Pub Date : 2022-07-19DOI: 10.3390/analytica3030020
Ruihao Luo, J. Popp, T. Bocklitz
Raman spectroscopy (RS) is a spectroscopic method which indirectly measures the vibrational states within samples. This information on vibrational states can be utilized as spectroscopic fingerprints of the sample, which, subsequently, can be used in a wide range of application scenarios to determine the chemical composition of the sample without altering it, or to predict a sample property, such as the disease state of patients. These two examples are only a small portion of the application scenarios, which range from biomedical diagnostics to material science questions. However, the Raman signal is weak and due to the label-free character of RS, the Raman data is untargeted. Therefore, the analysis of Raman spectra is challenging and machine learning based chemometric models are needed. As a subset of representation learning algorithms, deep learning (DL) has had great success in data science for the analysis of Raman spectra and photonic data in general. In this review, recent developments of DL algorithms for Raman spectroscopy and the current challenges in the application of these algorithms will be discussed.
{"title":"Deep Learning for Raman Spectroscopy: A Review","authors":"Ruihao Luo, J. Popp, T. Bocklitz","doi":"10.3390/analytica3030020","DOIUrl":"https://doi.org/10.3390/analytica3030020","url":null,"abstract":"Raman spectroscopy (RS) is a spectroscopic method which indirectly measures the vibrational states within samples. This information on vibrational states can be utilized as spectroscopic fingerprints of the sample, which, subsequently, can be used in a wide range of application scenarios to determine the chemical composition of the sample without altering it, or to predict a sample property, such as the disease state of patients. These two examples are only a small portion of the application scenarios, which range from biomedical diagnostics to material science questions. However, the Raman signal is weak and due to the label-free character of RS, the Raman data is untargeted. Therefore, the analysis of Raman spectra is challenging and machine learning based chemometric models are needed. As a subset of representation learning algorithms, deep learning (DL) has had great success in data science for the analysis of Raman spectra and photonic data in general. In this review, recent developments of DL algorithms for Raman spectroscopy and the current challenges in the application of these algorithms will be discussed.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80601754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-02DOI: 10.3390/analytica3030019
P. Banou, S. Boyatzis, Konstantinos Choulis, Thanasis Karabotsos, Dimitris Tsimogiannis, L. Tsakanika, C. Tzia, A. Alexopoulou
Condition assessment of works of art created with oil media on paper could be a complex matter when presenting problems of damage due to the absorption of oil binders by the paper support, since they depend on several factors and occur in variable conditions. The present work refers to the results of an investigation on the effect of linseed oils on the color, opacity, morphology, tensile strength, and chemical properties of lignocellulosic papers, in comparison to that of pure cellulosic papers. Lignocellulosic papers are involved in research on new, yet significant, parameters that might influence the behavior of the oil-impregnated areas of the supports upon aging. The research was applied to mock-ups, made of two types of lignocellulosic paper impregnated with three types of linseed oil and subjected to accelaratated ageing in specific conditions of relative humidity and temperature in closed environment. The research involved colorimetry, opacity, tensile strength, pH measurements, SEM, FTIR, and VOC analysis with GC-MS. The results indicated that thermal-humid ageing caused the gradual darkening of the oil-impregnated mock-ups, alterations in opacity, and decrease of pH values, depending mainly on the formulation of linseed oil, as well as a reduction in tensile strength. FTIR analysis results indicated that the chemical changes that occur upon ageing supported the recorded optical and mechanical alterations, while VOC emissions are both associated with the paper type and the kinetics of degradation of the different types of linseed oil.
