Alcohol has a significant impact on health and well-being, from the beneficial aspects of moderate drinking to the detrimental effects of alcoholism. The broad implications of alcohol use on public health have been addressed through a wide range of epidemiological and clinical studies, many of which are described in this issue of Alcohol Research: Current Reviews. Where chronic disease is involved, alcohol use can be a risk factor that not only affects the onset of various chronic diseases but also exacerbates the ongoing extent and severity of those diseases. Lifestyle choices and genetic influences also contribute to, or help to alleviate, that risk.
{"title":"Measuring the burden--current and future research trends: results from the NIAAA Expert Panel on Alcohol and Chronic Disease Epidemiology.","authors":"Rosalind A Breslow, Kenneth J Mukamal","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alcohol has a significant impact on health and well-being, from the beneficial aspects of moderate drinking to the detrimental effects of alcoholism. The broad implications of alcohol use on public health have been addressed through a wide range of epidemiological and clinical studies, many of which are described in this issue of Alcohol Research: Current Reviews. Where chronic disease is involved, alcohol use can be a risk factor that not only affects the onset of various chronic diseases but also exacerbates the ongoing extent and severity of those diseases. Lifestyle choices and genetic influences also contribute to, or help to alleviate, that risk.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"35 2","pages":"250-9"},"PeriodicalIF":9.4,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32383618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nearly 13 years have passed since Alcohol Research and Health (now titled Alcohol Research: Current Reviews) first visited the topic of "Alcohol and Stress." Since that time, the field has advanced considerably. New terms have been developed to describe the complex physiological interactions that occur when an individual is faced with stressful events and more is known about how the brain and body work to offset the changes induced through stress-response mechanisms. An individual's reactions to stress vary according to a number of factors, such as his or her genetic makeup, environment, life events, gender, age, and type and duration of stress. Drinking alcohol has the unique ability to both relieve stress and to be the cause of it, creating in a sense a double-edged sword. Understanding the link between alcohol drinking, stress, and alcohol use disorders (AUDs) is a critical area for ongoing investigation. Discoveries emanating from this field not only add to the burgeoning literature on stress and the risk for disease but also may provide answers to help prevent and intervene in the development of AUDs.
{"title":"Overview: stress and alcohol use disorders revisited.","authors":"Robert M Anthenelli","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Nearly 13 years have passed since Alcohol Research and Health (now titled Alcohol Research: Current Reviews) first visited the topic of \"Alcohol and Stress.\" Since that time, the field has advanced considerably. New terms have been developed to describe the complex physiological interactions that occur when an individual is faced with stressful events and more is known about how the brain and body work to offset the changes induced through stress-response mechanisms. An individual's reactions to stress vary according to a number of factors, such as his or her genetic makeup, environment, life events, gender, age, and type and duration of stress. Drinking alcohol has the unique ability to both relieve stress and to be the cause of it, creating in a sense a double-edged sword. Understanding the link between alcohol drinking, stress, and alcohol use disorders (AUDs) is a critical area for ongoing investigation. Discoveries emanating from this field not only add to the burgeoning literature on stress and the risk for disease but also may provide answers to help prevent and intervene in the development of AUDs.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 4","pages":"386-90"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31355631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Empirical findings from human laboratory and brain-imaging studies are consistent with clinical observations and indicate that chronic alcohol-related dysfunction in emotional and stress responses plays a role in motivation to consume alcohol in people with alcohol use disorders. Recent findings on differences in stress responsivity in alcohol-dependent versus nondependent social drinkers demonstrate alterations in stress pathways that partially may explain the significant contribution of stress-related mechanisms on craving and relapse susceptibility. These findings have significant implications for clinical practice, including (1) the development of novel brain and stress biology-related measures of relapse risk that could serve as biomarkers to identify those most at risk of alcohol relapse during early recovery from alcoholism; and (2) the development of novel interventions that target stress-related effects on the motivation to drink alcohol and on relapse outcomes.
