Pub Date : 2021-11-28eCollection Date: 2021-12-01DOI: 10.1002/ame2.12192
Kunpeng Pang, Anton Lennikov, Menglu Yang
The cornea is an avascular, transparent tissue that is essential for visual function. Any disturbance to the corneal transparency will result in a severe vision loss. Due to the avascular nature, the cornea acquires most of the oxygen supply directly or indirectly from the atmosphere. Corneal tissue hypoxia has been noticed to influence the structure and function of the cornea for decades. The etiology of hypoxia of the cornea is distinct from the rest of the body, mainly due to the separation of cornea from the atmosphere, such as prolonged contact lens wearing or closed eyes. Corneal hypoxia can also be found in corneal inflammation and injury when a higher oxygen requirement exceeds the oxygen supply. Systemic hypoxic state during lung diseases or high altitude also leads to corneal hypoxia when a second oxygen consumption route from aqueous humor gets blocked. Hypoxia affects the cornea in multiple aspects, including disturbance of the epithelium barrier function, corneal edema due to endothelial dysfunction and metabolism changes in the stroma, and thinning of corneal stroma. Cornea has also evolved mechanisms to adapt to the hypoxic state initiated by the activation of hypoxia inducible factor (HIF). The aim of this review is to introduce the pathology of cornea under hypoxia and the mechanism of hypoxia adaptation, to discuss the current animal models used in this field, and future research directions.
{"title":"Hypoxia adaptation in the cornea: Current animal models and underlying mechanisms.","authors":"Kunpeng Pang, Anton Lennikov, Menglu Yang","doi":"10.1002/ame2.12192","DOIUrl":"10.1002/ame2.12192","url":null,"abstract":"<p><p>The cornea is an avascular, transparent tissue that is essential for visual function. Any disturbance to the corneal transparency will result in a severe vision loss. Due to the avascular nature, the cornea acquires most of the oxygen supply directly or indirectly from the atmosphere. Corneal tissue hypoxia has been noticed to influence the structure and function of the cornea for decades. The etiology of hypoxia of the cornea is distinct from the rest of the body, mainly due to the separation of cornea from the atmosphere, such as prolonged contact lens wearing or closed eyes. Corneal hypoxia can also be found in corneal inflammation and injury when a higher oxygen requirement exceeds the oxygen supply. Systemic hypoxic state during lung diseases or high altitude also leads to corneal hypoxia when a second oxygen consumption route from aqueous humor gets blocked. Hypoxia affects the cornea in multiple aspects, including disturbance of the epithelium barrier function, corneal edema due to endothelial dysfunction and metabolism changes in the stroma, and thinning of corneal stroma. Cornea has also evolved mechanisms to adapt to the hypoxic state initiated by the activation of hypoxia inducible factor (HIF). The aim of this review is to introduce the pathology of cornea under hypoxia and the mechanism of hypoxia adaptation, to discuss the current animal models used in this field, and future research directions.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":"4 4","pages":"300-310"},"PeriodicalIF":0.0,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c8/70/AME2-4-300.PMC8690994.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9699527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24eCollection Date: 2021-12-01DOI: 10.1002/ame2.12194
Liang-Jun Yan
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
肾脏是一个重要器官,很容易受到急性肾损伤(AKI)和慢性肾脏病(CKD)的侵害,而造成急性肾损伤和慢性肾脏病的风险因素有很多,如缺血、败血症、药物中毒和药物过量、接触重金属和糖尿病等。尽管我们对 AKI 和 CKD 的发病机理以及 AKI 向 CKD 的转变有了更深入的了解,但目前仍没有可用于有效防治肾脏疾病的治疗方法,因此迫切需要进一步研究 AKI、CKD 以及 AKI 向 CKD 演变的病理机制。在这方面,肾病动物模型是不可或缺的。本文回顾了叶酸(FA)诱导的一种广泛使用的肾病动物模型。低剂量的叶酸对营养有益,而高剂量的叶酸则对肾脏有剧毒。在简要介绍了叶酸诱导肾病的过程后,我们回顾了叶酸诱导肾损伤的主要机制,包括氧化应激、线粒体异常(如生物能和有丝分裂功能受损)、铁变态反应、热变态反应以及成纤维细胞生长因子 23(FGF23)的表达增加。最后,还讨论了如何应用这种 FA 诱导的肾病模型作为测试各种治疗方法疗效的平台。鉴于这种动物模型制作简单且可重现,它在研究肾脏疾病的病理机制和确定抗击肾脏疾病的治疗靶点方面仍将大有用武之地。
{"title":"Folic acid-induced animal model of kidney disease.","authors":"Liang-Jun Yan","doi":"10.1002/ame2.12194","DOIUrl":"10.1002/ame2.12194","url":null,"abstract":"<p><p>The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"329-342"},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/74/04/AME2-4-329.PMC8690981.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39780137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-22eCollection Date: 2021-12-01DOI: 10.1002/ame2.12191
