首页 > 最新文献

American journal of physiology. Gastrointestinal and liver physiology最新文献

英文 中文
Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine.
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-24 DOI: 10.1152/ajpgi.00194.2024
Elizabeth C Rose, Jeremy M Simon, Ismael Gomez-Martinez, Scott T Magness, Jack Odle, Anthony T Blikslager, Amanda L Ziegler

Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs underwent single cell transcriptomics and predicted upstream regulator CSF-1 was interrogated in our model. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation by colony stimulating factor-1 (CSF-1). We validated age-dependent induction of CSF-1 by ischemia and documented that CSF-1 and CSF1R co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued neonates. Further, the CSF-1 blockade reduced restitution in vitro, and CSF-1 improved barrier function in injured neonatal pig in preliminary ex vivo experiments. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model.

{"title":"Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine.","authors":"Elizabeth C Rose, Jeremy M Simon, Ismael Gomez-Martinez, Scott T Magness, Jack Odle, Anthony T Blikslager, Amanda L Ziegler","doi":"10.1152/ajpgi.00194.2024","DOIUrl":"10.1152/ajpgi.00194.2024","url":null,"abstract":"<p><p>Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs underwent single cell transcriptomics and predicted upstream regulator CSF-1 was interrogated in our model. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation by colony stimulating factor-1 (CSF-1). We validated age-dependent induction of <i>CSF-1</i> by ischemia and documented that CSF-1 and CSF1R co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued neonates. Further, the CSF-1 blockade reduced restitution <i>in vitro</i>, and CSF-1 improved barrier function in injured neonatal pig in preliminary <i>ex vivo</i> experiments. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bile acid sequestrant inhibits gluconeogenesis via inducing hepatic cysteine dioxygenase type 1 to reduce cysteine availability. 胆汁酸螯合剂通过诱导肝脏半胱氨酸双加氧酶1型降低半胱氨酸可用性来抑制糖异生。
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-16 DOI: 10.1152/ajpgi.00353.2024
David J Matye, Huaiwen Wang, Yifeng Wang, Lei Xiong, Tiangang Li

Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes. However, the mechanisms mediating the glucose lowering effect of bile acid sequestrants are still incompletely understood. Here we showed that ChTM treatment decreased hepatic glucose production in Western diet-fed mice with paradoxically induced hepatic gluconeogenic genes. Cysteine dioxygenase type 1 (CDO1) mediates cysteine conversion to taurine and its expression is repressed by bile acids. We show that ChTM induced hepatic CDO1 and selectively reduced hepatic cysteine availability. Knockdown of liver CDO1 increased liver cysteine and glucose production in mice, while hepatocytes cultured in cystine-deficient medium showed reduced glucose production. By using dietary protein restricted and cystine-modified Western diets that selectively alter hepatic cysteine availability, we found that reduced hepatic cysteine availability strongly inhibited glucose production in mice. Interestingly, chronic dietary protein restriction also prevented Western diet-induced obesity, which was fully reversed by restoring dietary cystine intake alone. Consistently, reduced cysteine availability dose dependently inhibited adipogenesis in vitro. In conclusion, we report that the glucose lowering effect of bile acid sequestrants are mediated by a CDO1-induced hepatic cysteine restriction mimetic effect. Furthermore, the anti-obesity effect of dietary protein restriction is largely mediated by reduced dietary cysteine intake.

