Pub Date : 2021-04-08DOI: 10.1051/0004-6361/202140855
K. Steinvall, Y. Khotyaintsev, G. Cozzani, A. Vaivads, E. Yordanova, A. Eriksson, N. Edberg, M. Maksimović, S. Bale, T. Chust, V. Krasnoselskikh, M. Kretzschmar, E. Lorfèvre, D. Plettemeier, J. Souvcek, M. Steller, vS. vStver'ak, A. Vecchio, T. Horbury, H. O’Brien, V. Evans, A. Fedorov, P. Louarn, V. G'enot, N. Andr'e, B. Lavraud, A. Rouillard, C. Owen
Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. Aims. In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter’s DC electric and magnetic field data to estimate the solar wind speed. Methods. We used a deHo ff mann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the e ff ective antenna length, L e ff of the E-field probes. We then used the HT method to estimate the speed of the solar wind. Results. Using the HT method, we find that the observed variations in E y are often in excellent agreement with the variations in the magnetic field. The magnitude of E y , however, is uncertain due to the fact that the L e ff depends on the plasma environment. Here, we derive an empirical model relating L e ff to the Debye length, which we can use to improve the estimate of E y and, consequently, the estimated solar wind speed. Conclusions. The low-frequency electric field provided by RPW is of high quality. Using the deHo ff mann-Teller analysis, Solar Orbiter’s magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable.
上下文。太阳轨道器于2020年2月10日发射,目的是利用为远程和现场研究设计的有效载荷仪器研究太阳和日球层物理。与最近发射的帕克太阳探测器类似,与早期的任务不同,太阳轨道器携带了用于测量低频直流电场的仪器。目标本文对太阳轨道器上的射电和等离子体波仪(RPW)测量的低频直流电场质量进行了评价。特别地,我们探讨了利用太阳轨道飞行器的直流电场和磁场数据来估计太阳风速度的可能性。方法。基于对电场和磁场的测量,我们使用了deHo ff mann-Teller (HT)分析来找到太阳风电流片的速度,它使电场的单个成分最小化。通过比较质子和α粒子传感器(PAS)测量的质子速度,我们建立了一个简单的电场探头有效天线长度leff模型。然后我们用高温法估计太阳风的速度。结果。利用高温法,我们发现观测到的y的变化往往与磁场的变化非常吻合。然而,ey的大小是不确定的,因为eff取决于等离子体环境。在这里,我们推导出了一个关于e - ff和德拜长度的经验模型,我们可以用它来改进对e - y的估计,从而改进对太阳风速度的估计。结论。RPW提供的低频电场质量高。使用deHo off mann-Teller分析,太阳轨道器的磁场和电场测量可以用来估计当等离子体数据不可用时太阳风的速度。
{"title":"Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter's DC electric field measurements","authors":"K. Steinvall, Y. Khotyaintsev, G. Cozzani, A. Vaivads, E. Yordanova, A. Eriksson, N. Edberg, M. Maksimović, S. Bale, T. Chust, V. Krasnoselskikh, M. Kretzschmar, E. Lorfèvre, D. Plettemeier, J. Souvcek, M. Steller, vS. vStver'ak, A. Vecchio, T. Horbury, H. O’Brien, V. Evans, A. Fedorov, P. Louarn, V. G'enot, N. Andr'e, B. Lavraud, A. Rouillard, C. Owen","doi":"10.1051/0004-6361/202140855","DOIUrl":"https://doi.org/10.1051/0004-6361/202140855","url":null,"abstract":"Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. Aims. In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter’s DC electric and magnetic field data to estimate the solar wind speed. Methods. We used a deHo ff mann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the e ff ective antenna length, L e ff of the E-field probes. We then used the HT method to estimate the speed of the solar wind. Results. Using the HT method, we find that the observed variations in E y are often in excellent agreement with the variations in the magnetic field. The magnitude of E y , however, is uncertain due to the fact that the L e ff depends on the plasma environment. Here, we derive an empirical model relating L e ff to the Debye length, which we can use to improve the estimate of E y and, consequently, the estimated solar wind speed. Conclusions. The low-frequency electric field provided by RPW is of high quality. Using the deHo ff mann-Teller analysis, Solar Orbiter’s magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"103 1","pages":""},"PeriodicalIF":25.8,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77526530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-08DOI: 10.1051/0004-6361/202038082
Q. M. Zhang, J. Cheng, Y. Dai, K. Tam, A. Xu
In this paper, we reanalyze the M1.2 confined flare with a large extreme-ultraviolet (EUV) late phase on 2011 September 9, focusing on its energy partition. The radiation ($sim$5.4$times$10$^{30}$ erg) in 1$-$70 {AA} is nearly eleven times larger than the radiation in 70$-$370 {AA}, and is nearly 180 times larger than the radiation in 1$-$8 {AA}. The peak thermal energy of the post-flare loops is estimated to be (1.7$-$1.8)$times$10$^{30}$ erg based on a simplified schematic cartoon. Based on previous results of Enthalpy-Based Thermal Evolution of Loops (EBTEL) simulation, the energy inputs in the main flaring loops and late-phase loops are (1.5$-$3.8)$times$10$^{29}$ erg and 7.7$times$10$^{29}$ erg, respectively. The nonthermal energy ((1.7$-$2.2)$times$10$^{30}$ erg) of the flare-accelerated electrons is comparable to the peak thermal energy and is sufficient to provide the energy input of the main flaring loops and late-phase loops. The magnetic free energy (9.1$times$10$^{31}$ erg) before flare is large enough to provide the heating requirement and radiation, indicating that the magnetic free energy is adequate to power the flare.