Yi Yan, Rong Jiang, Ping Yuan, Li Wen, Xiao-Bin Pang, Zhi-Cheng Jing, Yang-Yang He, Zhi-Yan Han
Objective/background: Proliferation is a widely recognized trigger for pulmonary hypertension (PH), a life-threatening, progressive disorder of pulmonary blood vessels. This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis.
Methods: Human pulmonary arterial smooth muscle cells (hPASMCs) were cultured in the presence or absence of human recombinant platelet derived growth factor (rhPDGF)-BB. Cells were collected for metabolomics or transcriptomics study. Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database.
Results: 90 metabolites (VIP score >1, fold change >2 or <0.5 and p < .05) and 2701 unique metabolism associated genes (MAGs) were identified in rhPDGF-BB treated hPASMCs compared to control cells. In addition, 1151 differentially expressed genes (313 upregulated and 838 downregulated) were identified in rhPDGF-BB treated hPASMCs compared to control cells (fold change >2 or <0.5 and p < .05). 152 differentially expressed MAGs were then determined, out of which 9 hub genes (IL6, CXCL8, CCL2, CXCR4, CCND1, PLAUR, PLAU, HBEGF and F3) were defined as core proliferation associated hub genes in protein proten interaction analysis. In addition, the hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.88). The expression of CXCR4, as one of the hub genes, was positively correlated to immune cell infiltrates.
Conclusion: Our findings revealed some key proliferation associated genes in PH, which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.
{"title":"Implication of proliferation gene biomarkers in pulmonary hypertension.","authors":"Yi Yan, Rong Jiang, Ping Yuan, Li Wen, Xiao-Bin Pang, Zhi-Cheng Jing, Yang-Yang He, Zhi-Yan Han","doi":"10.1002/ame2.12191","DOIUrl":"10.1002/ame2.12191","url":null,"abstract":"<p><strong>Objective/background: </strong>Proliferation is a widely recognized trigger for pulmonary hypertension (PH), a life-threatening, progressive disorder of pulmonary blood vessels. This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis.</p><p><strong>Methods: </strong>Human pulmonary arterial smooth muscle cells (hPASMCs) were cultured in the presence or absence of human recombinant platelet derived growth factor (rhPDGF)-BB. Cells were collected for metabolomics or transcriptomics study. Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database.</p><p><strong>Results: </strong>90 metabolites (VIP score >1, fold change >2 or <0.5 and <i>p</i> < .05) and 2701 unique metabolism associated genes (MAGs) were identified in rhPDGF-BB treated hPASMCs compared to control cells. In addition, 1151 differentially expressed genes (313 upregulated and 838 downregulated) were identified in rhPDGF-BB treated hPASMCs compared to control cells (fold change >2 or <0.5 and <i>p</i> < .05). 152 differentially expressed MAGs were then determined, out of which 9 hub genes (IL6, CXCL8, CCL2, CXCR4, CCND1, PLAUR, PLAU, HBEGF and F3) were defined as core proliferation associated hub genes in protein proten interaction analysis. In addition, the hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.88). The expression of CXCR4, as one of the hub genes, was positively correlated to immune cell infiltrates.</p><p><strong>Conclusion: </strong>Our findings revealed some key proliferation associated genes in PH, which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"369-380"},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8690983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39780139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-22eCollection Date: 2021-12-01DOI: 10.1002/ame2.12188
Colton H Funkhouser, Liam D Kirkpatrick, Robert D Smith, Lauren T Moffatt, Jeffrey W Shupp, Bonnie C Carney
Background: Wound healing can result in various outcomes, including hypertrophic scar (HTS). Pigs serve as models to study wound healing as their skin shares physiologic similarity with humans. Yorkshire (Yk) and Duroc (Dc) pigs have been used to mimic normal and abnormal wound healing, respectively. The reason behind this differential healing phenotype was explored here.
