Pub Date : 2022-12-01Epub Date: 2022-11-23DOI: 10.1089/apb.2022.0007
Samreen Sarwar, Miguel Martin N Moreno, Mashaal Chaudhri, Uzma Bashir Aamir, Aamer Ikram
Introduction: Institutions implementing a biorisk management system need to establish comprehensive guidance to support the implementation of biosafety and biosecurity practices. A biorisk manual describes how a biorisk management system will be implemented in an organization and includes topics such as facility-specific policies and procedures to safely and securely handle, store, and dispose of biological agents and toxins in adherence with international guidance.
Methods: To promote the adoption of biosafety and biosecurity in Pakistan, the Pakistan Biological Safety Association and Health Security Partners developed a biorisk manual writing project in 2019 in partnership with experts from the BioRisk Association of the Philippines 2015, Inc. This project helped 13 researchers and laboratory professionals in Pakistan develop biorisk manuals for their institutions. The project comprised two phases: an in-person group training on how to develop a laboratory biorisk manual, and 10 months of additional remote mentoring assistance for the development and finalization of the biorisk manual tailored to each institution's specific needs. By the end of the project, 12 of the 13 participants had customized biorisk manuals for their institutions in place. In January 2022, a survey was conducted among the workshop participants to learn how successful they were in implementing the developed manual in their institutions.
Results: Participants reported varying degrees of successful implementation. They also suggested that the biosafety and biosecurity associations should engage top management at institutions to strengthen administrative support and provide a sufficient workforce to promote implementation.
{"title":"A Mentorship Program to Develop Biorisk Manuals for Laboratories in Pakistan.","authors":"Samreen Sarwar, Miguel Martin N Moreno, Mashaal Chaudhri, Uzma Bashir Aamir, Aamer Ikram","doi":"10.1089/apb.2022.0007","DOIUrl":"10.1089/apb.2022.0007","url":null,"abstract":"<p><strong>Introduction: </strong>Institutions implementing a biorisk management system need to establish comprehensive guidance to support the implementation of biosafety and biosecurity practices. A biorisk manual describes how a biorisk management system will be implemented in an organization and includes topics such as facility-specific policies and procedures to safely and securely handle, store, and dispose of biological agents and toxins in adherence with international guidance.</p><p><strong>Methods: </strong>To promote the adoption of biosafety and biosecurity in Pakistan, the Pakistan Biological Safety Association and Health Security Partners developed a biorisk manual writing project in 2019 in partnership with experts from the BioRisk Association of the Philippines 2015, Inc. This project helped 13 researchers and laboratory professionals in Pakistan develop biorisk manuals for their institutions. The project comprised two phases: an in-person group training on how to develop a laboratory biorisk manual, and 10 months of additional remote mentoring assistance for the development and finalization of the biorisk manual tailored to each institution's specific needs. By the end of the project, 12 of the 13 participants had customized biorisk manuals for their institutions in place. In January 2022, a survey was conducted among the workshop participants to learn how successful they were in implementing the developed manual in their institutions.</p><p><strong>Results: </strong>Participants reported varying degrees of successful implementation. They also suggested that the biosafety and biosecurity associations should engage top management at institutions to strengthen administrative support and provide a sufficient workforce to promote implementation.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 4","pages":"219-224"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9389701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-11-23DOI: 10.1089/apb.2022.0008
Dirk P Dittmer, Anthony B Eason, Angelica Juarez
Purpose: The aim of this work was to review and analyze changes to the practice of biosafety imposed by pandemics.
Methods: A narrative review of the COVID-19 pandemic that began in 2020 and prior pandemics from the perspective of a working virologist.
Results: By definition, pandemics, outbreaks, and other emergencies are transient phenomena. They manifest as waves of events that induce unforeseen needs and present unknown challenges. After a pandemic, the return to normality is as crucial as the scale-up during the exponential growth phase. The COVID-19 pandemic presents an example to study operational biosafety and biocontainment issues during community transmission of infectious agents with established pandemic potential, the propensity to induce severe disease, and the ability to disrupt aspects of human society.
Conclusions: Scaling down heightened biocontainment measures after a pandemic is as important as scaling up during a pandemic. The availability of preventive vaccines, and therapeutic drug regimens, should be considered in risk assessments for laboratory studies. There exists the need to preserve situational memory at the personal and institutional levels that can be served by professional societies.