{"title":"Energy partition in a confined flare with an extreme-ultraviolet late phase","authors":"Q. M. Zhang, J. Cheng, Y. Dai, K. Tam, A. Xu","doi":"10.1051/0004-6361/202038082","DOIUrl":"https://doi.org/10.1051/0004-6361/202038082","url":null,"abstract":"In this paper, we reanalyze the M1.2 confined flare with a large extreme-ultraviolet (EUV) late phase on 2011 September 9, focusing on its energy partition. The radiation ($sim$5.4$times$10$^{30}$ erg) in 1$-$70 {AA} is nearly eleven times larger than the radiation in 70$-$370 {AA}, and is nearly 180 times larger than the radiation in 1$-$8 {AA}. The peak thermal energy of the post-flare loops is estimated to be (1.7$-$1.8)$times$10$^{30}$ erg based on a simplified schematic cartoon. Based on previous results of Enthalpy-Based Thermal Evolution of Loops (EBTEL) simulation, the energy inputs in the main flaring loops and late-phase loops are (1.5$-$3.8)$times$10$^{29}$ erg and 7.7$times$10$^{29}$ erg, respectively. The nonthermal energy ((1.7$-$2.2)$times$10$^{30}$ erg) of the flare-accelerated electrons is comparable to the peak thermal energy and is sufficient to provide the energy input of the main flaring loops and late-phase loops. The magnetic free energy (9.1$times$10$^{31}$ erg) before flare is large enough to provide the heating requirement and radiation, indicating that the magnetic free energy is adequate to power the flare.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"85 1","pages":""},"PeriodicalIF":25.8,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89438841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-03DOI: 10.1051/0004-6361/202140298
M. Vergara, D. Schleicher, T. Boekholt, B. Reinoso, M. Fellhauer, R. Klessen, N. Leigh
Fragmentation often occurs in disk-like structures, both in the early Universe and in the context of present-day star formation. Supermassive black holes (SMBHs) are astrophysical objects whose origin is not well understood; they weigh millions of solar masses and reside in the centers of galaxies. An important formation scenario for SMBHs is based on collisions and mergers of stars in a massive cluster with a high stellar density, in which the most massive star moves to the center of the cluster due to dynamical friction. This increases the rate of collisions and mergers since massive stars have larger collisional cross sections. This can lead to a runaway growth of a very massive star which may collapse to become an intermediate-mass black hole. Here we investigate the dynamical evolution of Miyamoto-Nagai models that allow us to describe dense stellar clusters, including flattening and different degrees of rotation. We find that the collisions in these clusters depend mostly on the number of stars and the initial stellar radii for a given radial size of the cluster. By comparison, rotation seems to affect the collision rate by at most 20%. For flatness, we compared spherical models with systems that have a scale height of about 10% of their radial extent, in this case finding a change in the collision rate of less than 25%. Overall, we conclude that the parameters only have a minor effect on the number of collisions. Our results also suggest that rotation helps to retain more stars in the system, reducing the number of escapers by a factor of 2− 3 depending on the model and the specific realization. After two million years, a typical lifetime of a very massive star, we find that about 630 collisions occur in a typical models with N = 104, R = 100 R and a half-mass radius of 0.1 pc, leading to a mass of about 6.3 × 103 M for the most massive object. We note that our simulations do not include mass loss during mergers or due to stellar winds. On the other hand, the growth of the most massive object may subsequently continue, depending on the lifetime of the most massive object.