Methods: Excisional wounds were made on Dc and Yk pigs and were sampled and imaged for 98 days. PCR arrays were used to determine differential gene expression. Vancouver Scar Scale (VSS) scores were given. Re-epithelialization was analyzed. H&E, Mason's trichrome, and immunostains were used to determine cellularity, collagen content, and blood vessel density, respectively.
Results: Yk wounds heal to a "port wine" HTS, resembling scarring in Fitzpatrick skin types (FST) I-III. Dc wounds heal to a dyspigmented, non-pliable HTS, resembling scarring in FST IV-VI. Gene expression during wound healing was differentially regulated versus uninjured skin in 40/80 genes, 15 of which differed between breeds. Yk scars had a higher VSS score at all time points. Yk and Dc wounds had equivalent re-epithelialization, collagen disorganization, and blood vessel density.
Conclusions: Our findings demonstrate that Dc and Yk pigs can produce HTS. Wound creation and healing were consistent among breeds, and differences in gene expression were not sufficient to explain differences in resulting scar phenotype. Both pig breeds should be used in animal models to investigate novel therapeutics to provide insight into a treatment's effectiveness on various skin types.
{"title":"In-depth examination of hyperproliferative healing in two breeds of <i>Sus scrofa domesticus</i> commonly used for research.","authors":"Colton H Funkhouser, Liam D Kirkpatrick, Robert D Smith, Lauren T Moffatt, Jeffrey W Shupp, Bonnie C Carney","doi":"10.1002/ame2.12188","DOIUrl":"10.1002/ame2.12188","url":null,"abstract":"<p><strong>Background: </strong>Wound healing can result in various outcomes, including hypertrophic scar (HTS). Pigs serve as models to study wound healing as their skin shares physiologic similarity with humans. Yorkshire (Yk) and Duroc (Dc) pigs have been used to mimic normal and abnormal wound healing, respectively. The reason behind this differential healing phenotype was explored here.</p><p><strong>Methods: </strong>Excisional wounds were made on Dc and Yk pigs and were sampled and imaged for 98 days. PCR arrays were used to determine differential gene expression. Vancouver Scar Scale (VSS) scores were given. Re-epithelialization was analyzed. H&E, Mason's trichrome, and immunostains were used to determine cellularity, collagen content, and blood vessel density, respectively.</p><p><strong>Results: </strong>Yk wounds heal to a \"port wine\" HTS, resembling scarring in Fitzpatrick skin types (FST) I-III. Dc wounds heal to a dyspigmented, non-pliable HTS, resembling scarring in FST IV-VI. Gene expression during wound healing was differentially regulated versus uninjured skin in 40/80 genes, 15 of which differed between breeds. Yk scars had a higher VSS score at all time points. Yk and Dc wounds had equivalent re-epithelialization, collagen disorganization, and blood vessel density.</p><p><strong>Conclusions: </strong>Our findings demonstrate that Dc and Yk pigs can produce HTS. Wound creation and healing were consistent among breeds, and differences in gene expression were not sufficient to explain differences in resulting scar phenotype. Both pig breeds should be used in animal models to investigate novel therapeutics to provide insight into a treatment's effectiveness on various skin types.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"406-417"},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/6c/AME2-4-406.PMC8690996.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39782525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-19eCollection Date: 2021-12-01DOI: 10.1002/ame2.12185
Linghong Huang, Jia Ni, Tanika Duncan, Zhizhan Song, Timothy S Johnson
Background: Chronic kidney disease (CKD) has a high global prevalence and large unmet need. Central to developing new CKD therapies are in vivo models in CKD. However, next-generation antibody, protein, and gene therapies are highly specific, meaning some do not cross-react with rodent targets. This complicates preclinical development, as established in vivo rodent models cannot be utilized unless tool therapeutics are also developed. Tool compounds can be difficult to develop and, if available, typically have different epitopes, sequences, and/or altered affinity, making it unclear how efficacious the lead therapeutic may be, or what dosing regimen to investigate. To address this, we aimed to develop a nonhuman primate model of CKD.
