Pub Date : 2024-10-01Epub Date: 2024-02-27DOI: 10.1089/ars.2022.0183
Xin-Ru Zhou, Xin-Yue Wang, Yue-Mei Sun, Chong Zhang, Ke Jian Liu, Fu-Yin Zhang, Bin Xiang
Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.
{"title":"Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis.","authors":"Xin-Ru Zhou, Xin-Yue Wang, Yue-Mei Sun, Chong Zhang, Ke Jian Liu, Fu-Yin Zhang, Bin Xiang","doi":"10.1089/ars.2022.0183","DOIUrl":"10.1089/ars.2022.0183","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. <b><i>Results:</i></b> Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. <b><i>Innovation:</i></b> Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. <b><i>Conclusion:</i></b> These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"723-743"},"PeriodicalIF":5.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-04-03DOI: 10.1089/ars.2024.0561
Arvin S Pierre, Noa Gavriel, Marianne Guilbard, Eric Ogier-Denis, Eric Chevet, Frederic Delom, Aeid Igbaria
Significance: Oxidative folding within the endoplasmic reticulum (ER) introduces disulfide bonds into nascent polypeptides, ensuring proteins' stability and proper functioning. Consequently, this process is critical for maintaining proteome integrity and overall health. The productive folding of thousands of secretory proteins requires stringent quality control measures, such as the unfolded protein response (UPR) and ER-Associated Degradation (ERAD), which contribute significantly to maintaining ER homeostasis. ER-localized protein disulfide isomerases (PDIs) play an essential role in each of these processes, thereby contributing to various aspects of ER homeostasis, including maintaining redox balance, proper protein folding, and signaling from the ER to the nucleus. Recent Advances: Over the years, there have been increasing reports of the (re)localization of PDI family members and other ER-localized proteins to various compartments. A prime example is the anterior gradient (AGR) family of PDI proteins, which have been reported to relocate to the cytosol or the extracellular environment, acquiring gain of functions that intersect with various cellular signaling pathways. Critical Issues: Here, we summarize the functions of PDIs and their gain or loss of functions in non-ER locations. We will focus on the activity, localization, and function of the AGR proteins: AGR1, AGR2, and AGR3. Future Directions: Targeting PDIs in general and AGRs in particular is a promising strategy in different human diseases. Thus, there is a need for innovative strategies and tools aimed at targeting PDIs; those strategies should integrate the specific localization and newly acquired functions of these PDIs rather than solely focusing on their canonical roles.
{"title":"Modulation of Protein Disulfide Isomerase Functions by Localization: The Example of the Anterior Gradient Family.","authors":"Arvin S Pierre, Noa Gavriel, Marianne Guilbard, Eric Ogier-Denis, Eric Chevet, Frederic Delom, Aeid Igbaria","doi":"10.1089/ars.2024.0561","DOIUrl":"10.1089/ars.2024.0561","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Oxidative folding within the endoplasmic reticulum (ER) introduces disulfide bonds into nascent polypeptides, ensuring proteins' stability and proper functioning. Consequently, this process is critical for maintaining proteome integrity and overall health. The productive folding of thousands of secretory proteins requires stringent quality control measures, such as the unfolded protein response (UPR) and ER-Associated Degradation (ERAD), which contribute significantly to maintaining ER homeostasis. ER-localized protein disulfide isomerases (PDIs) play an essential role in each of these processes, thereby contributing to various aspects of ER homeostasis, including maintaining redox balance, proper protein folding, and signaling from the ER to the nucleus. <b><i>Recent Advances:</i></b> Over the years, there have been increasing reports of the (re)localization of PDI family members and other ER-localized proteins to various compartments. A prime example is the anterior gradient (AGR) family of PDI proteins, which have been reported to relocate to the cytosol or the extracellular environment, acquiring gain of functions that intersect with various cellular signaling pathways. <b><i>Critical Issues:</i></b> Here, we summarize the functions of PDIs and their gain or loss of functions in non-ER locations. We will focus on the activity, localization, and function of the AGR proteins: AGR1, AGR2, and AGR3. <b><i>Future Directions:</i></b> Targeting PDIs in general and AGRs in particular is a promising strategy in different human diseases. Thus, there is a need for innovative strategies and tools aimed at targeting PDIs; those strategies should integrate the specific localization and newly acquired functions of these PDIs rather than solely focusing on their canonical roles.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"675-692"},"PeriodicalIF":5.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H2S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. Methods & Results: First, we observed a downregulation of CSE/H2S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness in vivo and VSMC senescence and stiffness in vitro. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H2S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H2S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H2S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. Innovation: Our findings highlight the protective role of CSE/H2S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. Conclusion: Endogenous CSE/H2S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways.