{"title":"Oil Media on Paper: Investigating the Effect of Linseed Oils on Lignocellulosic Paper Supports","authors":"P. Banou, S. Boyatzis, Konstantinos Choulis, Thanasis Karabotsos, Dimitris Tsimogiannis, L. Tsakanika, C. Tzia, A. Alexopoulou","doi":"10.3390/analytica3030019","DOIUrl":"https://doi.org/10.3390/analytica3030019","url":null,"abstract":"Condition assessment of works of art created with oil media on paper could be a complex matter when presenting problems of damage due to the absorption of oil binders by the paper support, since they depend on several factors and occur in variable conditions. The present work refers to the results of an investigation on the effect of linseed oils on the color, opacity, morphology, tensile strength, and chemical properties of lignocellulosic papers, in comparison to that of pure cellulosic papers. Lignocellulosic papers are involved in research on new, yet significant, parameters that might influence the behavior of the oil-impregnated areas of the supports upon aging. The research was applied to mock-ups, made of two types of lignocellulosic paper impregnated with three types of linseed oil and subjected to accelaratated ageing in specific conditions of relative humidity and temperature in closed environment. The research involved colorimetry, opacity, tensile strength, pH measurements, SEM, FTIR, and VOC analysis with GC-MS. The results indicated that thermal-humid ageing caused the gradual darkening of the oil-impregnated mock-ups, alterations in opacity, and decrease of pH values, depending mainly on the formulation of linseed oil, as well as a reduction in tensile strength. FTIR analysis results indicated that the chemical changes that occur upon ageing supported the recorded optical and mechanical alterations, while VOC emissions are both associated with the paper type and the kinetics of degradation of the different types of linseed oil.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90196423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-16DOI: 10.3390/analytica3020018
H. M. Albishri, Naflaa A. Aldawsari, D. Abd El-Hady
Benzodiazepines (BZDs) are one of the most important drugs that have been used in the treatment of neuropsychological disorders. Indeed, BZDs are abused by drug addicts regardless of their therapeutic uses. Therefore, it was important in forensic and clinical toxicology to reach an easy and reliable method for the screening and quantification of BZDs in the human plasma matrix. In the current work, five BZDs, namely bromazepam, clonazepam, lorazepam, nordiazepam and diazepam were simultaneously separated and detected by a simple and reliable RPLC method in a human plasma matrix. Isocratic mobile elution consisting of 20 mmol L−1 phosphate buffer (pH 7.0) and methanol (50:50, v/v) on a Symmetry C18 column was employed. The flow rate, wavelength and column temperature were fixed at 1.0 mL min−1, 214 nm and 40 °C, respectively. The proposed method was validated, giving a linearity within the concentration ranges 5–500 ng mL−1 for bromazepam and diazepam, 3–500 ng mL−1 for clonazepam and lorazepam and 1–500 ng mL−1 for nordiazepam with a determination coefficient (R2) more than 0.9992. The LOD values for the selected BZDs ranged from 0.54 to 2.32 and from 1.78 to 7.65 ng mL−1 for standard methanolic and plasma matrices, respectively. Precision, accuracy, selectivity, stability, and robustness were some of the terms considered in validating the current RPLC method. Based on these results, a simple and reliable RPLC method was successfully applied to quantify BZDs in human plasma matrix appearing with recoveries ranging from 96.5 to 107.5% and interday RSD less than 4%. The current developed method was useful for rapidly screening the most commonly used BZDs in the market within their therapeutic concentration ranges.
