucosal healing and the resolution of intestinal inflammation.
{"title":"Rhamnogalacturonan promotes intestinal mucosal repair through increased cell migration.","authors":"Cristiane H Baggio, Judie Shang, Larissa L Périco, Raquel C Dos Santos, Marilyn H Gordon, Bruna B Da Luz, Matthew Stephens, Adamara M Nascimento, Maria Fernanda P Werner, Pierre-Yves von der Weid, Thales R Cipriani, Wallace K MacNaughton","doi":"10.1152/ajpgi.00170.2024","DOIUrl":"https://doi.org/10.1152/ajpgi.00170.2024","url":null,"abstract":"<p><p>Mucosal healing is the primary goal for Inflammatory Bowel Diseases (IBD) treatment. We previously showed the direct beneficial effects of rhamnogalacturonan (RGal) on intestinal epithelial barrier function. Here, we aimed to evaluate the effect of RGal in intestinal epithelial wound healing. Confluent cancer cell lines and colonoid monolayers were wounded, treated with RGal for 48 h and assessed using a live cell imaging system. Proliferation and apoptosis of cells were evaluated using EdU and TUNEL assays, respectively. Antagonists and inhibitors were used to determine the receptor and signaling pathways involved. Female and male mice with DSS-induced colitis were treated orally with RGal for 7 days during the recovery phase. RGal enhanced wound healing in Caco-2, T84 and primary cells by increasing cell migration. Inhibition of pre-transcriptional signaling pathways FAK, Src, PI3K, Rho family, and JNK reversed the RGal-induced wound healing. RNAseq data from Caco-2 and primary cells treated with RGal showed the upregulation of NF-κB pathway at 12 h. Actinomycin D, Bay 11-7082 or JSH-23, and NS-398 treatment significantly reversed the effect of RGal on wound healing, confirming that the response was also transcriptionally dependent and involved NF-κB signaling and downstream COX-2 protein activity. RGal treatment of male mice enhanced recovery from DSS colitis. RGal promoted wound healing in cancer and primary cells by increasing cell migration and accelerated epithelial mucosal healing in male mice. Our findings show a novel mechanism of action of RGal in wound healing that could help in mucosal healing and the resolution of intestinal inflammation.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1152/ajpgi.00227.2024
Gabriela Ribeiro, Harriët Schellekens, Cristina Cuesta-Marti, Ivie Maneschy, Shámila Ismael, Amanda Cuevas-Sierra, J Alfredo Martínez, Marta P Silvestre, Cláudia Marques, André Moreira-Rosário, Ana Faria, Luis A Moreno, Conceição Calhau
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut microbiota-targeted approaches such as pre- pro- post- and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is (1) to provide an overview of the role of the microbiota-gut-brain-axis in appetite regulation across the lifespan and (2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
{"title":"A Menu for Microbes: Unraveling Appetite Regulation and Weight Dynamics Through the Microbiota-Brain Connection Across the Lifespan.","authors":"Gabriela Ribeiro, Harriët Schellekens, Cristina Cuesta-Marti, Ivie Maneschy, Shámila Ismael, Amanda Cuevas-Sierra, J Alfredo Martínez, Marta P Silvestre, Cláudia Marques, André Moreira-Rosário, Ana Faria, Luis A Moreno, Conceição Calhau","doi":"10.1152/ajpgi.00227.2024","DOIUrl":"https://doi.org/10.1152/ajpgi.00227.2024","url":null,"abstract":"<p><p>Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut microbiota-targeted approaches such as pre- pro- post- and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is (1) to provide an overview of the role of the microbiota-gut-brain-axis in appetite regulation across the lifespan and (2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-26DOI: 10.1152/ajpgi.00355.2024