{"title":"Cystathionine γ-Lyase Attenuates Vascular Smooth Muscle Cell Senescence via Foxm1-Gas1 Pathway to Mediate Arterial Stiffness.","authors":"Qian Lin, Changting Cui, Ying Zhao, Yuefeng Geng, Huimin Gao, Xiaodie Shao, Ling Cheng, Haitao Li, Bin Geng","doi":"10.1089/ars.2024.0602","DOIUrl":"10.1089/ars.2024.0602","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H<sub>2</sub>S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. <b><i>Methods & Results:</i></b> First, we observed a downregulation of CSE/H<sub>2</sub>S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness <i>in vivo</i> and VSMC senescence and stiffness <i>in vitro</i>. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H<sub>2</sub>S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H<sub>2</sub>S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H<sub>2</sub>S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. <b><i>Innovation:</i></b> Our findings highlight the protective role of CSE/H<sub>2</sub>S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. <b><i>Conclusion:</i></b> Endogenous CSE/H<sub>2</sub>S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. Results: We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. Innovation and Conclusion: We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate.
目的:琥珀酸是三羧酸循环中的一种代谢产物,它作为细胞内或细胞外的信号分子在炎症中发挥着重要作用,这一点已被越来越多的人所认识。然而,琥珀酸盐在炎症中的作用和机制仍然难以捉摸。在此,我们研究了琥珀酸盐对脑出血(ICH)模型中神经炎症的影响机制:结果:我们意外地发现,琥珀酸盐能强有力地抑制神经炎症并在 ICH 后提供保护。从机理上讲,琥珀酸脱氢酶(SDH)对琥珀酸的氧化作用推动了线粒体复合体 I 的反向电子传递(RET),导致小胶质细胞线粒体产生超氧化物。复合体 I 产生的超氧化物反过来又激活了解偶联蛋白 2(UCP2)。通过使用在小胶质细胞/巨噬细胞中特异性删除 UCP2 的小鼠,我们发现 UCP2 是琥珀酸抑制神经炎症、提供保护和激活 ICH 后下游 AMP 激活蛋白激酶(AMPK)所必需的。此外,SDH、复合物I或AMPK的敲除会取消琥珀酸在ICH后的治疗效果:我们提供的证据表明,驱动复合体I RET激活UCP2是琥珀酸酯细胞内信号传导的一种新机制,也是琥珀酸酯抑制神经炎症的一种机制。
{"title":"Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage.","authors":"Yecheng Wang, Caiyun Huang, Xiaoying Wang, Rong Cheng, Xue Li, Jiahao Wang, Lu Zhang, Fuhao Li, Hao Wang, Xinyu Li, Yi Li, Yiqing Xia, Jian Cheng, Xiaofan Pan, Jia Jia, Guo-Dong Xiao","doi":"10.1089/ars.2024.0573","DOIUrl":"10.1089/ars.2024.0573","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. <b><i>Results:</i></b> We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. <b><i>Innovation and Conclusion:</i></b> We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siobhan M Craige, Gaganpreet Kaur, Jacob M Bond, Amada D Caliz, Shashi Kant, John F Keaney
Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.