胆汁酸固存剂如胆酸胺(ChTM)是肠道限制性胆汁酸结合树脂,可阻断肠道胆汁酸吸收并减弱肝胆汁酸信号。胆汁酸螯合剂诱导肝脏胆汁酸合成,促进胆固醇分解代谢,是降胆固醇药物。胆汁酸隔离剂在临床试验中也能降低血糖,并被批准用于治疗2型糖尿病患者的高血糖。然而,介导胆汁酸螯合剂降血糖作用的机制仍不完全清楚。在这里,我们发现中草药治疗降低了西方饮食喂养的具有矛盾诱导的肝脏糖异生基因的小鼠的肝脏葡萄糖生成。半胱氨酸双加氧酶1型(CDO1)介导半胱氨酸转化为牛磺酸,其表达受胆汁酸抑制。我们发现,ChTM诱导肝脏CDO1并选择性地降低肝脏半胱氨酸可用性。敲低肝脏CDO1可增加小鼠肝脏半胱氨酸和葡萄糖的产生,而在缺乏半胱氨酸的培养基中培养的肝细胞显示葡萄糖产生减少。通过使用限制蛋白质和半胱氨酸修饰的西方饮食选择性地改变肝脏半胱氨酸利用率,我们发现肝脏半胱氨酸利用率的降低强烈抑制了小鼠的葡萄糖生成。有趣的是,长期限制饮食中的蛋白质也可以预防西方饮食引起的肥胖,这可以通过单独恢复饮食中的胱氨酸摄入量来完全逆转。一致地,半胱氨酸可用性降低剂量依赖性地抑制体外脂肪生成。总之,我们报道胆汁酸螯合剂的降血糖作用是通过cdo1诱导的肝脏半胱氨酸限制模拟效应介导的。此外,饮食蛋白质限制的抗肥胖作用主要是通过减少饮食中半胱氨酸的摄入量来调节的。
{"title":"Bile acid sequestrant inhibits gluconeogenesis via inducing hepatic cysteine dioxygenase type 1 to reduce cysteine availability.","authors":"David J Matye, Huaiwen Wang, Yifeng Wang, Lei Xiong, Tiangang Li","doi":"10.1152/ajpgi.00353.2024","DOIUrl":"https://doi.org/10.1152/ajpgi.00353.2024","url":null,"abstract":"<p><p>Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes. However, the mechanisms mediating the glucose lowering effect of bile acid sequestrants are still incompletely understood. Here we showed that ChTM treatment decreased hepatic glucose production in Western diet-fed mice with paradoxically induced hepatic gluconeogenic genes. Cysteine dioxygenase type 1 (CDO1) mediates cysteine conversion to taurine and its expression is repressed by bile acids. We show that ChTM induced hepatic CDO1 and selectively reduced hepatic cysteine availability. Knockdown of liver CDO1 increased liver cysteine and glucose production in mice, while hepatocytes cultured in cystine-deficient medium showed reduced glucose production. By using dietary protein restricted and cystine-modified Western diets that selectively alter hepatic cysteine availability, we found that reduced hepatic cysteine availability strongly inhibited glucose production in mice. Interestingly, chronic dietary protein restriction also prevented Western diet-induced obesity, which was fully reversed by restoring dietary cystine intake alone. Consistently, reduced cysteine availability dose dependently inhibited adipogenesis in vitro. In conclusion, we report that the glucose lowering effect of bile acid sequestrants are mediated by a CDO1-induced hepatic cysteine restriction mimetic effect. Furthermore, the anti-obesity effect of dietary protein restriction is largely mediated by reduced dietary cysteine intake.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhamnogalacturonan promotes intestinal mucosal repair through increased cell migration. 鼠李糖半乳糖酸通过增加细胞迁移促进肠粘膜修复。
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-16 DOI: 10.1152/ajpgi.00170.2024
Cristiane H Baggio, Judie Shang, Larissa L Périco, Raquel C Dos Santos, Marilyn H Gordon, Bruna B Da Luz, Matthew Stephens, Adamara M Nascimento, Maria Fernanda P Werner, Pierre-Yves von der Weid, Thales R Cipriani, Wallace K MacNaughton

Mucosal healing is the primary goal for Inflammatory Bowel Diseases (IBD) treatment. We previously showed the direct beneficial effects of rhamnogalacturonan (RGal) on intestinal epithelial barrier function. Here, we aimed to evaluate the effect of RGal in intestinal epithelial wound healing. Confluent cancer cell lines and colonoid monolayers were wounded, treated with RGal for 48 h and assessed using a live cell imaging system. Proliferation and apoptosis of cells were evaluated using EdU and TUNEL assays, respectively. Antagonists and inhibitors were used to determine the receptor and signaling pathways involved. Female and male mice with DSS-induced colitis were treated orally with RGal for 7 days during the recovery phase. RGal enhanced wound healing in Caco-2, T84 and primary cells by increasing cell migration. Inhibition of pre-transcriptional signaling pathways FAK, Src, PI3K, Rho family, and JNK reversed the RGal-induced wound healing. RNAseq data from Caco-2 and primary cells treated with RGal showed the upregulation of NF-κB pathway at 12 h. Actinomycin D, Bay 11-7082 or JSH-23, and NS-398 treatment significantly reversed the effect of RGal on wound healing, confirming that the response was also transcriptionally dependent and involved NF-κB signaling and downstream COX-2 protein activity. RGal treatment of male mice enhanced recovery from DSS colitis. RGal promoted wound healing in cancer and primary cells by increasing cell migration and accelerated epithelial mucosal healing in male mice. Our findings show a novel mechanism of action of RGal in wound healing that could help in mucosal healing and the resolution of intestinal inflammation.