Methods: In vivo rodent unilateral ureteral obstruction (UUO) models kidney fibrosis and is commonly used due to its rapidity, consistency, and ease. We describe translation of this model to the cynomolgus monkey, specifically optimizing the model duration to allow adequate time for assessment of novel therapeutics prior to the fibrotic plateau.
Results: We demonstrated that disease developed more slowly in cynomolgus monkeys than in rodents post-UUO, with advanced fibrosis developing by 6 weeks. The tubulointerstitial fibrosis in cynomolgus monkeys was more consistent with human obstructive disease than in rodents, having a more aggressive tubular basement expansion and a higher fibroblast infiltration. The fibrosis was also associated with increased transglutaminase activity, consistent with that seen in patients with CKD.
Conclusion: This cynomolgus monkey UUO model can be used to test potential human-specific therapeutics in kidney fibrosis.
{"title":"Development of a unilateral ureteral obstruction model in cynomolgus monkeys.","authors":"Linghong Huang, Jia Ni, Tanika Duncan, Zhizhan Song, Timothy S Johnson","doi":"10.1002/ame2.12185","DOIUrl":"10.1002/ame2.12185","url":null,"abstract":"<p><strong>Background: </strong>Chronic kidney disease (CKD) has a high global prevalence and large unmet need. Central to developing new CKD therapies are in vivo models in CKD. However, next-generation antibody, protein, and gene therapies are highly specific, meaning some do not cross-react with rodent targets. This complicates preclinical development, as established in vivo rodent models cannot be utilized unless tool therapeutics are also developed. Tool compounds can be difficult to develop and, if available, typically have different epitopes, sequences, and/or altered affinity, making it unclear how efficacious the lead therapeutic may be, or what dosing regimen to investigate. To address this, we aimed to develop a nonhuman primate model of CKD.</p><p><strong>Methods: </strong>In vivo rodent unilateral ureteral obstruction (UUO) models kidney fibrosis and is commonly used due to its rapidity, consistency, and ease. We describe translation of this model to the cynomolgus monkey, specifically optimizing the model duration to allow adequate time for assessment of novel therapeutics prior to the fibrotic plateau.</p><p><strong>Results: </strong>We demonstrated that disease developed more slowly in cynomolgus monkeys than in rodents post-UUO, with advanced fibrosis developing by 6 weeks. The tubulointerstitial fibrosis in cynomolgus monkeys was more consistent with human obstructive disease than in rodents, having a more aggressive tubular basement expansion and a higher fibroblast infiltration. The fibrosis was also associated with increased transglutaminase activity, consistent with that seen in patients with CKD.</p><p><strong>Conclusion: </strong>This cynomolgus monkey UUO model can be used to test potential human-specific therapeutics in kidney fibrosis.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"359-368"},"PeriodicalIF":0.0,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8690991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39780138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-19eCollection Date: 2021-12-01DOI: 10.1002/ame2.12187
Matt T Oberdier, James F Antaki, Alexander Kharlamov, Stephen C Jones
Background: Elevated intracranial pressure (ICP) occurs in several physiological and pathological conditions, yet long-term sequellae are not common, which implies that blood flow is preserved above ischemic thresholds.
Methods: This pilot study sought to confirm this hypothesis using a closed cranial window model in a rat in which ICP was elevated to 120 mmHg for 12 min, and superficial cortical perfusion was measured by laser Doppler flowmetry and laser speckle flowmetry.