{"title":"Stellar collisions in flattened and rotating Population III star clusters","authors":"M. Vergara, D. Schleicher, T. Boekholt, B. Reinoso, M. Fellhauer, R. Klessen, N. Leigh","doi":"10.1051/0004-6361/202140298","DOIUrl":"https://doi.org/10.1051/0004-6361/202140298","url":null,"abstract":"Fragmentation often occurs in disk-like structures, both in the early Universe and in the context of present-day star formation. Supermassive black holes (SMBHs) are astrophysical objects whose origin is not well understood; they weigh millions of solar masses and reside in the centers of galaxies. An important formation scenario for SMBHs is based on collisions and mergers of stars in a massive cluster with a high stellar density, in which the most massive star moves to the center of the cluster due to dynamical friction. This increases the rate of collisions and mergers since massive stars have larger collisional cross sections. This can lead to a runaway growth of a very massive star which may collapse to become an intermediate-mass black hole. Here we investigate the dynamical evolution of Miyamoto-Nagai models that allow us to describe dense stellar clusters, including flattening and different degrees of rotation. We find that the collisions in these clusters depend mostly on the number of stars and the initial stellar radii for a given radial size of the cluster. By comparison, rotation seems to affect the collision rate by at most 20%. For flatness, we compared spherical models with systems that have a scale height of about 10% of their radial extent, in this case finding a change in the collision rate of less than 25%. Overall, we conclude that the parameters only have a minor effect on the number of collisions. Our results also suggest that rotation helps to retain more stars in the system, reducing the number of escapers by a factor of 2− 3 depending on the model and the specific realization. After two million years, a typical lifetime of a very massive star, we find that about 630 collisions occur in a typical models with N = 104, R = 100 R and a half-mass radius of 0.1 pc, leading to a mass of about 6.3 × 103 M for the most massive object. We note that our simulations do not include mass loss during mergers or due to stellar winds. On the other hand, the growth of the most massive object may subsequently continue, depending on the lifetime of the most massive object.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"53 1","pages":""},"PeriodicalIF":25.8,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85223957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.1051/0004-6361/202040060
M. Kenworthy, S. N. Mellon, J. Bailey, R. Stuik, P. Dorval, G. Talens, S. Crawford, E. Mamajek, I. Laginja, M. Ireland, B. Lomberg, R. Kuhn, I. Snellen, K. Zwintz, R. Kuschnig, G. Kennedy, L. Abe, A. Agabi, D. Mékarnia, T. Guillot, F. Schmider, P. Stee, Y. De Pra, M. Buttu, N. Crouzet, P. Kalas, J. Wang, K. Stevenson, E. de Mooij, A. Lagrange, S. Lacour, A. Lecavelier des Etangs, M. Nowak, P. Strøm, Z. Hui, L. Wang
Aims. Photometric monitoring of β Pic in 1981 showed anomalous fluctuations of up to 4% over several days, consistent with foreground material transiting the stellar disk. The subsequent discovery of the gas giant planet β Pic b and the predicted transit of its Hill sphere to within a 0.1 au projected separation of the planet provided an opportunity to search for the transit of a circumplanetary disk (CPD) in this 21 ± 4 Myr-old planetary system. We aim to detect, or put an upper limit on, the density and nature of the material in the circumplanetary environment of the planet via the continuous photometric monitoring of the Hill sphere transit that occurred in 2017 and 2018. Methods. Continuous broadband photometric monitoring of β Pic requires ground-based observatories at multiple longitudes to provide redundancy and to provide triggers for rapid spectroscopic follow-up. These include the dedicated β Pic monitoring bRing observatories in Sutherland and Siding Springs, the ASTEP400 telescope at Concordia, and