粘膜愈合是炎症性肠病(IBD)治疗的主要目标。我们之前已经证明鼠李糖半乳酪酸酯(RGal)对肠上皮屏障功能有直接的有益作用。在这里,我们旨在评估RGal在肠上皮性伤口愈合中的作用。将融合癌细胞系和结肠膜损伤,用RGal处理48小时,并使用活细胞成像系统进行评估。分别用EdU和TUNEL法观察细胞增殖和凋亡情况。使用拮抗剂和抑制剂来确定受体和所涉及的信号通路。雌性和雄性dss诱导结肠炎小鼠在恢复期口服RGal 7天。RGal通过增加细胞迁移,促进Caco-2、T84和原代细胞的伤口愈合。抑制转录前信号通路FAK、Src、PI3K、Rho家族和JNK逆转rgal诱导的伤口愈合。RGal处理Caco-2和原代细胞的RNAseq数据显示,12 h时NF-κB通路上调。放线菌素D、Bay 11-7082或JSH-23和NS-398处理显著逆转了RGal对伤口愈合的作用,证实该反应也是转录依赖的,涉及NF-κB信号传导和下游COX-2蛋白活性。RGal治疗可促进雄性小鼠DSS结肠炎的恢复。在雄性小鼠中,RGal通过增加细胞迁移和加速上皮粘膜愈合来促进癌症和原代细胞的伤口愈合。我们的研究结果显示了RGal在伤口愈合中的一种新的作用机制,可以帮助粘膜愈合和肠道炎症的解决。
{"title":"Rhamnogalacturonan promotes intestinal mucosal repair through increased cell migration.","authors":"Cristiane H Baggio, Judie Shang, Larissa L Périco, Raquel C Dos Santos, Marilyn H Gordon, Bruna B Da Luz, Matthew Stephens, Adamara M Nascimento, Maria Fernanda P Werner, Pierre-Yves von der Weid, Thales R Cipriani, Wallace K MacNaughton","doi":"10.1152/ajpgi.00170.2024","DOIUrl":"https://doi.org/10.1152/ajpgi.00170.2024","url":null,"abstract":"<p><p>Mucosal healing is the primary goal for Inflammatory Bowel Diseases (IBD) treatment. We previously showed the direct beneficial effects of rhamnogalacturonan (RGal) on intestinal epithelial barrier function. Here, we aimed to evaluate the effect of RGal in intestinal epithelial wound healing. Confluent cancer cell lines and colonoid monolayers were wounded, treated with RGal for 48 h and assessed using a live cell imaging system. Proliferation and apoptosis of cells were evaluated using EdU and TUNEL assays, respectively. Antagonists and inhibitors were used to determine the receptor and signaling pathways involved. Female and male mice with DSS-induced colitis were treated orally with RGal for 7 days during the recovery phase. RGal enhanced wound healing in Caco-2, T84 and primary cells by increasing cell migration. Inhibition of pre-transcriptional signaling pathways FAK, Src, PI3K, Rho family, and JNK reversed the RGal-induced wound healing. RNAseq data from Caco-2 and primary cells treated with RGal showed the upregulation of NF-κB pathway at 12 h. Actinomycin D, Bay 11-7082 or JSH-23, and NS-398 treatment significantly reversed the effect of RGal on wound healing, confirming that the response was also transcriptionally dependent and involved NF-κB signaling and downstream COX-2 protein activity. RGal treatment of male mice enhanced recovery from DSS colitis. RGal promoted wound healing in cancer and primary cells by increasing cell migration and accelerated epithelial mucosal healing in male mice. Our findings show a novel mechanism of action of RGal in wound healing that could help in mucosal healing and the resolution of intestinal inflammation.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Menu for Microbes: Unraveling Appetite Regulation and Weight Dynamics Through the Microbiota-Brain Connection Across the Lifespan. 微生物的菜单:通过微生物-大脑在整个生命周期中的联系揭示食欲调节和体重动态。
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-15 DOI: 10.1152/ajpgi.00227.2024
Gabriela Ribeiro, Harriët Schellekens, Cristina Cuesta-Marti, Ivie Maneschy, Shámila Ismael, Amanda Cuevas-Sierra, J Alfredo Martínez, Marta P Silvestre, Cláudia Marques, André Moreira-Rosário, Ana Faria, Luis A Moreno, Conceição Calhau

Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut microbiota-targeted approaches such as pre- pro- post- and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is (1) to provide an overview of the role of the microbiota-gut-brain-axis in appetite regulation across the lifespan and (2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.