C Chris Yun
{"title":"Is LPAR5 agonist a new treatment for microvilli inclusion disease?","authors":"C Chris Yun","doi":"10.1152/ajpgi.00355.2024","DOIUrl":"10.1152/ajpgi.00355.2024","url":null,"abstract":"","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G49-G50"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-05DOI: 10.1152/ajpgi.00198.2024
Luis M Ramírez-Maldonado, Julio Guerrero-Castro, José L Rodríguez-Mejía, Yair Cárdenas-Conejo, Edgar O Bonales-Alatorre, Georgina Valencia-Cruz, Paulina T Anguiano-García, Irving I Vega-Juárez, Adán Dagnino-Acosta, Jessica Ruvalcaba-Galindo, Eduardo E Valdez-Morales, Fernando Ochoa-Cortes, Alma Barajas-Espinosa, Raquel Guerrero-Alba, Andrómeda Liñán-Rico
The cafeteria diet (CAF) is a superior diet model in animal experiments compared with the conventional high-fat diet (HFD), effectively inducing obesity, metabolic disturbances, and multi-organ damage. Nevertheless, its impact on gut microbiota composition during the progression of obesity, along with its repercussions on the enteric nervous system (ENS) and gastrointestinal motility has not been completely elucidated. To gain more insight into the effects of CAF diet in the gut, C57BL/6 mice were fed with CAF or a standard diet for 2 or 8 wk. CAF-fed mice experienced weight gain, disturbed glucose metabolism, dysregulated expression of colonic IL-6, IL-22, TNFα, and TPH1, and altered colon morphology, starting at week 2. Fecal DNA was isolated and gut microbiota composition was monitored by sequencing the V3-V4 16S rRNA region. Sequence analysis revealed that Clostridia and Proteobacteria were specific biomarkers associated with CAF-feeding at week 2, while Bacteroides and Actinobacteria were prominent at week 8. In addition, the impact of CAF diet on ENS was investigated (week 8), where HuC/D+ neurons were measured and counted, and their biophysical properties were evaluated by patch clamp. Gut contractility was tested in whole-mount preparations. Myenteric neurons in CAF-fed mice exhibited reduced body size, incremented cell density, and decreased excitability. The amplitude and frequency of the rhythmic spontaneous contractions in the colon and ileum were affected by the CAF diet. Our findings demonstrate, for the first time, that CAF diet gradually changes the gut microbiota and promotes low-grade inflammation, impacting the functional properties of myenteric neurons and gut contractility in mice.NEW & NOTEWORTHY The gut microbiota changes gradually following the consumption of CAF diet. An increase in Clostridia and Proteobacteria is a hallmark of dysbiosis at the early onset of gut inflammation and obesity. The CAF diet was effective in inducing intestinal low-grade inflammation and alterations in myenteric neuronal excitability in mice. CAF diet is a reliable strategy to study the interplay between gut dysbiosis and low-grade inflammation, in addition to the mechanisms underlying gastrointestinal dysmotility associated with obesity.