{"title":"How does stress lead to risk of alcohol relapse?","authors":"Rajita Sinha","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Empirical findings from human laboratory and brain-imaging studies are consistent with clinical observations and indicate that chronic alcohol-related dysfunction in emotional and stress responses plays a role in motivation to consume alcohol in people with alcohol use disorders. Recent findings on differences in stress responsivity in alcohol-dependent versus nondependent social drinkers demonstrate alterations in stress pathways that partially may explain the significant contribution of stress-related mechanisms on craving and relapse susceptibility. These findings have significant implications for clinical practice, including (1) the development of novel brain and stress biology-related measures of relapse risk that could serve as biomarkers to identify those most at risk of alcohol relapse during early recovery from alcoholism; and (2) the development of novel interventions that target stress-related effects on the motivation to drink alcohol and on relapse outcomes.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 4","pages":"432-40"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31357126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.
{"title":"Identifying gene networks underlying the neurobiology of ethanol and alcoholism.","authors":"Aaron R Wolen, Michael F Miles","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 3","pages":"306-17"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31031220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bela G Starkman, Amul J Sakharkar, Subhash C Pandey
Genetic and environmental factors play a role in the development of alcoholism. Whole-genome expression profiling has highlighted the importance of several genes that may contribute to alcohol abuse disorders. In addition, more recent findings have added yet another layer of complexity to the overall molecular mechanisms involved in a predisposition to alcoholism and addiction by demonstrating that processes related to genetic factors that do not manifest as DNA sequence changes (i.e., epigenetic processes) play a role. Both acute and chronic ethanol exposure can alter gene expression levels in specific neuronal circuits that govern the behavioral consequences related to tolerance and dependence. The unremitting cycle of alcohol consumption often includes satiation and self-medication with alcohol, followed by excruciating withdrawal symptoms and the resultant relapse, which reflects both the positive and negative affective states of alcohol addiction. Recent studies have indicated that behavioral changes induced by acute and chronic ethanol exposure may involve chromatin remodeling resulting from covalent histone modifications and DNA methylation in the neuronal circuits involving a brain region called the amygdala. These findings have helped identify enzymes involved in epigenetic mechanisms, such as the histone deacetylase, histone acetyltransferase, and DNA methyltransferase enzymes, as novel therapeutic targets for the development of future pharmacotherapies for the treatment of alcoholism.
{"title":"Epigenetics-beyond the genome in alcoholism.","authors":"Bela G Starkman, Amul J Sakharkar, Subhash C Pandey","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Genetic and environmental factors play a role in the development of alcoholism. Whole-genome expression profiling has highlighted the importance of several genes that may contribute to alcohol abuse disorders. In addition, more recent findings have added yet another layer of complexity to the overall molecular mechanisms involved in a predisposition to alcoholism and addiction by demonstrating that processes related to genetic factors that do not manifest as DNA sequence changes (i.e., epigenetic processes) play a role. Both acute and chronic ethanol exposure can alter gene expression levels in specific neuronal circuits that govern the behavioral consequences related to tolerance and dependence. The unremitting cycle of alcohol consumption often includes satiation and self-medication with alcohol, followed by excruciating withdrawal symptoms and the resultant relapse, which reflects both the positive and negative affective states of alcohol addiction. Recent studies have indicated that behavioral changes induced by acute and chronic ethanol exposure may involve chromatin remodeling resulting from covalent histone modifications and DNA methylation in the neuronal circuits involving a brain region called the amygdala. These findings have helped identify enzymes involved in epigenetic mechanisms, such as the histone deacetylase, histone acetyltransferase, and DNA methyltransferase enzymes, as novel therapeutic targets for the development of future pharmacotherapies for the treatment of alcoholism.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 3","pages":"293-305"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31031219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kari J Buck, Lauren C Milner, Deaunne L Denmark, Seth G N Grant, Laura B Kozell