{"title":"Scaling Biosafety Up During and Down After the COVID-19 Pandemic.","authors":"Dirk P Dittmer, Anthony B Eason, Angelica Juarez","doi":"10.1089/apb.2022.0008","DOIUrl":"10.1089/apb.2022.0008","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this work was to review and analyze changes to the practice of biosafety imposed by pandemics.</p><p><strong>Methods: </strong>A narrative review of the COVID-19 pandemic that began in 2020 and prior pandemics from the perspective of a working virologist.</p><p><strong>Results: </strong>By definition, pandemics, outbreaks, and other emergencies are transient phenomena. They manifest as waves of events that induce unforeseen needs and present unknown challenges. After a pandemic, the return to normality is as crucial as the scale-up during the exponential growth phase. The COVID-19 pandemic presents an example to study operational biosafety and biocontainment issues during community transmission of infectious agents with established pandemic potential, the propensity to induce severe disease, and the ability to disrupt aspects of human society.</p><p><strong>Conclusions: </strong>Scaling down heightened biocontainment measures after a pandemic is as important as scaling up during a pandemic. The availability of preventive vaccines, and therapeutic drug regimens, should be considered in risk assessments for laboratory studies. There exists the need to preserve situational memory at the personal and institutional levels that can be served by professional societies.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 4","pages":"247-254"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10855666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-11-23DOI: 10.1089/apb.2022.0021
Cory Ziegler, Chris Kiley, Gilles Tremblay, Ryan Gregory, Ryan N Burnette
Introduction: The global SARS-CoV-2 pandemic ushered in a new way of life in a short time, with many lasting impacts that have yet to be fully realized. This pandemic threat landscape resulted in massive efforts to increase safety, minimize person-to-person transmission, and rethink how society approaches personal and collective health issues. The buildings and environments in which we live, work, and learn now became environments that pose new risks. As a result, many institutions began asking what improvements could be made to those environments to reduce the spread of infection of SARS-CoV-2 and other infectious diseases.
Methods: The authors conducted a review of past projects and emerging technologies to evaluate which applications in containment laboratories could represent an example of how engineering controls can improve safety by protecting the workers inside the laboratories as well as the public interfacing the laboratories.
Discussion: Engineering controls, technology, and safety systems are hallmarks of modern containment laboratories that may provide some context into extrapolating these elements into non-laboratory environments, providing there is coordination with a risk assessment methodology. In this study, the authors explore new technologies proposed for controlling SARS-CoV-2 in heating, ventilation, and air conditioning systems, and potential impacts to the operations and maintenance of those systems.
{"title":"Engineering Controls and Technologies to Enhance Safety in the COVID-19 Pandemic Landscape: Lessons for Laboratories and Non-Laboratories.","authors":"Cory Ziegler, Chris Kiley, Gilles Tremblay, Ryan Gregory, Ryan N Burnette","doi":"10.1089/apb.2022.0021","DOIUrl":"10.1089/apb.2022.0021","url":null,"abstract":"<p><strong>Introduction: </strong>The global SARS-CoV-2 pandemic ushered in a new way of life in a short time, with many lasting impacts that have yet to be fully realized. This pandemic threat landscape resulted in massive efforts to increase safety, minimize person-to-person transmission, and rethink how society approaches personal and collective health issues. The buildings and environments in which we live, work, and learn now became environments that pose new risks. As a result, many institutions began asking what improvements could be made to those environments to reduce the spread of infection of SARS-CoV-2 and other infectious diseases.</p><p><strong>Methods: </strong>The authors conducted a review of past projects and emerging technologies to evaluate which applications in containment laboratories could represent an example of how engineering controls can improve safety by protecting the workers inside the laboratories as well as the public interfacing the laboratories.</p><p><strong>Discussion: </strong>Engineering controls, technology, and safety systems are hallmarks of modern containment laboratories that may provide some context into extrapolating these elements into non-laboratory environments, providing there is coordination with a risk assessment methodology. In this study, the authors explore new technologies proposed for controlling SARS-CoV-2 in heating, ventilation, and air conditioning systems, and potential impacts to the operations and maintenance of those systems.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 4","pages":"225-230"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10694331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-11-23DOI: 10.1089/apb.2022.0030
Rocco Casagrande
{"title":"Innovations and Best Practices in Biosafety: A Workshop.","authors":"Rocco Casagrande","doi":"10.1089/apb.2022.0030","DOIUrl":"10.1089/apb.2022.0030","url":null,"abstract":"","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 4","pages":"199-200"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10685227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-11-23DOI: 10.1089/apb.2022.0010
Benjamin Fontes, Tessa Landgraf, Jeremy Stoddard, Neil Velasquez
Introduction: This article will review the processes utilized to develop simple effective containment engineering controls. Short-Term Use Biocontainment Bubbles-Yale (STUBB-Ys), as Yale refers to them, were designed, built, tested, and implemented to protect members of the Yale University community from exposure to SARS-CoV-2 aerosols. STUBB-Ys were designed and created in conjunction with end users, constructed by Environmental Health and Safety (EHS) or partner groups, and tested onsite after installation to verify effective operation and containment.