食欲,作为食物摄入的内在驱动力,在与生命中营养过剩和营养不足相关的广泛条件下经常失调。食欲调节是一个复杂的综合过程,包括心理和行为事件、外周和代谢输入、中枢神经递质和代谢相互作用。微生物-肠-脑轴已成为多种生理过程的重要媒介,包括能量代谢、脑功能和行为。因此,微生物-肠-脑轴在食欲和肥胖中的作用正受到越来越多的关注。组学方法,如基因组学、表观基因组学、转录组学、蛋白质组学和代谢组学在食欲和体重调节中的应用,为研究肥胖表型提供了新的机会。此外,针对肠道微生物群的方法,如前、前、后和合成、个性化营养和粪便微生物群移植是精确治疗的新途径。这篇叙述性综述的目的是:(1)概述微生物群-肠道-脑轴在整个生命周期中食欲调节中的作用;(2)讨论组学和肠道微生物群靶向方法的潜力,以加深对食欲调节和肥胖的理解。
{"title":"A Menu for Microbes: Unraveling Appetite Regulation and Weight Dynamics Through the Microbiota-Brain Connection Across the Lifespan.","authors":"Gabriela Ribeiro, Harriët Schellekens, Cristina Cuesta-Marti, Ivie Maneschy, Shámila Ismael, Amanda Cuevas-Sierra, J Alfredo Martínez, Marta P Silvestre, Cláudia Marques, André Moreira-Rosário, Ana Faria, Luis A Moreno, Conceição Calhau","doi":"10.1152/ajpgi.00227.2024","DOIUrl":"https://doi.org/10.1152/ajpgi.00227.2024","url":null,"abstract":"<p><p>Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut microbiota-targeted approaches such as pre- pro- post- and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is (1) to provide an overview of the role of the microbiota-gut-brain-axis in appetite regulation across the lifespan and (2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is LPAR5 agonist a new treatment for microvilli inclusion disease? LPAR5 激动剂是治疗微绒毛包涵体病的新方法吗?
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-01 Epub Date: 2024-11-26 DOI: 10.1152/ajpgi.00355.2024
C Chris Yun
{"title":"Is LPAR5 agonist a new treatment for microvilli inclusion disease?","authors":"C Chris Yun","doi":"10.1152/ajpgi.00355.2024","DOIUrl":"10.1152/ajpgi.00355.2024","url":null,"abstract":"","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G49-G50"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obesogenic cafeteria diet induces dynamic changes in gut microbiota, reduces myenteric neuron excitability, and impairs gut contraction in mice. 致胖食堂饮食诱发小鼠肠道微生物群动态变化、降低肠肌神经元兴奋性并损害肠道收缩能力
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.1152/ajpgi.00198.2024
Luis M Ramírez-Maldonado, Julio Guerrero-Castro, José L Rodríguez-Mejía, Yair Cárdenas-Conejo, Edgar O Bonales-Alatorre, Georgina Valencia-Cruz, Paulina T Anguiano-García, Irving I Vega-Juárez, Adán Dagnino-Acosta, Jessica Ruvalcaba-Galindo, Eduardo E Valdez-Morales, Fernando Ochoa-Cortes, Alma Barajas-Espinosa, Raquel Guerrero-Alba, Andrómeda Liñán-Rico

The cafeteria diet (CAF) is a superior diet model in animal experiments compared with the conventional high-fat diet (HFD), effectively inducing obesity, metabolic disturbances, and multi-organ damage. Nevertheless, its impact on gut microbiota composition during the progression of obesity, along with its repercussions on the enteric nervous system (ENS) and gastrointestinal motility has not been completely elucidated. To gain more insight into the effects of CAF diet in the gut, C57BL/6 mice were fed with CAF or a standard diet for 2 or 8 wk. CAF-fed mice experienced weight gain, disturbed glucose metabolism, dysregulated expression of colonic IL-6, IL-22, TNFα, and TPH1, and altered colon morphology, starting at week 2. Fecal DNA was isolated and gut microbiota composition was monitored by sequencing the V3-V4 16S rRNA region. Sequence analysis revealed that Clostridia and Proteobacteria were specific biomarkers associated with CAF-feeding at week 2, while Bacteroides and Actinobacteria were prominent at week 8. In addition, the impact of CAF diet on ENS was investigated (week 8), where HuC/D+ neurons were measured and counted, and their biophysical properties were evaluated by patch clamp. Gut contractility was tested in whole-mount preparations. Myenteric neurons in CAF-fed mice exhibited reduced body size, incremented cell density, and decreased excitability. The amplitude and frequency of the rhythmic spontaneous contractions in the colon and ileum were affected by the CAF diet. Our findings demonstrate, for the first time, that CAF diet gradually changes the gut microbiota and promotes low-grade inflammation, impacting the functional properties of myenteric neurons and gut contractility in mice.NEW & NOTEWORTHY The gut microbiota changes gradually following the consumption of CAF diet. An increase in Clostridia and Proteobacteria is a hallmark of dysbiosis at the early onset of gut inflammation and obesity. The CAF diet was effective in inducing intestinal low-grade inflammation and alterations in myenteric neuronal excitability in mice. CAF diet is a reliable strategy to study the interplay between gut dysbiosis and low-grade inflammation, in addition to the mechanisms underlying gastrointestinal dysmotility associated with obesity.