{"title":"Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease.","authors":"Siobhan M Craige, Gaganpreet Kaur, Jacob M Bond, Amada D Caliz, Shashi Kant, John F Keaney","doi":"10.1089/ars.2024.0706","DOIUrl":"10.1089/ars.2024.0706","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. <b><i>Recent Advances:</i></b> New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. <b><i>Critical Issues:</i></b> Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. <b><i>Future Directions:</i></b> Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sha Li, Qixiu Li, Hong Xiang, Chenye Wang, Qi Zhu, Danping Ruan, Yi Zhun Zhu, Yicheng Mao
Aims: S-propargyl-cysteine (SPRC) is an endogenous hydrogen sulfide (H2S) donor obtained by modifying the structure of S-allyl cysteine in garlic. This study aims to investigate the effect of SPRC on mitigating cardiac aging and the involvement of jumonji domain-containing protein 3 (JMJD3), a histone demethylase, which represents the primary risk factor in major aging related diseases, in this process, elucidating the preliminary mechanism through which SPRC regulation of JMJD3 occurs. Results:In vitro, SPRC mitigated the elevated levels of reactive oxygen species, senescence-associated β-galactosidase, p53, and p21, reversing the decline in mitochondrial membrane potential, which represented a reduction in cellular senescence. In vivo, SPRC improved Dox-induced cardiac pathological structure and function. Overexpression of JMJD3 accelerated cardiomyocytes and cardiac senescence, whereas its knockdown in vitro reduced the senescence phenotype. The potential binding site of the upstream transcription factor of JMJD3, sheared X box binding protein 1 (XBP1s), was determined using online software. SPRC promoted the expression of cystathionine γ-lyase (CSE), which subsequently inhibited the IRE1α/XBP1s signaling pathway and decreased JMJD3 expression. Innovations: This study is the first to establish JMJD3 as a crucial regulator of cardiac aging. SPRC can alleviate cardiac aging by upregulating CSE and inhibiting endoplasmic reticulum stress pathways, which in turn suppress JMJD3 expression. Conclusions: JMJD3 plays an essential role in cardiac aging regulation, whereas SPRC can suppress the expression of JMJD3 by upregulating CSE, thus delaying cardiac aging, which suggests that SPRC may serve as an aging protective agent, and pharmacological targeting of JMJD3 may also be a promising therapeutic approach in age-related heart diseases.
{"title":"H<sub>2</sub>S Donor SPRC Ameliorates Cardiac Aging by Suppression of JMJD3, a Histone Demethylase.","authors":"Sha Li, Qixiu Li, Hong Xiang, Chenye Wang, Qi Zhu, Danping Ruan, Yi Zhun Zhu, Yicheng Mao","doi":"10.1089/ars.2024.0605","DOIUrl":"10.1089/ars.2024.0605","url":null,"abstract":"<p><p><b><i>Aims:</i></b> S-propargyl-cysteine (SPRC) is an endogenous hydrogen sulfide (H<sub>2</sub>S) donor obtained by modifying the structure of S-allyl cysteine in garlic. This study aims to investigate the effect of SPRC on mitigating cardiac aging and the involvement of jumonji domain-containing protein 3 (JMJD3), a histone demethylase, which represents the primary risk factor in major aging related diseases, in this process, elucidating the preliminary mechanism through which SPRC regulation of JMJD3 occurs. <b><i>Results:</i></b> <i>In vitro</i>, SPRC mitigated the elevated levels of reactive oxygen species, senescence-associated β-galactosidase, p53, and p21, reversing the decline in mitochondrial membrane potential, which represented a reduction in cellular senescence. <i>In vivo</i>, SPRC improved Dox-induced cardiac pathological structure and function. Overexpression of JMJD3 accelerated cardiomyocytes and cardiac senescence, whereas its knockdown <i>in vitro</i> reduced the senescence phenotype. The potential binding site of the upstream transcription factor of JMJD3, sheared X box binding protein 1 (XBP1s), was determined using online software. SPRC promoted the expression of cystathionine γ-lyase (CSE), which subsequently inhibited the IRE1α/XBP1s signaling pathway and decreased JMJD3 expression. <b><i>Innovations:</i></b> This study is the first to establish JMJD3 as a crucial regulator of cardiac aging. SPRC can alleviate cardiac aging by upregulating CSE and inhibiting endoplasmic reticulum stress pathways, which in turn suppress JMJD3 expression. <b><i>Conclusions:</i></b> JMJD3 plays an essential role in cardiac aging regulation, whereas SPRC can suppress the expression of JMJD3 by upregulating CSE, thus delaying cardiac aging, which suggests that SPRC may serve as an aging protective agent, and pharmacological targeting of JMJD3 may also be a promising therapeutic approach in age-related heart diseases.