Methods: A wide variety of devices in different settings were developed and installed. STUBB-Ys were used at COVID-19 indoor test centers, laboratories, and clinics. The devices were pursued to create infection prevention measures where existing processes could not be utilized or were inadequate. Each STUBB-Y was tested with a C-Breeze Condensed Moisture Airflow Visualizer to generate smoke and a Fluke 985 Particle Counter, which gives the particle counts from 0.3 to 10 μm to measure particle escape visually and quantitatively. Airflow rates were also tested where applicable with a TSI VelociCalc 9525 Air Velocity Meter.
Results: Students and faculty were able to safely continue vital research or clinical study in the targeted areas with the addition of these simple containment devices to confine aerosols.
Conclusion: From a biorisk management point of view, EHS was able to confine aerosols at their potential source using simple designs and equipment and adhering to the hierarchy of controls. This article demonstrates how a straightforward design process can be used to enhance worker protection during a pandemic.
{"title":"Short-Term Use Biocontainment Bubbles: Innovative Source Containment of Potentially Infectious SARS-CoV-2 Aerosols.","authors":"Benjamin Fontes, Tessa Landgraf, Jeremy Stoddard, Neil Velasquez","doi":"10.1089/apb.2022.0010","DOIUrl":"10.1089/apb.2022.0010","url":null,"abstract":"<p><strong>Introduction: </strong>This article will review the processes utilized to develop simple effective containment engineering controls. Short-Term Use Biocontainment Bubbles-Yale (STUBB-Ys), as Yale refers to them, were designed, built, tested, and implemented to protect members of the Yale University community from exposure to SARS-CoV-2 aerosols. STUBB-Ys were designed and created in conjunction with end users, constructed by Environmental Health and Safety (EHS) or partner groups, and tested onsite after installation to verify effective operation and containment.</p><p><strong>Methods: </strong>A wide variety of devices in different settings were developed and installed. STUBB-Ys were used at COVID-19 indoor test centers, laboratories, and clinics. The devices were pursued to create infection prevention measures where existing processes could not be utilized or were inadequate. Each STUBB-Y was tested with a C-Breeze Condensed Moisture Airflow Visualizer to generate smoke and a Fluke 985 Particle Counter, which gives the particle counts from 0.3 to 10 μm to measure particle escape visually and quantitatively. Airflow rates were also tested where applicable with a TSI VelociCalc 9525 Air Velocity Meter.</p><p><strong>Results: </strong>Students and faculty were able to safely continue vital research or clinical study in the targeted areas with the addition of these simple containment devices to confine aerosols.</p><p><strong>Conclusion: </strong>From a biorisk management point of view, EHS was able to confine aerosols at their potential source using simple designs and equipment and adhering to the hierarchy of controls. This article demonstrates how a straightforward design process can be used to enhance worker protection during a pandemic.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 4","pages":"237-246"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9250456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-11-23DOI: 10.1089/apb.2022.0022
Daniel Eisenman, Scott Swindle
Introduction: With the burgeoning growth of the gene therapy industry, the Food and Drug Administration (FDA) has produced various guidance documents intended to help gene therapy manufacturers design their preclinical testing and clinical trials to facilitate the process of obtaining marketing approval.
Discussion: Biosafety professionals and institutional biosafety committees (IBCs) with oversight of clinical trials or biopharmaceutical manufacturing stand to benefit from understanding how these guidance documents set the standard for writing the clinical research protocols that are reviewed by IBCs. Although the FDA guidance documents are typically meant for manufacturers (either pharmaceutical companies serving as research sponsors or investigators at academic institutions), much of the content is useful for biosafety professionals and IBCs during the IBC review process.