与传统的高脂饮食(HFD)相比,食堂饮食(CAF)是动物实验中一种更优越的饮食模型,能有效诱导肥胖、代谢紊乱和多器官损伤。然而,它对肥胖进展过程中肠道微生物群组成的影响,以及对肠道神经系统(ENS)和胃肠道蠕动的影响尚未完全阐明。为了更深入地了解CAF饮食对肠道的影响,我们用CAF或标准饮食喂养C57BL/6小鼠2周或8周。从第 2 周开始,喂食 CAF 的小鼠体重增加,糖代谢紊乱,结肠 IL-6、IL-22、TNFα 和 TPH1 表达失调,结肠形态改变。对粪便 DNA 进行了分离,并通过对 V3-V4 16S rRNA 区域进行测序来监测肠道微生物群的组成。序列分析表明,梭状芽孢杆菌和变形菌是第2周时与CAF喂养相关的特异性生物标志物,而乳杆菌和放线菌则在第8周时表现突出。此外,还研究了CAF饮食对ENS的影响(第8周),对HuC/D+神经元进行了测量和计数,并通过膜片钳评估了它们的生物物理特性。肠道收缩力是在全装制备物中进行测试的。CAF喂养小鼠的肠肌球神经元表现出体型缩小、细胞密度增加和兴奋性降低。结肠和回肠节律性自发收缩的幅度和频率受到 CAF 食物的影响。我们的研究结果首次证明,CAF饮食会逐渐改变肠道微生物群并促进低度炎症,从而影响小鼠肠肌神经元的功能特性和肠道收缩能力。
{"title":"Obesogenic cafeteria diet induces dynamic changes in gut microbiota, reduces myenteric neuron excitability, and impairs gut contraction in mice.","authors":"Luis M Ramírez-Maldonado, Julio Guerrero-Castro, José L Rodríguez-Mejía, Yair Cárdenas-Conejo, Edgar O Bonales-Alatorre, Georgina Valencia-Cruz, Paulina T Anguiano-García, Irving I Vega-Juárez, Adán Dagnino-Acosta, Jessica Ruvalcaba-Galindo, Eduardo E Valdez-Morales, Fernando Ochoa-Cortes, Alma Barajas-Espinosa, Raquel Guerrero-Alba, Andrómeda Liñán-Rico","doi":"10.1152/ajpgi.00198.2024","DOIUrl":"10.1152/ajpgi.00198.2024","url":null,"abstract":"<p><p>The cafeteria diet (CAF) is a superior diet model in animal experiments compared with the conventional high-fat diet (HFD), effectively inducing obesity, metabolic disturbances, and multi-organ damage. Nevertheless, its impact on gut microbiota composition during the progression of obesity, along with its repercussions on the enteric nervous system (ENS) and gastrointestinal motility has not been completely elucidated. To gain more insight into the effects of CAF diet in the gut, C57BL/6 mice were fed with CAF or a standard diet for 2 or 8 wk. CAF-fed mice experienced weight gain, disturbed glucose metabolism, dysregulated expression of colonic IL-6, IL-22, TNFα, and TPH1, and altered colon morphology, starting at <i>week 2</i>. Fecal DNA was isolated and gut microbiota composition was monitored by sequencing the V3-V4 16S rRNA region. Sequence analysis revealed that <i>Clostridia</i> and <i>Proteobacteria</i> were specific biomarkers associated with CAF-feeding at <i>week 2</i>, while <i>Bacteroides</i> and <i>Actinobacteria</i> were prominent at <i>week 8</i>. In addition, the impact of CAF diet on ENS was investigated (<i>week 8</i>), where HuC/D+ neurons were measured and counted, and their biophysical properties were evaluated by patch clamp. Gut contractility was tested in whole-mount preparations. Myenteric neurons in CAF-fed mice exhibited reduced body size, incremented cell density, and decreased excitability. The amplitude and frequency of the rhythmic spontaneous contractions in the colon and ileum were affected by the CAF diet. Our findings demonstrate, for the first time, that CAF diet gradually changes the gut microbiota and promotes low-grade inflammation, impacting the functional properties of myenteric neurons and gut contractility in mice.<b>NEW & NOTEWORTHY</b> The gut microbiota changes gradually following the consumption of CAF diet. An increase in <i>Clostridia</i> and <i>Proteobacteria</i> is a hallmark of dysbiosis at the early onset of gut inflammation and obesity. The CAF diet was effective in inducing intestinal low-grade inflammation and alterations in myenteric neuronal excitability in mice. CAF diet is a reliable strategy to study the interplay between gut dysbiosis and low-grade inflammation, in addition to the mechanisms underlying gastrointestinal dysmotility associated with obesity.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G32-G48"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMC3 is critical for CFTR function and calcium mobilization in the mouse intestinal epithelium. EMC3对小鼠肠上皮CFTR功能和钙动员至关重要。
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-06 DOI: 10.1152/ajpgi.00066.2024
Sarah Penrod, Xiaofang Tang, Changsuk Moon, Jeffrey A Whitsett, Anjaparavanda P Naren, Yunjie Huang