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Significance: Intestinal stem cells (ISCs) are crucial for the continuous renewal and regeneration of the small intestinal epithelium. ISC fate decisions are strictly controlled by metabolism. Mitochondria act as the central hubs of energetic metabolism and dynamically remodel their morphology to perform required metabolic functions. Mitochondrial dysfunction is closely associated with a variety of gastrointestinal diseases. Recent Advances: In recent years, several studies have reported that mitochondria are potential therapeutic targets for regulating ISC function to alleviate intestinal diseases. However, how mitochondrial quality control mediates ISCs under physiological conditions and protects against intestinal injury remains to be comprehensively reviewed. Critical Issues: In this review, we summarize the available studies about how mitochondrial metabolism, redox state, dynamics, autophagy, and proteostasis impact ISC proliferation, differentiation, and regeneration, respectively. Future Directions: We propose that remodeling the function of mitochondria in ISCs may be a promising potential future direction for the treatment of intestinal diseases. This review may provide new strategies for therapeutically targeting the mitochondria of ISCs in intestinal diseases.
{"title":"Regulation of Mitochondrial Quality Control of Intestinal Stem Cells in Homeostasis and Diseases.","authors":"Xudan Lei, Zhenni Xu, Yujun Huang, Lingxiao Huang, Jinyi Lang, Mingyue Qu, Dengqun Liu","doi":"10.1089/ars.2023.0489","DOIUrl":"10.1089/ars.2023.0489","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Intestinal stem cells (ISCs) are crucial for the continuous renewal and regeneration of the small intestinal epithelium. ISC fate decisions are strictly controlled by metabolism. Mitochondria act as the central hubs of energetic metabolism and dynamically remodel their morphology to perform required metabolic functions. Mitochondrial dysfunction is closely associated with a variety of gastrointestinal diseases. <b><i>Recent Advances:</i></b> In recent years, several studies have reported that mitochondria are potential therapeutic targets for regulating ISC function to alleviate intestinal diseases. However, how mitochondrial quality control mediates ISCs under physiological conditions and protects against intestinal injury remains to be comprehensively reviewed. <b><i>Critical Issues:</i></b> In this review, we summarize the available studies about how mitochondrial metabolism, redox state, dynamics, autophagy, and proteostasis impact ISC proliferation, differentiation, and regeneration, respectively. <b><i>Future Directions:</i></b> We propose that remodeling the function of mitochondria in ISCs may be a promising potential future direction for the treatment of intestinal diseases. This review may provide new strategies for therapeutically targeting the mitochondria of ISCs in intestinal diseases.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SIGNIFICANCEMusculoskeletal diseases seriously affect global health, but their importance is greatly underestimated. These diseases often afflict the elderly, leading to disability, paralysis, and other complications. Hydrogen sulfide (H2S) plays an important role in the occurrence and development of musculoskeletal diseases, which may have potential ther-apeutic significance for these diseases.RECENT ADVANCESRecently, it has been found that many musculoskeletal diseases, such as osteoporosis, periodontitis, muscle atrophy, muscle ischemia-reperfusion injury, mus-cle contraction under high fever, arthritis, and disc herniation, can be alleviated by sup-plementing H2S. H2S may be conducive to the development of multiple myeloma. The mechanism of H2S effect on the musculoskeletal system has been elucidated. A variety of H2S donors and nano-delivery systems provide prospects for H2S-based therapies.CRITICAL ISSUESRelated research remains at the level of cell or animal experiments, and clinical research is lacking. The role of H2S in more musculoskeletal disorders remains largely unknown. The importance of musculoskeletal diseases has not been widely con-cerned. Targeted delivery of H2S remains a challenging task.FUTURE DIRECTIONDevelop therapeutic drugs for musculoskeletal diseases based on H2S and test their safety, efficacy, and tolerance. Explore the combination of current musculo-skeletal disease drugs with H2S releasing components to improve efficacy and avoid side effects. Carry out relevant clinical trials to verify the possibility of its widespread use.