苯二氮卓类药物(BZDs)是目前用于治疗神经心理疾病的重要药物之一。事实上,bzd被吸毒者滥用,无论其治疗用途如何。因此,寻找一种简便、可靠的方法对人血浆基质中BZDs的筛选和定量具有重要的法医学和临床毒理学意义。本工作采用简单可靠的RPLC方法,在人血浆基质中同时分离并检测溴西泮、氯硝西泮、劳拉西泮、去甲西泮和地西泮5种bzd。采用等温流动洗脱,由20 mmol L−1磷酸盐缓冲液(pH 7.0)和甲醇(50:50,v/v)在对称C18柱上组成。流速为1.0 mL min - 1,波长为214 nm,柱温为40℃。结果表明:溴西泮和地西泮在5 ~ 500 ng mL−1、氯硝西泮和劳拉西泮在3 ~ 500 ng mL−1、去硝西泮在1 ~ 500 ng mL−1的浓度范围内呈线性关系,测定系数(R2)均大于0.9992。对于标准甲醇和血浆基质,所选BZDs的LOD值分别为0.54 ~ 2.32和1.78 ~ 7.65 ng mL−1。精密度、准确度、选择性、稳定性和鲁棒性是验证当前RPLC方法所考虑的一些术语。建立了简便可靠的RPLC定量方法,回收率为96.5 ~ 107.5%,日间RSD < 4%。目前开发的方法可用于快速筛选市场上最常用的BZDs在其治疗浓度范围内。
{"title":"A Simple and Reliable Liquid Chromatographic Method for Simultaneous Determination of Five Benzodiazepine Drugs in Human Plasma","authors":"H. M. Albishri, Naflaa A. Aldawsari, D. Abd El-Hady","doi":"10.3390/analytica3020018","DOIUrl":"https://doi.org/10.3390/analytica3020018","url":null,"abstract":"Benzodiazepines (BZDs) are one of the most important drugs that have been used in the treatment of neuropsychological disorders. Indeed, BZDs are abused by drug addicts regardless of their therapeutic uses. Therefore, it was important in forensic and clinical toxicology to reach an easy and reliable method for the screening and quantification of BZDs in the human plasma matrix. In the current work, five BZDs, namely bromazepam, clonazepam, lorazepam, nordiazepam and diazepam were simultaneously separated and detected by a simple and reliable RPLC method in a human plasma matrix. Isocratic mobile elution consisting of 20 mmol L−1 phosphate buffer (pH 7.0) and methanol (50:50, v/v) on a Symmetry C18 column was employed. The flow rate, wavelength and column temperature were fixed at 1.0 mL min−1, 214 nm and 40 °C, respectively. The proposed method was validated, giving a linearity within the concentration ranges 5–500 ng mL−1 for bromazepam and diazepam, 3–500 ng mL−1 for clonazepam and lorazepam and 1–500 ng mL−1 for nordiazepam with a determination coefficient (R2) more than 0.9992. The LOD values for the selected BZDs ranged from 0.54 to 2.32 and from 1.78 to 7.65 ng mL−1 for standard methanolic and plasma matrices, respectively. Precision, accuracy, selectivity, stability, and robustness were some of the terms considered in validating the current RPLC method. Based on these results, a simple and reliable RPLC method was successfully applied to quantify BZDs in human plasma matrix appearing with recoveries ranging from 96.5 to 107.5% and interday RSD less than 4%. The current developed method was useful for rapidly screening the most commonly used BZDs in the market within their therapeutic concentration ranges.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"310 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75018204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-02DOI: 10.3390/analytica3020017
I. Ali, M. Suhail, M. Locatelli, Salim Ali, Hassan Y. Aboul-Enein
Ionic liquids are a very important class of compounds due to their remarkable properties and wide range of applications. On the other hand, capillary electrophoresis is also gaining importance in separation science because of its fast speed and inexpensive nature. The use of ionic liquids in capillary electrophoresis is gaining importance continuously. The present review article describes the applications of ionic liquids in capillary electrophoresis. This article also describes the general aspects of ionic liquids and capillary electrophoresis. The use of ionic liquids in capillary electrophoresis, optimization of separation, mechanism of separation, and toxicity of ionic liquids, as well as their future perspectives, have also been discussed. It was observed that not much work has been performed in capillary electrophoresis using ionic liquids. It was also realized that the use of ionic liquids in capillary electrophoresis could revolutionize analytical science. Briefly, there is a great need for the use of ionic liquids in capillary electrophoresis for better and more effective separation.