Membrane proteins, such as the cystic fibrosis transmembrane-conductance regulator (CFTR), play a crucial role in gastrointestinal functions and health. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3ΔIEC). EMC3ΔIEC mice were viable but notably smaller compared with their wild-type littermates. Although the intestinal structure was generally maintained, EMC3ΔIEC crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3ΔIEC enteroids. CFTR-mediated organoid swelling in EMC3ΔIEC mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.NEW & NOTEWORTHY We generated mice in which endoplasmic reticulum membrane protein complex (EMC) subunit 3 was deleted from intestinal epithelium cells and studied the molecular functions of EMC in vivo. Our findings demonstrate the importance of intestinal EMC in the biogenesis of membrane proteins in vivo, including CFTR, and highlight its critical role in maintaining intracellular calcium homeostasis and, consequently, in calcium-dependent functions in the intestine and beyond.

膜蛋白,如囊性纤维化跨膜传导调节因子(CFTR),在胃肠道功能和健康中起着至关重要的作用。内质网(ER)膜蛋白复合物(EMC)是一种多亚基插入酶,在蛋白质合成过程中介导膜片段与脂质双层的结合。EMC是否调控肠上皮细胞膜蛋白的加工和功能尚不清楚。为了研究EMC在肠上皮中的作用,我们培养了肠上皮细胞中缺失EMC亚基3 (EMC3)的小鼠(EMC3ΔIEC)。EMC3ΔIEC小鼠是可以存活的,但与它们的野生型同伴相比,体型要小得多。虽然肠道结构总体上保持不变,但EMC3ΔIEC隐窝的形态发生了改变,特别是在隐窝的底部,杯状细胞和板状细胞减少。在emc3缺陷的上皮细胞中,包括CFTR在内的多种多面体膜蛋白水平降低。一些钙atp酶泵下调,EMC3ΔIEC类肠的钙动员受损。cftr介导的EMC3ΔIEC小鼠类器官肿胀在camp依赖性信号和钙促分泌剂刺激下受损。我们的研究表明,EMC通过调节膜蛋白生物生成和细胞内钙稳态,在维持肠上皮稳态中起关键作用。维持细胞内钙稳态可能是由EMC调节的一种普遍的细胞功能。
{"title":"EMC3 is critical for CFTR function and calcium mobilization in the mouse intestinal epithelium.","authors":"Sarah Penrod, Xiaofang Tang, Changsuk Moon, Jeffrey A Whitsett, Anjaparavanda P Naren, Yunjie Huang","doi":"10.1152/ajpgi.00066.2024","DOIUrl":"10.1152/ajpgi.00066.2024","url":null,"abstract":"<p><p>Membrane proteins, such as the cystic fibrosis transmembrane-conductance regulator (CFTR), play a crucial role in gastrointestinal functions and health. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3<sup>ΔIEC</sup>). EMC3<sup>ΔIEC</sup> mice were viable but notably smaller compared with their wild-type littermates. Although the intestinal structure was generally maintained, EMC3<sup>ΔIEC</sup> crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3<sup>ΔIEC</sup> enteroids. CFTR-mediated organoid swelling in EMC3<sup>ΔIEC</sup> mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.<b>NEW & NOTEWORTHY</b> We generated mice in which endoplasmic reticulum membrane protein complex (EMC) subunit 3 was deleted from intestinal epithelium cells and studied the molecular functions of EMC in vivo. Our findings demonstrate the importance of intestinal EMC in the biogenesis of membrane proteins in vivo, including CFTR, and highlight its critical role in maintaining intracellular calcium homeostasis and, consequently, in calcium-dependent functions in the intestine and beyond.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G72-G82"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies. 炎症性肠病的亚临床早期阶段--人类和动物研究的启示。
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.1152/ajpgi.00252.2024
Cecelia Kelly, R Balfour Sartor, John F Rawls