{"title":"Hydrogen Sulfide in Musculoskeletal Diseases: Molecular Mechanisms and Therapeutic Opportunities.","authors":"Ya-Fang Liu,Yan-Xia Zhang,Yi-Wen Zhu,Ao-Qi Tang,Hao-Bo Liang,Yi-Lun Yang,Yuankun Zhai,XinYing Ji,DongDong Wu","doi":"10.1089/ars.2024.0625","DOIUrl":"https://doi.org/10.1089/ars.2024.0625","url":null,"abstract":"SIGNIFICANCEMusculoskeletal diseases seriously affect global health, but their importance is greatly underestimated. These diseases often afflict the elderly, leading to disability, paralysis, and other complications. Hydrogen sulfide (H2S) plays an important role in the occurrence and development of musculoskeletal diseases, which may have potential ther-apeutic significance for these diseases.RECENT ADVANCESRecently, it has been found that many musculoskeletal diseases, such as osteoporosis, periodontitis, muscle atrophy, muscle ischemia-reperfusion injury, mus-cle contraction under high fever, arthritis, and disc herniation, can be alleviated by sup-plementing H2S. H2S may be conducive to the development of multiple myeloma. The mechanism of H2S effect on the musculoskeletal system has been elucidated. A variety of H2S donors and nano-delivery systems provide prospects for H2S-based therapies.CRITICAL ISSUESRelated research remains at the level of cell or animal experiments, and clinical research is lacking. The role of H2S in more musculoskeletal disorders remains largely unknown. The importance of musculoskeletal diseases has not been widely con-cerned. Targeted delivery of H2S remains a challenging task.FUTURE DIRECTIONDevelop therapeutic drugs for musculoskeletal diseases based on H2S and test their safety, efficacy, and tolerance. Explore the combination of current musculo-skeletal disease drugs with H2S releasing components to improve efficacy and avoid side effects. Carry out relevant clinical trials to verify the possibility of its widespread use.","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":"15 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Huang,Lin Huang,Chunhua Ma,Mingyang Hong,Lili Xu,Yuanyuan Ju,Haibo Li,Yilang Wang,Xingmin Wang
AIMSTumor microenvironment (TME) plays a crucial role in sustaining cancer stem cells (CSCs). 4-hydroxynonenal (4-HNE) is abundantly present in the TME of colorectal cancer (CRC). However, the contribution of 4-HNE to CSCs and cancer progression remains unclear. This study aimed to investigate the impact of 4-HNE on the regulation of CSC fate and tumor progression.METHODSHuman CRC cells were exposed to 4-HNE, and CSC signaling was analyzed using quantitative real-time PCR, immunofluorescent staining, fluorescence-activated cell sorting, and bioinformatic analysis. Tumor-promoting role of 4-HNE was confirmed using a xenograft model.RESULTSExposure of CRC cells to 4-HNE activated non-canonical Hedgehog (HH) signaling and homologous recombination repair (HRR) pathways in LGR5+ CSCs. Furthermore, blocking HH signaling led to a significant increase in the expression of γH2AX, indicating that 4-HNE induces double-stranded DNA breaks (DSBs) and simultaneously activates HH signaling to protect CSCs from 4-HNE-induced damage via the HRR pathway. Additionally, 4-HNE treatment increased the population of LGR5+ CSCs and promoted asymmetric division in these cells, leading to enhanced self-renewal and differentiation. Notably, 4-HNE also promoted xenograft tumor growth and activated CSC signaling in vivo.INNOVATION AND CONCLUSIONThese findings demonstrate that 4-HNE, as a signaling inducer in the TME, activates the non-canonical HH pathway to shield CSCs from oxidative damage, enhances the proliferation and asymmetric division of LGR5+ CSCs, and thereby facilitates tumor growth. These novel insights shed light on the regulation of CSC fate within the oxidative TME, offering potential implications for understanding and targeting CSCs for CRC therapy.