{"title":"Role of Ionic Liquids in Capillary Electrophoresis","authors":"I. Ali, M. Suhail, M. Locatelli, Salim Ali, Hassan Y. Aboul-Enein","doi":"10.3390/analytica3020017","DOIUrl":"https://doi.org/10.3390/analytica3020017","url":null,"abstract":"Ionic liquids are a very important class of compounds due to their remarkable properties and wide range of applications. On the other hand, capillary electrophoresis is also gaining importance in separation science because of its fast speed and inexpensive nature. The use of ionic liquids in capillary electrophoresis is gaining importance continuously. The present review article describes the applications of ionic liquids in capillary electrophoresis. This article also describes the general aspects of ionic liquids and capillary electrophoresis. The use of ionic liquids in capillary electrophoresis, optimization of separation, mechanism of separation, and toxicity of ionic liquids, as well as their future perspectives, have also been discussed. It was observed that not much work has been performed in capillary electrophoresis using ionic liquids. It was also realized that the use of ionic liquids in capillary electrophoresis could revolutionize analytical science. Briefly, there is a great need for the use of ionic liquids in capillary electrophoresis for better and more effective separation.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"122 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82236932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-23DOI: 10.3390/analytica3020016
M. S. Heya, M. J. Verde-Star, S. Galindo-Rodríguez, C. Rivas-Morales, E. Robledo-Leal, D. García-Hernández
We determined the antifungal and antimicrobial sensitivity of Euphorbia tirucalli extracts in vitro. Antifungal and antibacterial activity was determined based on the M38-A and M26-A protocols, respectively. The methanolic and ethanolic partitions demonstrated antidermatophytic activity against Trichophyton rubrum (MIC 125 µg/mL for ethanol and MIC 125 µg/mL for methanol) and T. interdigitalis (MIC 500 µg/mL for ethanol; 125 µg/mL for methanol). These partitions also showed antibacterial activity—the ethanolic partition had an MIC of 1.56 ± 0.02 mg/mL against methicillin-resistant Staphylococcus aureus (clinical isolate), 6.25 ± 0.04 mg/mL against Staphylococcus aureus BAA-44, 3.13 ± 0.13 mg/mL against Pseudomonas aeruginosa 27853, and 3.13 ± 0.15 mg/mL against Escherichia coli ATCC 25922; the methanolic partition showed an MIC of 1.56 ± 0.02 mg/mL against P. aeruginosa 27853 and 1.56 ± 0.043 mg/mL against E. coli ATCC 25922. These partitions show promise as antimicrobial agents or adjuvants in the treatment of infections caused by these microorganisms.
{"title":"In Vitro Antifungal Antibacterial Activity of Partitions from Euphorbia tirucalli L.","authors":"M. S. Heya, M. J. Verde-Star, S. Galindo-Rodríguez, C. Rivas-Morales, E. Robledo-Leal, D. García-Hernández","doi":"10.3390/analytica3020016","DOIUrl":"https://doi.org/10.3390/analytica3020016","url":null,"abstract":"We determined the antifungal and antimicrobial sensitivity of Euphorbia tirucalli extracts in vitro. Antifungal and antibacterial activity was determined based on the M38-A and M26-A protocols, respectively. The methanolic and ethanolic partitions demonstrated antidermatophytic activity against Trichophyton rubrum (MIC 125 µg/mL for ethanol and MIC 125 µg/mL for methanol) and T. interdigitalis (MIC 500 µg/mL for ethanol; 125 µg/mL for methanol). These partitions also showed antibacterial activity—the ethanolic partition had an MIC of 1.56 ± 0.02 mg/mL against methicillin-resistant Staphylococcus aureus (clinical isolate), 6.25 ± 0.04 mg/mL against Staphylococcus aureus BAA-44, 3.13 ± 0.13 mg/mL against Pseudomonas aeruginosa 27853, and 3.13 ± 0.15 mg/mL against Escherichia coli ATCC 25922; the methanolic partition showed an MIC of 1.56 ± 0.02 mg/mL against P. aeruginosa 27853 and 1.56 ± 0.043 mg/mL against E. coli ATCC 25922. These partitions show promise as antimicrobial agents or adjuvants in the treatment of infections caused by these microorganisms.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"316 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76458312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-05DOI: 10.3390/analytica3020015
G. Ianiri, Cristina Di Fiore, S. Passarella, Ivan Notardonato, Alessia Iannone, Fabiana Carriera, Virgilio Stillittano, V. De Felice, M. V. Russo, P. Avino
In this study, a simple, fast, and effective methodology has been developed for the detection and quantification of seven phthalates potentially released in hot drinks from disposable containers used in vending machines. The authors determined the optimal conditions to be applied during the various steps of extraction of seven phthalates (DMP, DEP, DBP, DiBP, DEHP, DNOP, and DDP) from hot beverages using a model solution. The extraction and preconcentration technique used was ultrasound–vortex-assisted dispersive liquid–liquid microextraction (UVA-DLLME) followed by gas chromatographic analysis obtaining recoveries from 66.7% to 101.2% with precision and reproducibility <6.3% and <11.1%, respectively. The influence of waiting time, from the dispensing of the drink to its actual consumption, for the extraction of molecules was investigated, obtaining a temporal release profile slightly shifted towards the PAEs with higher molecular weight and vice versa for those with low molecular weight. In addition, the best instrumental parameters to be applied during the analysis of the extracts obtained were established. This optimization was carried out using GC-FID, whereas the analysis of real samples was carried out by means of GC-IT/MS for ultra-trace analysis purposes; limits of detection (LODs) ranging between 0.8 ng mL−1 and 15.4 ng mL−1 and limits of quantification (LOQs) from 1.6 ng mL−1 to 35.8 ng mL−1, both of them lower than those found by FID, were obtained.