{"title":"Obesogenic cafeteria diet induces dynamic changes in gut microbiota, reduces myenteric neuron excitability, and impairs gut contraction in mice.","authors":"Luis M Ramírez-Maldonado, Julio Guerrero-Castro, José L Rodríguez-Mejía, Yair Cárdenas-Conejo, Edgar O Bonales-Alatorre, Georgina Valencia-Cruz, Paulina T Anguiano-García, Irving I Vega-Juárez, Adán Dagnino-Acosta, Jessica Ruvalcaba-Galindo, Eduardo E Valdez-Morales, Fernando Ochoa-Cortes, Alma Barajas-Espinosa, Raquel Guerrero-Alba, Andrómeda Liñán-Rico","doi":"10.1152/ajpgi.00198.2024","DOIUrl":"10.1152/ajpgi.00198.2024","url":null,"abstract":"<p><p>The cafeteria diet (CAF) is a superior diet model in animal experiments compared with the conventional high-fat diet (HFD), effectively inducing obesity, metabolic disturbances, and multi-organ damage. Nevertheless, its impact on gut microbiota composition during the progression of obesity, along with its repercussions on the enteric nervous system (ENS) and gastrointestinal motility has not been completely elucidated. To gain more insight into the effects of CAF diet in the gut, C57BL/6 mice were fed with CAF or a standard diet for 2 or 8 wk. CAF-fed mice experienced weight gain, disturbed glucose metabolism, dysregulated expression of colonic IL-6, IL-22, TNFα, and TPH1, and altered colon morphology, starting at <i>week 2</i>. Fecal DNA was isolated and gut microbiota composition was monitored by sequencing the V3-V4 16S rRNA region. Sequence analysis revealed that <i>Clostridia</i> and <i>Proteobacteria</i> were specific biomarkers associated with CAF-feeding at <i>week 2</i>, while <i>Bacteroides</i> and <i>Actinobacteria</i> were prominent at <i>week 8</i>. In addition, the impact of CAF diet on ENS was investigated (<i>week 8</i>), where HuC/D+ neurons were measured and counted, and their biophysical properties were evaluated by patch clamp. Gut contractility was tested in whole-mount preparations. Myenteric neurons in CAF-fed mice exhibited reduced body size, incremented cell density, and decreased excitability. The amplitude and frequency of the rhythmic spontaneous contractions in the colon and ileum were affected by the CAF diet. Our findings demonstrate, for the first time, that CAF diet gradually changes the gut microbiota and promotes low-grade inflammation, impacting the functional properties of myenteric neurons and gut contractility in mice.<b>NEW & NOTEWORTHY</b> The gut microbiota changes gradually following the consumption of CAF diet. An increase in <i>Clostridia</i> and <i>Proteobacteria</i> is a hallmark of dysbiosis at the early onset of gut inflammation and obesity. The CAF diet was effective in inducing intestinal low-grade inflammation and alterations in myenteric neuronal excitability in mice. CAF diet is a reliable strategy to study the interplay between gut dysbiosis and low-grade inflammation, in addition to the mechanisms underlying gastrointestinal dysmotility associated with obesity.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G32-G48"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-06DOI: 10.1152/ajpgi.00066.2024
Sarah Penrod, Xiaofang Tang, Changsuk Moon, Jeffrey A Whitsett, Anjaparavanda P Naren, Yunjie Huang
Membrane proteins, such as the cystic fibrosis transmembrane-conductance regulator (CFTR), play a crucial role in gastrointestinal functions and health. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3ΔIEC). EMC3ΔIEC mice were viable but notably smaller compared with their wild-type littermates. Although the intestinal structure was generally maintained, EMC3ΔIEC crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3ΔIEC enteroids. CFTR-mediated organoid swelling in EMC3ΔIEC mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.NEW & NOTEWORTHY We generated mice in which endoplasmic reticulum membrane protein complex (EMC) subunit 3 was deleted from intestinal epithelium cells and studied the molecular functions of EMC in vivo. Our findings demonstrate the importance of intestinal EMC in the biogenesis of membrane proteins in vivo, including CFTR, and highlight its critical role in maintaining intracellular calcium homeostasis and, consequently, in calcium-dependent functions in the intestine and beyond.