The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.

炎症性肠病(IBD)发生在对微生物群产生不适当免疫反应的遗传易感个体身上,导致慢性肠道炎症。IBD 进展的自然史始于临床诊断前的早期亚临床疾病阶段。加深对这些早期亚临床阶段的了解可为 IBD 诊断、预后或预防带来新的或更好的策略。在此,我们回顾了我们目前对人类 IBD 早期亚临床阶段的了解,包括对 IBD 患者一级亲属和继续发展成 IBD 的普通人群的研究。我们还讨论了具有代表性的 IBD 小鼠模型,这些模型可用于研究这些早期阶段的疾病动力学和宿主-微生物群关系。我们特别强调,在组织学炎症和其他严重症状显现之前,晚期发病且具有可变渗透性的 IBD 小鼠模型可能会为我们提供宝贵的机会,以鉴别疾病的早期亚临床机制。
{"title":"Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies.","authors":"Cecelia Kelly, R Balfour Sartor, John F Rawls","doi":"10.1152/ajpgi.00252.2024","DOIUrl":"10.1152/ajpgi.00252.2024","url":null,"abstract":"<p><p>The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G17-G31"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcitonin gene-related peptide promotes epithelial reparative and anticolitic functions of IL-4 educated human macrophages. 降钙素基因相关肽可促进受 IL-4 教育的人类巨噬细胞的上皮修复和抗钙化功能。
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-08 DOI: 10.1152/ajpgi.00159.2024
Blanca E Callejas, James A Sousa, Kyle L Flannigan, Arthur Wang, Eve Higgins, Aydin I Herik, Shuhua Li, Sruthi Rajeev, Ryan Rosentreter, Remo Panaccione, Derek M McKay

Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to Escherichia coli. When delivered systemically (106 cells IP) to oxazolone-treated rag1-/- mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo2 epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D2 (PGD2), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo2 cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD2 activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.NEW & NOTEWORTHY A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.

白细胞介素-4激活的人巨噬细胞(M(IL4))可促进上皮伤口愈合,并在小鼠模型中发挥抗结肠炎作用。来自健康供体和克罗恩病患者的血液单核细胞衍生巨噬细胞(IL4)的降钙素基因相关肽(CGRP)受体链 RAMP1 的 mRNA 表达量增加,这就提出了神经调节巨噬细胞(IL4)修复功能的问题。因此,用降钙素基因相关肽处理人(MIL4)细胞,并评估细胞的吞噬、上皮伤口修复和抗钙化功能。初步研究证实了 CGRP 受体表达的上调,CGRP 受体定位于细胞表面,并通过 CGRP 诱导的 cAMP 增加来确定其功能。暴露于大肠杆菌后,M(IL4,CGRP)甘露糖受体(CD206)和 FcgRIIa(CD32a)mRNA 表达增加,吞噬作用微弱但显著增强,趋化因子分泌减少。在给经噁唑酮处理的 rag1-/- 小鼠全身注射(106 个细胞,ip.)时,M(IL4,CGRP) 的抗溶血效果优于来自同一供血者的 M(IL4)s。与匹配的 M(IL4)-CM相比,M(IL4,CGRP)-CM 在人 CaCo2 上皮细胞系体外创伤试验中的 TGFb 含量更高,伤口愈合能力更强。此外,M(IL4,CGRP)细胞显示环氧化酶(COX)-1 和前列腺素 D2 增加,用吲哚美辛或 SC-560 抑制 COX1 活性的 M(IL4,CGRP)细胞 CM 无法促进损伤的 CaCo2 细胞单层的修复。这些数据证实了人 M(IL4)s的抗钙化作用被 CGRP 增强,而且可能部分依赖于巨噬细胞 COX1/PDG2 的活性。因此,神经元衍生分子的输入是一种局部调节剂,能够增强自体 M(IL4)转移的抗钙化效应。
{"title":"Calcitonin gene-related peptide promotes epithelial reparative and anticolitic functions of IL-4 educated human macrophages.","authors":"Blanca E Callejas, James A Sousa, Kyle L Flannigan, Arthur Wang, Eve Higgins, Aydin I Herik, Shuhua Li, Sruthi Rajeev, Ryan Rosentreter, Remo Panaccione, Derek M McKay","doi":"10.1152/ajpgi.00159.2024","DOIUrl":"10.1152/ajpgi.00159.2024","url":null,"abstract":"<p><p>Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to <i>Escherichia coli</i>. When delivered systemically (10<sup>6</sup> cells IP) to oxazolone-treated <i>rag1<sup>-/-</sup></i> mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo<sub>2</sub> epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D<sub>2</sub> (PGD<sub>2</sub>), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo<sub>2</sub> cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD<sub>2</sub> activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.<b>NEW & NOTEWORTHY</b> A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G1-G16"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of six clinical drugs and dietary intervention in the nonobese CDAA-HFD mouse model of MASH and progressive fibrosis. 六种临床药物和饮食干预在非肥胖 CDAA-HFD 小鼠 MASH 和进行性纤维化模型中的特性。
IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-15 DOI: 10.1152/ajpgi.00110.2024
Malte Hasle Nielsen, Jacob Nøhr-Meldgaard, Mathias Bonde Møllerhøj, Denise Oró, Susanne E Pors, Maja Worm Andersen, Ioannis Kamzolas, Evangelia Petsalaki, Michele Vacca, Lea Mørch Harder, James W Perfield, Sanne Veidal, Henrik H Hansen, Michael Feigh