The genetic determinants of alcoholism still are largely unknown, hindering effective treatment and prevention. Systematic approaches to gene discovery are critical if novel genes and mechanisms involved in alcohol dependence are to be identified. Although no animal model can duplicate all aspects of alcoholism in humans, robust animal models for specific alcohol-related traits, including physiological alcohol dependence and associated withdrawal, have been invaluable resources. Using a variety of genetic animal models, the identification of regions of chromosomal DNA that contain a gene or genes which affect a complex phenotype (i.e., quantitative trait loci [QTLs]) has allowed unbiased searches for candidate genes. Several QTLs with large effects on alcohol withdrawal severity in mice have been detected, and fine mapping of these QTLs has placed them in small intervals on mouse chromosomes 1 and 4 (which correspond to certain regions on human chromosomes 1 and 9). Subsequent work led to the identification of underlying quantitative trait genes (QTGs) (e.g., Mpdz) and high-quality QTG candidates (e.g., Kcnj9 and genes involved in mitochondrial respiration and oxidative stress) and their plausible mechanisms of action. Human association studies provide supporting evidence that these QTLs and QTGs may be directly relevant to alcohol risk factors in clinical populations.
{"title":"Discovering genes involved in alcohol dependence and other alcohol responses: role of animal models.","authors":"Kari J Buck, Lauren C Milner, Deaunne L Denmark, Seth G N Grant, Laura B Kozell","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The genetic determinants of alcoholism still are largely unknown, hindering effective treatment and prevention. Systematic approaches to gene discovery are critical if novel genes and mechanisms involved in alcohol dependence are to be identified. Although no animal model can duplicate all aspects of alcoholism in humans, robust animal models for specific alcohol-related traits, including physiological alcohol dependence and associated withdrawal, have been invaluable resources. Using a variety of genetic animal models, the identification of regions of chromosomal DNA that contain a gene or genes which affect a complex phenotype (i.e., quantitative trait loci [QTLs]) has allowed unbiased searches for candidate genes. Several QTLs with large effects on alcohol withdrawal severity in mice have been detected, and fine mapping of these QTLs has placed them in small intervals on mouse chromosomes 1 and 4 (which correspond to certain regions on human chromosomes 1 and 9). Subsequent work led to the identification of underlying quantitative trait genes (QTGs) (e.g., Mpdz) and high-quality QTG candidates (e.g., Kcnj9 and genes involved in mitochondrial respiration and oxidative stress) and their plausible mechanisms of action. Human association studies provide supporting evidence that these QTLs and QTGs may be directly relevant to alcohol risk factors in clinical populations.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 3","pages":"367-74"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31033959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanja N Alim, William B Lawson, Adriana Feder, Brian M Iacoviello, Shireen Saxena, Christopher R Bailey, Allison M Greene, Alexander Neumeister
Acute and chronic stress-related mechanisms play an important role in the development of addiction and its chronic, relapsing nature. Multisystem adaptations in brain, body, behavioral, and social function may contribute to a dysregulated physiological state that is maintained beyond the homeostatic range. In addition, chronic abuse of substances leads to an altered set point across multiple systems. Resilience can be defined as the absence of psychopathology despite exposure to high stress and reflects a person's ability to cope successfully in the face of adversity, demonstrating adaptive psychological and physiological stress responses. The study of resilience can be approached by examining interindividual stress responsibility at multiple phenotypic levels, ranging from psychological differences in the way people cope with stress to differences in neurochemical or neural circuitry function. The ultimate goal of such research is the development of strategies and interventions to enhance resilience and coping in the face of stress and prevent the onset of addiction problems or relapse.