{"title":"EMC3 is critical for CFTR function and calcium mobilization in the mouse intestinal epithelium.","authors":"Sarah Penrod, Xiaofang Tang, Changsuk Moon, Jeffrey A Whitsett, Anjaparavanda P Naren, Yunjie Huang","doi":"10.1152/ajpgi.00066.2024","DOIUrl":"10.1152/ajpgi.00066.2024","url":null,"abstract":"<p><p>Membrane proteins, such as the cystic fibrosis transmembrane-conductance regulator (CFTR), play a crucial role in gastrointestinal functions and health. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3<sup>ΔIEC</sup>). EMC3<sup>ΔIEC</sup> mice were viable but notably smaller compared with their wild-type littermates. Although the intestinal structure was generally maintained, EMC3<sup>ΔIEC</sup> crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3<sup>ΔIEC</sup> enteroids. CFTR-mediated organoid swelling in EMC3<sup>ΔIEC</sup> mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.<b>NEW & NOTEWORTHY</b> We generated mice in which endoplasmic reticulum membrane protein complex (EMC) subunit 3 was deleted from intestinal epithelium cells and studied the molecular functions of EMC in vivo. Our findings demonstrate the importance of intestinal EMC in the biogenesis of membrane proteins in vivo, including CFTR, and highlight its critical role in maintaining intracellular calcium homeostasis and, consequently, in calcium-dependent functions in the intestine and beyond.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G72-G82"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-05DOI: 10.1152/ajpgi.00252.2024
Cecelia Kelly, R Balfour Sartor, John F Rawls
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.
{"title":"Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies.","authors":"Cecelia Kelly, R Balfour Sartor, John F Rawls","doi":"10.1152/ajpgi.00252.2024","DOIUrl":"10.1152/ajpgi.00252.2024","url":null,"abstract":"<p><p>The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G17-G31"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-08DOI: 10.1152/ajpgi.00159.2024
Blanca E Callejas, James A Sousa, Kyle L Flannigan, Arthur Wang, Eve Higgins, Aydin I Herik, Shuhua Li, Sruthi Rajeev, Ryan Rosentreter, Remo Panaccione, Derek M McKay
Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to Escherichia coli. When delivered systemically (106 cells IP) to oxazolone-treated rag1-/- mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo2 epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D2 (PGD2), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo2 cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD2 activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.NEW & NOTEWORTHY A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.
{"title":"Calcitonin gene-related peptide promotes epithelial reparative and anticolitic functions of IL-4 educated human macrophages.","authors":"Blanca E Callejas, James A Sousa, Kyle L Flannigan, Arthur Wang, Eve Higgins, Aydin I Herik, Shuhua Li, Sruthi Rajeev, Ryan Rosentreter, Remo Panaccione, Derek M McKay","doi":"10.1152/ajpgi.00159.2024","DOIUrl":"10.1152/ajpgi.00159.2024","url":null,"abstract":"<p><p>Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to <i>Escherichia coli</i>. When delivered systemically (10<sup>6</sup> cells IP) to oxazolone-treated <i>rag1<sup>-/-</sup></i> mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo<sub>2</sub> epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D<sub>2</sub> (PGD<sub>2</sub>), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo<sub>2</sub> cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD<sub>2</sub> activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.<b>NEW & NOTEWORTHY</b> A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G1-G16"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-15DOI: 10.1152/ajpgi.00110.2024
Malte Hasle Nielsen, Jacob Nøhr-Meldgaard, Mathias Bonde Møllerhøj, Denise Oró, Susanne E Pors, Maja Worm Andersen, Ioannis Kamzolas, Evangelia Petsalaki, Michele Vacca, Lea Mørch Harder, James W Perfield, Sanne Veidal, Henrik H Hansen, Michael Feigh
The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.NEW & NOTEWORTHY The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.
{"title":"Characterization of six clinical drugs and dietary intervention in the nonobese CDAA-HFD mouse model of MASH and progressive fibrosis.","authors":"Malte Hasle Nielsen, Jacob Nøhr-Meldgaard, Mathias Bonde Møllerhøj, Denise Oró, Susanne E Pors, Maja Worm Andersen, Ioannis Kamzolas, Evangelia Petsalaki, Michele Vacca, Lea Mørch Harder, James W Perfield, Sanne Veidal, Henrik H Hansen, Michael Feigh","doi":"10.1152/ajpgi.00110.2024","DOIUrl":"10.1152/ajpgi.00110.2024","url":null,"abstract":"<p><p>The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.<b>NEW & NOTEWORTHY</b> The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G51-G71"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}