本研究开发了一种简单、快速、有效的方法,用于检测和定量自动售货机使用的一次性容器中热饮中可能释放的七种邻苯二甲酸盐。采用模型溶液,确定了从热饮中提取7种邻苯二甲酸酯(DMP、DEP、DBP、DiBP、DEHP、DNOP和DDP)各步骤的最佳条件。采用超声-涡辅助分散液液微萃取(UVA-DLLME) -气相色谱法提取富集,回收率为66.7% ~ 101.2%,精密度<6.3%,重现性<11.1%。研究了从调配饮料到实际消费的等待时间对分子提取的影响,获得了分子量较高的PAEs的时间释放曲线,分子量较低的PAEs的时间释放曲线反之亦然。此外,还确定了提取液分析时的最佳仪器参数。使用GC-FID进行优化,而实际样品的分析使用GC-IT/MS进行超痕量分析;检出限为0.8 ~ 15.4 ng mL−1,定量限为1.6 ~ 35.8 ng mL−1,均低于FID。
{"title":"Methodology for Determining Phthalate Residues by Ultrasound–Vortex-Assisted Dispersive Liquid–Liquid Microextraction and GC-IT/MS in Hot Drink Samples by Vending Machines","authors":"G. Ianiri, Cristina Di Fiore, S. Passarella, Ivan Notardonato, Alessia Iannone, Fabiana Carriera, Virgilio Stillittano, V. De Felice, M. V. Russo, P. Avino","doi":"10.3390/analytica3020015","DOIUrl":"https://doi.org/10.3390/analytica3020015","url":null,"abstract":"In this study, a simple, fast, and effective methodology has been developed for the detection and quantification of seven phthalates potentially released in hot drinks from disposable containers used in vending machines. The authors determined the optimal conditions to be applied during the various steps of extraction of seven phthalates (DMP, DEP, DBP, DiBP, DEHP, DNOP, and DDP) from hot beverages using a model solution. The extraction and preconcentration technique used was ultrasound–vortex-assisted dispersive liquid–liquid microextraction (UVA-DLLME) followed by gas chromatographic analysis obtaining recoveries from 66.7% to 101.2% with precision and reproducibility <6.3% and <11.1%, respectively. The influence of waiting time, from the dispensing of the drink to its actual consumption, for the extraction of molecules was investigated, obtaining a temporal release profile slightly shifted towards the PAEs with higher molecular weight and vice versa for those with low molecular weight. In addition, the best instrumental parameters to be applied during the analysis of the extracts obtained were established. This optimization was carried out using GC-FID, whereas the analysis of real samples was carried out by means of GC-IT/MS for ultra-trace analysis purposes; limits of detection (LODs) ranging between 0.8 ng mL−1 and 15.4 ng mL−1 and limits of quantification (LOQs) from 1.6 ng mL−1 to 35.8 ng mL−1, both of them lower than those found by FID, were obtained.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74797887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-16DOI: 10.3390/analytica3020013
M. J. Nunes, José J. G. Moura, J. Noronha, L. C. Branco, A. Samhan-Arias, João P. Sousa, C. Rouco, C. Cordas
Sweat is a potential biological fluid for the non-invasive analytical assessment of diverse molecules, including biomarkers. Notwithstanding, the sampling methodology is critical, and it must be assessed prior to using sweat for clinical diagnosis. In the current work, the analytical methodology was further developed taking into account the sampling step, in view of the identification and level variations of sweat components that have potential to be stress biomarkers using separation by liquid chromatography and detection by tandem mass spectrometry, in order to attain a screening profile of 26 molecules in just one stage. As such, the molecule identification was used as a test for the evaluation of the sampling procedures, including the location on the body, using patches for long-term sampling and vials for direct sampling, through a qualitative approach. From this evaluation it was possible to conclude that the sampling may be performed on the chest or back skin. Additionally, possible interference was evaluated. The long-term sampling with patches can be used under both rest and exercise conditions with variation of the detected molecule’s levels. The direct sampling, using vials, has the advantage of not having interferences but the disadvantage of only being effective after exercise in order to have enough sample for sweat analysis.