Conclusion: This article specifically addresses guidance documents pertaining to gene therapy vectors capable of genomic integration, testing for replication competent retrovirus, genome editing, and long-term follow-up of research subjects.
{"title":"Food and Drug Administration Guidance on Design of Clinical Trials for Gene Therapy Products with Potential for Genome Integration or Genome Editing and Associated Long-Term Follow-Up of Research Subjects.","authors":"Daniel Eisenman, Scott Swindle","doi":"10.1089/apb.2022.0022","DOIUrl":"10.1089/apb.2022.0022","url":null,"abstract":"<p><strong>Introduction: </strong>With the burgeoning growth of the gene therapy industry, the Food and Drug Administration (FDA) has produced various guidance documents intended to help gene therapy manufacturers design their preclinical testing and clinical trials to facilitate the process of obtaining marketing approval.</p><p><strong>Discussion: </strong>Biosafety professionals and institutional biosafety committees (IBCs) with oversight of clinical trials or biopharmaceutical manufacturing stand to benefit from understanding how these guidance documents set the standard for writing the clinical research protocols that are reviewed by IBCs. Although the FDA guidance documents are typically meant for manufacturers (either pharmaceutical companies serving as research sponsors or investigators at academic institutions), much of the content is useful for biosafety professionals and IBCs during the IBC review process.</p><p><strong>Conclusion: </strong>This article specifically addresses guidance documents pertaining to gene therapy vectors capable of genomic integration, testing for replication competent retrovirus, genome editing, and long-term follow-up of research subjects.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 4","pages":"201-209"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9250458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-11-23DOI: 10.1089/apb.2022.0011
Jon Walter McKeeby, Christopher M Siwy, Jordan Southers, Derek A Newcomer, Samantha Hughes, Jeffery M Sano, Jharana J Patel, Falguni Kanthan, Marilyn Farinre, Megan Morgan Brose, Rebecca V Anderson, Judy Chan, Heike Bailin, Michael R Bell, John S McLamb, Stephen Novak, Dennis J House, Mary J Sparks, Michael Nansel, Seth D Carlson, Yenshei Liu, Cory Stephens, Erin Tsui, Patricia S Coffey, Jessica McCormick-Ell
Introduction: Healthcare organizations faced unique operational challenges during the COVID-19 pandemic. Assuring the safety of both patients and healthcare workers in hospitals has been the primary focus during the COVID-19 pandemic.
Methods: The NIH Vaccine Program (VP) with the Vaccine Management System (VMS) was created based on the commitment of NIH leadership, program leadership, the development team, and the program team; defining Key Performance Indicators (KPIs) of the VP and the VMS; and the NIH Clinical Center's (NIH CC) interdisciplinary approach to deploying the VMS.
Results: This article discusses the NIH business requirements of the VP and VMS, the target KPIs of the VP and the VMS, and the NIH CC interdisciplinary approach to deploying an organizational VMS for vaccinating the NIH workforce. The use of the DCRI Spiral-Agile Software Development Life Cycle enabled the development of a system with stakeholder involvement that could quickly adapt to changing requirements meeting the defined KPIs for the program and system. The assessment of the defined KPIs through a survey and comments from the survey support that the VP and VMS were successful.
Conclusion: A comprehensive program to maintain a healthy workforce includes asymptomatic COVID testing, symptomatic COVID testing, contact tracing, vaccinations, and policy-driven education. The need to develop systems during the pandemic resulted in changes to build software quickly with the input of many more users and stakeholders then typical in a decreased amount of time.