the space observatories BRITE and the Hubble Space Telescope (HST). We search the combined light curves for evidence of short-period transient events caused by rings as well as for longer-term photometric variability due to diffuse circumplanetary material. Results. We find no photometric event that matches with the event seen in November 1981, and there is no systematic photometric dimming of the star as a function of the Hill sphere radius. Conclusions. We conclude that the 1981 event was not caused by the transit of a CPD around β Pic b. The upper limit on the long-term variability of β Pic places an upper limit of 1.8 × 1022 g of dust within the Hill sphere (comparable to the ~100 km radius asteroid 16 Psyche). Circumplanetary material is either condensed into a disk that does not transit β Pic, condensed into a disk with moons that has an obliquity that does not intersect with the path of β Pic behind the Hill sphere, or is below our detection threshold. This is the first time that a dedicated international campaign has mapped the Hill sphere transit of an extrasolar gas giant planet at 10 au.
{"title":"The β\u0000Pictoris b Hill sphere transit campaign","authors":"M. Kenworthy, S. N. Mellon, J. Bailey, R. Stuik, P. Dorval, G. Talens, S. Crawford, E. Mamajek, I. Laginja, M. Ireland, B. Lomberg, R. Kuhn, I. Snellen, K. Zwintz, R. Kuschnig, G. Kennedy, L. Abe, A. Agabi, D. Mékarnia, T. Guillot, F. Schmider, P. Stee, Y. De Pra, M. Buttu, N. Crouzet, P. Kalas, J. Wang, K. Stevenson, E. de Mooij, A. Lagrange, S. Lacour, A. Lecavelier des Etangs, M. Nowak, P. Strøm, Z. Hui, L. Wang","doi":"10.1051/0004-6361/202040060","DOIUrl":"https://doi.org/10.1051/0004-6361/202040060","url":null,"abstract":"Aims. Photometric monitoring of β Pic in 1981 showed anomalous fluctuations of up to 4% over several days, consistent with foreground material transiting the stellar disk. The subsequent discovery of the gas giant planet β Pic b and the predicted transit of its Hill sphere to within a 0.1 au projected separation of the planet provided an opportunity to search for the transit of a circumplanetary disk (CPD) in this 21 ± 4 Myr-old planetary system. We aim to detect, or put an upper limit on, the density and nature of the material in the circumplanetary environment of the planet via the continuous photometric monitoring of the Hill sphere transit that occurred in 2017 and 2018.\u0000Methods. Continuous broadband photometric monitoring of β Pic requires ground-based observatories at multiple longitudes to provide redundancy and to provide triggers for rapid spectroscopic follow-up. These include the dedicated β Pic monitoring bRing observatories in Sutherland and Siding Springs, the ASTEP400 telescope at Concordia, and the space observatories BRITE and the Hubble Space Telescope (HST). We search the combined light curves for evidence of short-period transient events caused by rings as well as for longer-term photometric variability due to diffuse circumplanetary material.\u0000Results. We find no photometric event that matches with the event seen in November 1981, and there is no systematic photometric dimming of the star as a function of the Hill sphere radius.\u0000Conclusions. We conclude that the 1981 event was not caused by the transit of a CPD around β Pic b. The upper limit on the long-term variability of β Pic places an upper limit of 1.8 × 1022 g of dust within the Hill sphere (comparable to the ~100 km radius asteroid 16 Psyche). Circumplanetary material is either condensed into a disk that does not transit β Pic, condensed into a disk with moons that has an obliquity that does not intersect with the path of β Pic behind the Hill sphere, or is below our detection threshold. This is the first time that a dedicated international campaign has mapped the Hill sphere transit of an extrasolar gas giant planet at 10 au.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"39 1","pages":""},"PeriodicalIF":25.8,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87054402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}