{"title":"Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection","authors":"M. J. Nunes, José J. G. Moura, J. Noronha, L. C. Branco, A. Samhan-Arias, João P. Sousa, C. Rouco, C. Cordas","doi":"10.3390/analytica3020013","DOIUrl":"https://doi.org/10.3390/analytica3020013","url":null,"abstract":"Sweat is a potential biological fluid for the non-invasive analytical assessment of diverse molecules, including biomarkers. Notwithstanding, the sampling methodology is critical, and it must be assessed prior to using sweat for clinical diagnosis. In the current work, the analytical methodology was further developed taking into account the sampling step, in view of the identification and level variations of sweat components that have potential to be stress biomarkers using separation by liquid chromatography and detection by tandem mass spectrometry, in order to attain a screening profile of 26 molecules in just one stage. As such, the molecule identification was used as a test for the evaluation of the sampling procedures, including the location on the body, using patches for long-term sampling and vials for direct sampling, through a qualitative approach. From this evaluation it was possible to conclude that the sampling may be performed on the chest or back skin. Additionally, possible interference was evaluated. The long-term sampling with patches can be used under both rest and exercise conditions with variation of the detected molecule’s levels. The direct sampling, using vials, has the advantage of not having interferences but the disadvantage of only being effective after exercise in order to have enough sample for sweat analysis.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82262875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.3390/analytica3020012
Raneem Ahmad, M. Hailat, Z. Zakaraya, O. Al Meanazel, W. Abu Dayyih
Nonsteroidal anti-inflammatory drugs are the most commonly prescribed anti-inflammatory drugs worldwide. The most common side effects are gastrointestinal. Pantoprazole, a proton pump inhibitor (PPI), can be used to prevent these events from occurring. In this study, we attempt to develop and validate a novel method for determining and validating the fixed-dose combination of meloxicam and pantoprazole. A new method has been developed and validated to estimate pantoprazole and meloxicam in a fixed-dose combination using RP-HPLC. In order to separate the drugs, a mobile phase phosphate buffer/acetate was used (30:70, v/v), with a pH of 3.4 and a flow rate of 1.0 mL/min at 25 °C. The detection wavelength for the drugs was at a wavelength of 310 nm. The retention times for meloxicam and pantoprazole were 6 and 9 min, respectively. In concentrations ranging from 0.1 to 200 mg/L, the linearity of the detector was established. The r was 0.9998 for both drugs. Recovery rates ranged from 98 to 102% on average. According to the guidelines of the International Council on Harmonization, the results were satisfactory. Using the method presented herein, the pharmaceutical formulation of the combined meloxicam and pantoprazole can be routinely tested.