{"title":"Establishing a Health Information Technology for the Vaccination of National Institutes of Health Staff.","authors":"Jon Walter McKeeby, Christopher M Siwy, Jordan Southers, Derek A Newcomer, Samantha Hughes, Jeffery M Sano, Jharana J Patel, Falguni Kanthan, Marilyn Farinre, Megan Morgan Brose, Rebecca V Anderson, Judy Chan, Heike Bailin, Michael R Bell, John S McLamb, Stephen Novak, Dennis J House, Mary J Sparks, Michael Nansel, Seth D Carlson, Yenshei Liu, Cory Stephens, Erin Tsui, Patricia S Coffey, Jessica McCormick-Ell","doi":"10.1089/apb.2022.0011","DOIUrl":"10.1089/apb.2022.0011","url":null,"abstract":"<p><strong>Introduction: </strong>Healthcare organizations faced unique operational challenges during the COVID-19 pandemic. Assuring the safety of both patients and healthcare workers in hospitals has been the primary focus during the COVID-19 pandemic.</p><p><strong>Methods: </strong>The NIH Vaccine Program (VP) with the Vaccine Management System (VMS) was created based on the commitment of NIH leadership, program leadership, the development team, and the program team; defining Key Performance Indicators (KPIs) of the VP and the VMS; and the NIH Clinical Center's (NIH CC) interdisciplinary approach to deploying the VMS.</p><p><strong>Results: </strong>This article discusses the NIH business requirements of the VP and VMS, the target KPIs of the VP and the VMS, and the NIH CC interdisciplinary approach to deploying an organizational VMS for vaccinating the NIH workforce. The use of the DCRI Spiral-Agile Software Development Life Cycle enabled the development of a system with stakeholder involvement that could quickly adapt to changing requirements meeting the defined KPIs for the program and system. The assessment of the defined KPIs through a survey and comments from the survey support that the VP and VMS were successful.</p><p><strong>Conclusion: </strong>A comprehensive program to maintain a healthy workforce includes asymptomatic COVID testing, symptomatic COVID testing, contact tracing, vaccinations, and policy-driven education. The need to develop systems during the pandemic resulted in changes to build software quickly with the input of many more users and stakeholders then typical in a decreased amount of time.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 4","pages":"231-236"},"PeriodicalIF":1.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9250457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia Gentry-Weeks, Dell Rae Ciaravola, Marc Barker, Kelly Long, Lori Lynn, Heather Pidcoke, Kenneth Quintana, Benjamin Withers
Introduction: Universities were challenged during the COVID-19 pandemic to continue providing quality education for their students while navigating the uncertainties of the SARS-CoV-2 virus.
Objectives: The goal of this article is to describe strategies used by Colorado State University (CSU) to mitigate SARS-CoV-2 transmission among faculty, staff, and students and to describe procedures used in microbiology teaching laboratories.
Methods: Information concerning CSU's pandemic response was gathered via email communications to the CSU community, town hall meetings, and interviews with leaders, researchers, and staff who spearheaded public health initiatives.
Results: To date, there have been no known cases of transmission of SARS-CoV-2 in the classroom. Early strategies that contributed to this success included social norming of safe public health behaviors, development of low-cost, rapid screening and surveillance methods, an online COVID-19 reporting system, contact tracing and quarantine, rearranging classrooms to reduce the capacity by 50%, increasing air flow, enhanced cleaning and production of sanitizer, and flexible instructors who quickly changed their courses for remote delivery or launched extra risk management procedures for face-to-face delivery of laboratory, performance, or studio classes.
Conclusion: Intense collaboration among the CSU community, open and frequent communication, coordination of efforts, flexible instructors, and the willingness to follow safe public health behaviors allowed CSU to continue face-to-face teaching in courses that required hands-on learning or demanded in-person instruction. It is the hope of the authors that this information can provide both a historical account and useful information for others dealing with the COVID-19 pandemic.
{"title":"Undergraduate Teaching During COVID-19.","authors":"Claudia Gentry-Weeks, Dell Rae Ciaravola, Marc Barker, Kelly Long, Lori Lynn, Heather Pidcoke, Kenneth Quintana, Benjamin Withers","doi":"10.1089/apb.2022.0023","DOIUrl":"https://doi.org/10.1089/apb.2022.0023","url":null,"abstract":"<p><strong>Introduction: </strong>Universities were challenged during the COVID-19 pandemic to continue providing quality education for their students while navigating the uncertainties of the SARS-CoV-2 virus.</p><p><strong>Objectives: </strong>The goal of this article is to describe strategies used by Colorado State University (CSU) to mitigate SARS-CoV-2 transmission among faculty, staff, and students and to describe procedures used in microbiology teaching laboratories.</p><p><strong>Methods: </strong>Information concerning CSU's pandemic response was gathered via email communications to the CSU community, town hall meetings, and interviews with leaders, researchers, and staff who spearheaded public health initiatives.</p><p><strong>Results: </strong>To date, there have been no known cases of transmission of SARS-CoV-2 in the classroom. Early strategies that contributed to this success included social norming of safe public health behaviors, development of low-cost, rapid screening and surveillance methods, an online COVID-19 reporting system, contact tracing and quarantine, rearranging classrooms to reduce the capacity by 50%, increasing air flow, enhanced cleaning and production of sanitizer, and flexible instructors who quickly changed their courses for remote delivery or launched extra risk management procedures for face-to-face delivery of laboratory, performance, or studio classes.