{"title":"Resilience to meet the challenge of addiction: psychobiology and clinical considerations.","authors":"Tanja N Alim, William B Lawson, Adriana Feder, Brian M Iacoviello, Shireen Saxena, Christopher R Bailey, Allison M Greene, Alexander Neumeister","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Acute and chronic stress-related mechanisms play an important role in the development of addiction and its chronic, relapsing nature. Multisystem adaptations in brain, body, behavioral, and social function may contribute to a dysregulated physiological state that is maintained beyond the homeostatic range. In addition, chronic abuse of substances leads to an altered set point across multiple systems. Resilience can be defined as the absence of psychopathology despite exposure to high stress and reflects a person's ability to cope successfully in the face of adversity, demonstrating adaptive psychological and physiological stress responses. The study of resilience can be approached by examining interindividual stress responsibility at multiple phenotypic levels, ranging from psychological differences in the way people cope with stress to differences in neurochemical or neural circuitry function. The ultimate goal of such research is the development of strategies and interventions to enhance resilience and coping in the face of stress and prevent the onset of addiction problems or relapse.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 4","pages":"506-15"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31356558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.
{"title":"Stress, epigenetics, and alcoholism.","authors":"Sachin Moonat, Subhash C Pandey","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 4","pages":"495-505"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31356556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case-control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that encode two enzymes involved in alcohol metabolism-alcohol dehydrogenase and aldehyde dehydrogenase. Accumulating evidence indicates that variations in numerous other genes have smaller but measurable effects.
{"title":"Genes contributing to the development of alcoholism: an overview.","authors":"Howard J Edenberg","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Genetic factors (i.e., variations in specific genes) account for a substantial portion of the risk for alcoholism. However, identifying those genes and the specific variations involved is challenging. Researchers have used both case-control and family studies to identify genes related to alcoholism risk. In addition, different strategies such as candidate gene analyses and genome-wide association studies have been used. The strongest effects have been found for specific variants of genes that encode two enzymes involved in alcohol metabolism-alcohol dehydrogenase and aldehyde dehydrogenase. Accumulating evidence indicates that variations in numerous other genes have smaller but measurable effects.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 3","pages":"336-8"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31031222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One approach to identifying the causes of alcoholism, particularly without crossing ethical boundaries in human subjects, is to look at the person's genome (and particularly at the variations that naturally arise in the DNA) to identify those variations that seem to be found more commonly in people with the disease. Some of these analyses have focused on the genes that encode subunits of the receptor for the brain chemical (i.e., neurotransmitter) γ-aminobutyric acid (GABA). Different epidemiological genetic studies have provided evidence that variations in certain GABAA receptor (GABAA-R) subunits, particularly subunits α2 and γ1, are correlated with alcohol dependence. Manipulations of these genes and their expression in mice and rats also are offering clues as to the role of specific GABAA-Rs in the molecular mechanisms underlying alcoholism and suggest possibilities for new therapeutic approaches.
{"title":"Alcohol Dependence and Genes Encoding α2 and γ1 GABAA Receptor Subunits: Insights from Humans and Mice.","authors":"Cecilia M Borghese, R Adron Harris","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>One approach to identifying the causes of alcoholism, particularly without crossing ethical boundaries in human subjects, is to look at the person's genome (and particularly at the variations that naturally arise in the DNA) to identify those variations that seem to be found more commonly in people with the disease. Some of these analyses have focused on the genes that encode subunits of the receptor for the brain chemical (i.e., neurotransmitter) γ-aminobutyric acid (GABA). Different epidemiological genetic studies have provided evidence that variations in certain GABAA receptor (GABAA-R) subunits, particularly subunits α2 and γ1, are correlated with alcohol dependence. Manipulations of these genes and their expression in mice and rats also are offering clues as to the role of specific GABAA-Rs in the molecular mechanisms underlying alcoholism and suggest possibilities for new therapeutic approaches.</p>","PeriodicalId":7736,"journal":{"name":"Alcohol Research : Current Reviews","volume":"34 3","pages":"345-53"},"PeriodicalIF":9.4,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31031225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}