{"title":"4-Hydroxynonenal Promotes Colorectal Cancer Progression through Regulating Cancer Stem Cell Fate.","authors":"Xu Huang,Lin Huang,Chunhua Ma,Mingyang Hong,Lili Xu,Yuanyuan Ju,Haibo Li,Yilang Wang,Xingmin Wang","doi":"10.1089/ars.2023.0530","DOIUrl":"https://doi.org/10.1089/ars.2023.0530","url":null,"abstract":"AIMSTumor microenvironment (TME) plays a crucial role in sustaining cancer stem cells (CSCs). 4-hydroxynonenal (4-HNE) is abundantly present in the TME of colorectal cancer (CRC). However, the contribution of 4-HNE to CSCs and cancer progression remains unclear. This study aimed to investigate the impact of 4-HNE on the regulation of CSC fate and tumor progression.METHODSHuman CRC cells were exposed to 4-HNE, and CSC signaling was analyzed using quantitative real-time PCR, immunofluorescent staining, fluorescence-activated cell sorting, and bioinformatic analysis. Tumor-promoting role of 4-HNE was confirmed using a xenograft model.RESULTSExposure of CRC cells to 4-HNE activated non-canonical Hedgehog (HH) signaling and homologous recombination repair (HRR) pathways in LGR5+ CSCs. Furthermore, blocking HH signaling led to a significant increase in the expression of γH2AX, indicating that 4-HNE induces double-stranded DNA breaks (DSBs) and simultaneously activates HH signaling to protect CSCs from 4-HNE-induced damage via the HRR pathway. Additionally, 4-HNE treatment increased the population of LGR5+ CSCs and promoted asymmetric division in these cells, leading to enhanced self-renewal and differentiation. Notably, 4-HNE also promoted xenograft tumor growth and activated CSC signaling in vivo.INNOVATION AND CONCLUSIONThese findings demonstrate that 4-HNE, as a signaling inducer in the TME, activates the non-canonical HH pathway to shield CSCs from oxidative damage, enhances the proliferation and asymmetric division of LGR5+ CSCs, and thereby facilitates tumor growth. These novel insights shed light on the regulation of CSC fate within the oxidative TME, offering potential implications for understanding and targeting CSCs for CRC therapy.","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":"8 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: Nattokinase (NK), a potent serine endopeptidase, has exhibited a variety of pharmacological effects, including thrombolysis, anti-inflammation, and antioxidative stress. Building on previous research highlighting NK's promise in nerve regeneration, our study investigated whether NK exerted protective effects in transient middle cerebral artery occlusion (tMCAO)-induced cerebral ischemia-reperfusion injury and the underlying mechanisms. Results: The rats were administered NK (5000, 10000, 20000 FU/kg, i.g., 7 days before surgery, once daily). We showed that NK treatment dose dependently reduced the infarction volume and improved neurological symptoms, decreased the proinflammatory and coagulation cytokines levels, and attenuated reactive oxygen species (ROS) in the infarcted area of tMCAO rats. We also found that NK could exert neuroprotective effects in a variety of vitro models, including the microglia inflammation model and neuronal oxygen-glucose deprivation/reperfusion (OGD/R) model. Notably, NK effectively countered OGD/R-induced neuron death, modulating diverse pathways, including autophagy, apoptosis, PARP-dependent death, and endoplasmic reticulum stress. Furthermore, the neuroprotection of NK was blocked by phenylmethylsulfonyl fluoride (PMSF), a serine endopeptidase inhibitor. We revealed that heat-inactive NK was unable to protect against tMCAO injury and other vitro models, suggesting NK attenuated ischemic injury by its enzymatic activity. We conducted a proteomic analysis and found inflammation and coagulation were involved in the occurrence of tMCAO model and in the therapeutic effect of NK. Innovation and Conclusion: In conclusion, these data demonstrated that NK had multifaceted neuroprotection in ischemic brain injury, and the therapeutic effect of NK was related with serine endopeptidase activity.