</p><p><strong>Conclusion: </strong>Intense collaboration among the CSU community, open and frequent communication, coordination of efforts, flexible instructors, and the willingness to follow safe public health behaviors allowed CSU to continue face-to-face teaching in courses that required hands-on learning or demanded in-person instruction. It is the hope of the authors that this information can provide both a historical account and useful information for others dealing with the COVID-19 pandemic.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 3","pages":"153-168"},"PeriodicalIF":1.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908288/pdf/apb.2022.0023.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10507201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1089/apb.2022.29008.intro
Barbara Johnson, K. Byers, S. Patlovich, David R Gillum
{"title":"Themed Issue: Building Preparedness and Resilience in Preparation for Future Public Health Crises","authors":"Barbara Johnson, K. Byers, S. Patlovich, David R Gillum","doi":"10.1089/apb.2022.29008.intro","DOIUrl":"https://doi.org/10.1089/apb.2022.29008.intro","url":null,"abstract":"","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46003319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew Philpott, Kathy O'Reilly, Luiz Bermudez, Helio de Morais, Theresa M Filtz
Introduction: The ongoing COVID-19 pandemic has presented numerous challenges to education at all levels, but has been particularly challenging for professional schools and other educational sectors that require intensive hands-on training. Those institutions have had to deploy and continuously adapt new learning strategies in response to an ever-changing pandemic landscape over the past two years, while at the same time meeting the rigorous proficiency standards for their students.
Methods: This communication describes how two professional schools at Oregon State University, the College of Pharmacy and the Carlson College of Veterinary Medicine, pivoted in response to the COVID-19 pandemic to ensure continuity in student training. The adaptations included technological solutions, physical distancing, barriers, reduced group size and scheduling changes in the curriculum, and enhanced personal protective equipment.
Results: The available evidence suggest that the biosafety measures implemented to reduce the risk of COVID-19 in the hands-on educational setting appear to have been effective in preventing transmission during classroom and experiential learning activities. Professional licensing exam scores for the students of both colleges remain as high as pre-pandemic values, suggesting that the implemented changes in instruction did not have a detrimental impact on student learning. The scores will need to be monitored for several more years before firm conclusions can be drawn.
Discussion: Both colleges implemented creative solutions to the delivery of hands-on pedagogy that sought to balance risk of infection and the necessity to master critical skills that can only be acquired by active learning.
{"title":"Professional Student Education and Training During the COVID-19 Pandemic.","authors":"Matthew Philpott, Kathy O'Reilly, Luiz Bermudez, Helio de Morais, Theresa M Filtz","doi":"10.1089/apb.2022.0017","DOIUrl":"https://doi.org/10.1089/apb.2022.0017","url":null,"abstract":"<p><strong>Introduction: </strong>The ongoing COVID-19 pandemic has presented numerous challenges to education at all levels, but has been particularly challenging for professional schools and other educational sectors that require intensive hands-on training. Those institutions have had to deploy and continuously adapt new learning strategies in response to an ever-changing pandemic landscape over the past two years, while at the same time meeting the rigorous proficiency standards for their students.</p><p><strong>Methods: </strong>This communication describes how two professional schools at Oregon State University, the College of Pharmacy and the Carlson College of Veterinary Medicine, pivoted in response to the COVID-19 pandemic to ensure continuity in student training. The adaptations included technological solutions, physical distancing, barriers, reduced group size and scheduling changes in the curriculum, and enhanced personal protective equipment.</p><p><strong>Results: </strong>The available evidence suggest that the biosafety measures implemented to reduce the risk of COVID-19 in the hands-on educational setting appear to have been effective in preventing transmission during classroom and experiential learning activities. Professional licensing exam scores for the students of both colleges remain as high as pre-pandemic values, suggesting that the implemented changes in instruction did not have a detrimental impact on student learning. The scores will need to be monitored for several more years before firm conclusions can be drawn.</p><p><strong>Discussion: </strong>Both colleges implemented creative solutions to the delivery of hands-on pedagogy that sought to balance risk of infection and the necessity to master critical skills that can only be acquired by active learning.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 3","pages":"144-152"},"PeriodicalIF":1.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908278/pdf/apb.2022.0017.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10643353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}