{"title":"Development and Validation of an HPLC Method for the Determination of Meloxicam and Pantoprazole in a Combined Formulation","authors":"Raneem Ahmad, M. Hailat, Z. Zakaraya, O. Al Meanazel, W. Abu Dayyih","doi":"10.3390/analytica3020012","DOIUrl":"https://doi.org/10.3390/analytica3020012","url":null,"abstract":"Nonsteroidal anti-inflammatory drugs are the most commonly prescribed anti-inflammatory drugs worldwide. The most common side effects are gastrointestinal. Pantoprazole, a proton pump inhibitor (PPI), can be used to prevent these events from occurring. In this study, we attempt to develop and validate a novel method for determining and validating the fixed-dose combination of meloxicam and pantoprazole. A new method has been developed and validated to estimate pantoprazole and meloxicam in a fixed-dose combination using RP-HPLC. In order to separate the drugs, a mobile phase phosphate buffer/acetate was used (30:70, v/v), with a pH of 3.4 and a flow rate of 1.0 mL/min at 25 °C. The detection wavelength for the drugs was at a wavelength of 310 nm. The retention times for meloxicam and pantoprazole were 6 and 9 min, respectively. In concentrations ranging from 0.1 to 200 mg/L, the linearity of the detector was established. The r was 0.9998 for both drugs. Recovery rates ranged from 98 to 102% on average. According to the guidelines of the International Council on Harmonization, the results were satisfactory. Using the method presented herein, the pharmaceutical formulation of the combined meloxicam and pantoprazole can be routinely tested.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73241072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-18DOI: 10.3390/analytica3010010
H. Mnculwane
There is an increasing worldwide demand for rare earth elements (REEs) in new technological applications—such as electronics, superconductors, space applications, etc. The determination of low concentration REEs in geological samples is extremely important since they are the source materials for all REE products. In order to improve the accuracy and precision of REE measurements by inductively coupled plasma mass spectrometry (ICP-MS); complete digestion of refractory phases and minerals in the samples, low procedural blanks, separation of interfering matrix, and elimination of interference on the mass of the analytes of interest must be fulfilled. Conventional methods that use a hotplate and a mixture of four acids are effective but can take time to achieve complete dissolution of samples that contain highly refractory phases, which is unacceptable in the mining and metallurgical industry. Such difficult samples necessitate high-temperature alkaline flux fusion as it offers a faster and more efficient alternative to acid digestion. This paper presents an accurate, precise, rapid, and reliable method for rare earth element analysis by ICP-MS with low detection limits, which involves no sample pre-concentration, and is therefore able to deliver data rapidly. The analytical performance of the developed method was tested successfully on various REE rock-type certified reference materials and evaluated statistically. The results obtained were in reasonable agreement with published certificate values.
{"title":"Rare Earth Elements Determination by Inductively Coupled Plasma Mass Spectrometry after Alkaline Fusion Preparation","authors":"H. Mnculwane","doi":"10.3390/analytica3010010","DOIUrl":"https://doi.org/10.3390/analytica3010010","url":null,"abstract":"There is an increasing worldwide demand for rare earth elements (REEs) in new technological applications—such as electronics, superconductors, space applications, etc. The determination of low concentration REEs in geological samples is extremely important since they are the source materials for all REE products. In order to improve the accuracy and precision of REE measurements by inductively coupled plasma mass spectrometry (ICP-MS); complete digestion of refractory phases and minerals in the samples, low procedural blanks, separation of interfering matrix, and elimination of interference on the mass of the analytes of interest must be fulfilled. Conventional methods that use a hotplate and a mixture of four acids are effective but can take time to achieve complete dissolution of samples that contain highly refractory phases, which is unacceptable in the mining and metallurgical industry. Such difficult samples necessitate high-temperature alkaline flux fusion as it offers a faster and more efficient alternative to acid digestion. This paper presents an accurate, precise, rapid, and reliable method for rare earth element analysis by ICP-MS with low detection limits, which involves no sample pre-concentration, and is therefore able to deliver data rapidly. The analytical performance of the developed method was tested successfully on various REE rock-type certified reference materials and evaluated statistically. The results obtained were in reasonable agreement with published certificate values.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86787301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-18DOI: 10.3390/analytica3010011