Results: Following a transient increase, cortical blood flow decreased to between 25% and 75% of baseline. These levels correspond to disrupted metabolism and decreased protein synthesis but did not exceed thresholds for electrical signaling or membrane integrity. This may partially explain how some episodes of elevated ICP remain benign.
Conclusion: The closed cranial window model provides a platform for prospective study of physiologic responses to artificially elevated ICP during neurosurgery to promote hemostasis.
{"title":"Closed cranial window rodent model for investigating hemodynamic response to elevated intracranial pressure.","authors":"Matt T Oberdier, James F Antaki, Alexander Kharlamov, Stephen C Jones","doi":"10.1002/ame2.12187","DOIUrl":"10.1002/ame2.12187","url":null,"abstract":"<p><strong>Background: </strong>Elevated intracranial pressure (ICP) occurs in several physiological and pathological conditions, yet long-term sequellae are not common, which implies that blood flow is preserved above ischemic thresholds.</p><p><strong>Methods: </strong>This pilot study sought to confirm this hypothesis using a closed cranial window model in a rat in which ICP was elevated to 120 mmHg for 12 min, and superficial cortical perfusion was measured by laser Doppler flowmetry and laser speckle flowmetry.</p><p><strong>Results: </strong>Following a transient increase, cortical blood flow decreased to between 25% and 75% of baseline. These levels correspond to disrupted metabolism and decreased protein synthesis but did not exceed thresholds for electrical signaling or membrane integrity. This may partially explain how some episodes of elevated ICP remain benign.</p><p><strong>Conclusion: </strong>The closed cranial window model provides a platform for prospective study of physiologic responses to artificially elevated ICP during neurosurgery to promote hemostasis.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"391-397"},"PeriodicalIF":0.0,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/af/AME2-4-391.PMC8690993.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39780141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-09eCollection Date: 2021-12-01DOI: 10.1002/ame2.12186
Hong-Juan Liu, Meng-Yun Deng, Yan-Yan Zhu, De-Ling Wu, Xiao-Hui Tong, Li Li, Lei Wang, Fei Xu, Tong-Sheng Wang
Background: Oligoasthenospermia is one of the main causes of male infertility. Researchers usually use chemical drugs to directly damage germ cells to prepare oligoasthenospermia models, which disregards the adhesion and migration between spermatogenic cells and Sertoli cells. TAp73 is a critical regulator of the adhesin of germ cell; thus, we sought to explore a novel oligoasthenospermia model based on TAp73 gene suppression.
Methods: Mice in the Pifithrin-α group were injected intraperitoneally with 2.5 mg/kg Pifithrin-α (TAp73 inhibitor) daily for 30 consecutive days. Reproductive hormone levels and epididymal sperm quality, as well as the network morphology of Sertoli cells were tested.
Results: Sperm density, motility, and the relative protein and mRNA expression of TAp73 and Nectin 2 were obviously decreased in the Pifithrin-α group compared with the normal control group. No significant distinction was observed in the relative mRNA and protein expression of ZO-1. Furthermore, the tight junctions (TJs) and apical ectoplasmic specialization (ES) were destroyed in the Pifithrin-α group.
Conclusion: The above results indicate that we successfully established a new oligoasthenospermia mouse model. This study provides a foundation for further exploration of the roles of TAp73 genes during spermatogenesis and provides new research objects for further oligospermia research and future drug discovery.
