Aqualysin I is a heat-stable subtilisin-type protease produced by Thermus aquaticus YT-1. The precursor of aqualysin I consists of four domains: an NH2-terminal signal peptide, an NH2-terminal pro-sequence, a protease domain, and a COOH-terminal pro-sequence. In Escherichia coli cells harboring recombinant plasmid carrying the aqualysin I gene, proteolytic activity is obtained on treatment at 65 degrees C and mature enzyme is detected. In the case of mutant genes containing partial deletions in the NH2-terminal pro-sequence, no proteolytic activity was detected and the precursor protein was found to be unstable in E. coli. These results indicate that the NH2-terminal pro-sequence is required to produce the active enzyme by stabilizing the precursor structure. Amino acid substitutions in the conserved sequence of the NH2-terminal pro-sequence found among subtilisin-type proteases made the processing faster compared with the wild type.
A thermostable tryptophanase was extracted from a thermophilic bacterium, Symbiobacterium thermophilum strain T, which is obligately symbiotic with the thermophilic Bacillus strain S. The enzyme was purified 21-fold to homogeneity with 19% recovery by a series of chromatographies using anion-exchange, hydroxylapatite, hydrophobic interaction, and MonoQ anion-exchange columns. The molecular weight of the purified enzyme was estimated to be approximately 210,000 by gel filtration, while the molecular weight of its subunit was 46,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which indicates that the native enzyme is composed of four homologous subunits. The isoelectric point of the enzyme was 4.9. The tryptophanase was stable to heating at 65 degrees C for 20 min and the optimum temperature for the enzyme activity for 20 min reaction was 70 degrees C. The optimum pH was 7.0. The NH2-terminal amino acid sequence of this tryptophanase shows similarity to that of Escherichia coli K-12, despite a great difference in the thermostability of these two enzymes. The purified enzyme catalyzed the degradation (alpha, beta-elimination) of L-tryptophan into indole, pyruvate, and ammonia in the presence of pyridoxal-5'-phosphate. The Km value for L-tryptophan was 1.47 mM. 5-Hydroxy-L-tryptophan, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-L-cysteine, and L-serine were also used as substrates and converted to pyruvate. The reverse reaction of alpha, beta-elimination of this tryptophanase produced L-tryptophan from indole and pyruvate in the presence of a high concentration of ammonium acetate.