A. Cetinkaya, M. Caglayan, M. A. Unal, Pinar Beyazkilic, Caglar Elbuken, E. B. Atici, S. Ozkan
Pazopanib (PAZ), a tyrosine kinase inhibitor, is used to treat advanced renal cell carcinoma (RCC) and advanced soft tissue sarcoma (STS). The FDA approved PAZ for RCC in 2009 and for STS in 2012. The antitumor activity of pazopanib, according to the degree of inhibition, shows different results depending on the dose. Renal cell carcinoma is the most sensitive carcinoma to pazopanib, with 77% inhibition at the 10 mg/kg dose. Clinical studies have shown 53% to 65% inhibition in carcinomas such as breast carcinoma, prostate carcinoma, and melanoma. Plasma proteins such as human serum albumin (HSA) have a critical role in transporting and storing bioactive components. This feature of HSA is very important for the development of cancer therapy. Here, we investigated the interaction between PAZ and HSA to evaluate their binding strength, binding types, and conformational change in HSA. We used spectroscopic methods to assess the drug–protein interaction. Fluorescence measurements revealed that the interaction of PAZ with HSA occurred via the static quenching mechanism. The calculated binding number and binding constants were 1.041 and 1.436 × 106 M−1, respectively, at 298.15 K based on fluorescence screening. The high binding constant and calculated Gibbs free energy at different temperatures showed spontaneous and strong binding. Circular dichroism measurements showed that the α-helix structure of HSA was retained as the secondary structure, with a slight reduction in its percentage after adding PAZ. Furthermore, molecular modeling studies suggested that the docking score of PAZ is higher than those of bicalutamide and ibuprofen, the drugs that were chosen as model competitors against PAZ. Accordingly, PAZ was found to replace bicalutamide and ibuprofen on the HSA binding site, which was also confirmed by UV absorption spectroscopy.
{"title":"Investigation of Pazopanib and Human Serum Albumin Interaction Using Spectroscopic and Molecular Docking Approaches","authors":"A. Cetinkaya, M. Caglayan, M. A. Unal, Pinar Beyazkilic, Caglar Elbuken, E. B. Atici, S. Ozkan","doi":"10.3390/analytica3010011","DOIUrl":"https://doi.org/10.3390/analytica3010011","url":null,"abstract":"Pazopanib (PAZ), a tyrosine kinase inhibitor, is used to treat advanced renal cell carcinoma (RCC) and advanced soft tissue sarcoma (STS). The FDA approved PAZ for RCC in 2009 and for STS in 2012. The antitumor activity of pazopanib, according to the degree of inhibition, shows different results depending on the dose. Renal cell carcinoma is the most sensitive carcinoma to pazopanib, with 77% inhibition at the 10 mg/kg dose. Clinical studies have shown 53% to 65% inhibition in carcinomas such as breast carcinoma, prostate carcinoma, and melanoma. Plasma proteins such as human serum albumin (HSA) have a critical role in transporting and storing bioactive components. This feature of HSA is very important for the development of cancer therapy. Here, we investigated the interaction between PAZ and HSA to evaluate their binding strength, binding types, and conformational change in HSA. We used spectroscopic methods to assess the drug–protein interaction. Fluorescence measurements revealed that the interaction of PAZ with HSA occurred via the static quenching mechanism. The calculated binding number and binding constants were 1.041 and 1.436 × 106 M−1, respectively, at 298.15 K based on fluorescence screening. The high binding constant and calculated Gibbs free energy at different temperatures showed spontaneous and strong binding. Circular dichroism measurements showed that the α-helix structure of HSA was retained as the secondary structure, with a slight reduction in its percentage after adding PAZ. Furthermore, molecular modeling studies suggested that the docking score of PAZ is higher than those of bicalutamide and ibuprofen, the drugs that were chosen as model competitors against PAZ. Accordingly, PAZ was found to replace bicalutamide and ibuprofen on the HSA binding site, which was also confirmed by UV absorption spectroscopy.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78033378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}