The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.NEW & NOTEWORTHY The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.

胆碱缺乏L-氨基酸定义的高脂饮食(CDAA-HFD)小鼠模型被广泛用于临床前代谢功能障碍相关性脂肪性肝炎(MASH)研究。为了验证 CDAA-HFD 小鼠的有效性,我们评估了疾病进展以及对塞马鲁肽、拉尼弗兰诺、艾拉弗兰诺、奥贝胆酸 (OCA)、福尔索司他和瑞美替罗的饮食和药物干预的反应。在喂食CDAA-HFD 6周后开始,对塞马鲁肽、拉尼弗兰、艾拉弗兰、OCA、firsocostat或resmetirom进行为期8周的治疗干预分析。塞马鲁肽和拉尼布拉诺作为早期(预防性)治疗进行了为期9周的进一步评估,从喂食CDAA-HFD饮食3周后开始。此外,在喂食 CDAA-HFD 小鼠 6 周后,对其进行为期 8 周的饮食干预(反向进食)的益处进行了评估。CDAA-HFD小鼠表现出非肥胖表型,MASH和纤维化发病和进展快,与人类MASH-纤维化高度相似,饮食诱导20周后肿瘤发生。塞马鲁肽和拉尼布兰诺可部分逆转预防性纤维化,但不能逆转治疗性纤维化。伊拉尼布兰诺是唯一能改善纤维化的干预药物。相比之下,在CDAA-HFD小鼠中,饲料逆转导致脂肪变性完全消退,肝脏炎症和纤维化得到改善。CDAA-HFD 小鼠再现了晚期 MASH 的组织学特征,并伴有进行性严重纤维化,但没有临床转化的肥胖代谢异常表型。CDAA-HFD 小鼠适合用于分析直接针对肝脏脂质代谢、炎症和纤维化的候选药物。药理干预的时机对于确定抗纤维化药物在该模型中的疗效至关重要。
{"title":"Characterization of six clinical drugs and dietary intervention in the nonobese CDAA-HFD mouse model of MASH and progressive fibrosis.","authors":"Malte Hasle Nielsen, Jacob Nøhr-Meldgaard, Mathias Bonde Møllerhøj, Denise Oró, Susanne E Pors, Maja Worm Andersen, Ioannis Kamzolas, Evangelia Petsalaki, Michele Vacca, Lea Mørch Harder, James W Perfield, Sanne Veidal, Henrik H Hansen, Michael Feigh","doi":"10.1152/ajpgi.00110.2024","DOIUrl":"10.1152/ajpgi.00110.2024","url":null,"abstract":"<p><p>The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.<b>NEW & NOTEWORTHY</b> The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G51-G71"},"PeriodicalIF":3.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Gastrointestinal and liver physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1