{"title":"Establishment of an oligoasthenospermia mouse model based on <i>TAp73</i> gene suppression.","authors":"Hong-Juan Liu, Meng-Yun Deng, Yan-Yan Zhu, De-Ling Wu, Xiao-Hui Tong, Li Li, Lei Wang, Fei Xu, Tong-Sheng Wang","doi":"10.1002/ame2.12186","DOIUrl":"10.1002/ame2.12186","url":null,"abstract":"<p><strong>Background: </strong>Oligoasthenospermia is one of the main causes of male infertility. Researchers usually use chemical drugs to directly damage germ cells to prepare oligoasthenospermia models, which disregards the adhesion and migration between spermatogenic cells and Sertoli cells. <i>TAp73</i> is a critical regulator of the adhesin of germ cell; thus, we sought to explore a novel oligoasthenospermia model based on <i>TAp73</i> gene suppression.</p><p><strong>Methods: </strong>Mice in the Pifithrin-α group were injected intraperitoneally with 2.5 mg/kg Pifithrin-α (<i>TAp73</i> inhibitor) daily for 30 consecutive days. Reproductive hormone levels and epididymal sperm quality, as well as the network morphology of Sertoli cells were tested.</p><p><strong>Results: </strong>Sperm density, motility, and the relative protein and mRNA expression of <i>TAp73</i> and <i>Nectin 2</i> were obviously decreased in the Pifithrin-α group compared with the normal control group. No significant distinction was observed in the relative mRNA and protein expression of <i>ZO-1</i>. Furthermore, the tight junctions (TJs) and apical ectoplasmic specialization (ES) were destroyed in the Pifithrin-α group.</p><p><strong>Conclusion: </strong>The above results indicate that we successfully established a new oligoasthenospermia mouse model. This study provides a foundation for further exploration of the roles of <i>TAp73</i> genes during spermatogenesis and provides new research objects for further oligospermia research and future drug discovery.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"351-358"},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/c9/AME2-4-351.PMC8690982.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39780136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-21eCollection Date: 2021-12-01DOI: 10.1002/ame2.12183
Mengke Li, Dan Pan, Hong Sun, Lei Zhang, Han Cheng, Tian Shao, Zhenlong Wang
Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O2 delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.
{"title":"The hypoxia adaptation of small mammals to plateau and underground burrow conditions.","authors":"Mengke Li, Dan Pan, Hong Sun, Lei Zhang, Han Cheng, Tian Shao, Zhenlong Wang","doi":"10.1002/ame2.12183","DOIUrl":"10.1002/ame2.12183","url":null,"abstract":"<p><p>Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O<sub>2</sub> delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"319-328"},"PeriodicalIF":0.0,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/fb/AME2-4-319.PMC8690988.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39869470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-07eCollection Date: 2021-09-01DOI: 10.1002/ame2.12176
Mohammed Quader, Renee Cholyway, Niluka Wickramaratne, Oluwatoyin Akande, Martin Mangino, Eleonora Mezzaroma, Adolfo G Mauro, Qun Chen, Alexander Kantlis, Stefano Toldo
Heart transplantation is a lifesaving procedure, which is limited by the availability of donor hearts. Using hearts from donors after circulatory death, which have sustained global ischemia, requires thorough studies on reliable and reproducible models that developing researchers may not have mastered. By combining the most recent literature and our recommendations based on observations and trials and errors, the methods here detail a sound in vivo heterotopic heart transplantation model for rats in which protective interventions on the ischemic heart can be studied, and thus allowing the scientific community to advance organ preservation research. Knowledge gathered from reproducible animal models allow for successful translation to clinical studies.
{"title":"Refining murine heterotopic heart transplantation: A model to study ischemia and reperfusion injury in donation after circulatory death hearts.","authors":"Mohammed Quader, Renee Cholyway, Niluka Wickramaratne, Oluwatoyin Akande, Martin Mangino, Eleonora Mezzaroma, Adolfo G Mauro, Qun Chen, Alexander Kantlis, Stefano Toldo","doi":"10.1002/ame2.12176","DOIUrl":"10.1002/ame2.12176","url":null,"abstract":"<p><p>Heart transplantation is a lifesaving procedure, which is limited by the availability of donor hearts. Using hearts from donors after circulatory death, which have sustained global ischemia, requires thorough studies on reliable and reproducible models that developing researchers may not have mastered. By combining the most recent literature and our recommendations based on observations and trials and errors, the methods here detail a sound in vivo heterotopic heart transplantation model for rats in which protective interventions on the ischemic heart can be studied, and thus allowing the scientific community to advance organ preservation research. Knowledge gathered from reproducible animal models allow for successful translation to clinical studies.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":"4 3","pages":"283-296"},"PeriodicalIF":0.0,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ame2.12176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39444589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}