目的:纳豆激酶(NK)是一种强效丝氨酸内肽酶,具有多种药理作用,包括溶栓、抗炎和抗氧化应激。先前的研究强调了NK在神经再生方面的前景,在此基础上,我们的研究探讨了NK在一过性大脑中动脉闭塞(tMCAO)诱导的脑缺血再灌注损伤中是否具有保护作用及其内在机制。结果:给大鼠注射NK(5000、10000、20000 FU/kg,ig,术前7天,每日1次)。结果表明,NK治疗剂量依赖性地减少了tMCAO大鼠的梗死体积,改善了神经症状,降低了促炎和凝血细胞因子水平,减轻了梗死区的活性氧(ROS)。我们还发现,NK 能在多种体外模型中发挥神经保护作用,包括小胶质细胞炎症模型和神经元氧-葡萄糖剥夺/再灌注(OGD/R)模型。值得注意的是,NK能有效对抗OGD/R诱导的神经元死亡,调节多种途径,包括自噬、细胞凋亡、PARP依赖性死亡和内质网应激(ERS)。此外,丝氨酸内肽酶抑制剂 PMSF 阻断了 NK 的神经保护作用。我们发现,热灭活的 NK 无法保护 tMCAO 损伤和其他体外模型,这表明 NK 通过其酶活性减轻了缺血性损伤。我们进行了蛋白质组分析,发现炎症和凝血参与了 tMCAO 模型的发生和 NK 的治疗效果:总之,这些数据证明了NK对缺血性脑损伤具有多方面的神经保护作用,而NK的治疗效果与丝氨酸内肽酶活性有关。
{"title":"Nattokinase's Neuroprotective Mechanisms in Ischemic Stroke: Targeting Inflammation, Oxidative Stress, and Coagulation.","authors":"Xin-Ying Yang, Sheng-Lin Wang, Wen-Chi Xue, Yu-Peng Zhang, Liang-Liang Li, Zhao-Hu Luo, Feng-Jiao Zhang","doi":"10.1089/ars.2023.0527","DOIUrl":"10.1089/ars.2023.0527","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Nattokinase (NK), a potent serine endopeptidase, has exhibited a variety of pharmacological effects, including thrombolysis, anti-inflammation, and antioxidative stress. Building on previous research highlighting NK's promise in nerve regeneration, our study investigated whether NK exerted protective effects in transient middle cerebral artery occlusion (tMCAO)-induced cerebral ischemia-reperfusion injury and the underlying mechanisms. <b><i>Results:</i></b> The rats were administered NK (5000, 10000, 20000 FU/kg, i.g., 7 days before surgery, once daily). We showed that NK treatment dose dependently reduced the infarction volume and improved neurological symptoms, decreased the proinflammatory and coagulation cytokines levels, and attenuated reactive oxygen species (ROS) in the infarcted area of tMCAO rats. We also found that NK could exert neuroprotective effects in a variety of vitro models, including the microglia inflammation model and neuronal oxygen-glucose deprivation/reperfusion (OGD/R) model. Notably, NK effectively countered OGD/R-induced neuron death, modulating diverse pathways, including autophagy, apoptosis, PARP-dependent death, and endoplasmic reticulum stress. Furthermore, the neuroprotection of NK was blocked by phenylmethylsulfonyl fluoride (PMSF), a serine endopeptidase inhibitor. We revealed that heat-inactive NK was unable to protect against tMCAO injury and other vitro models, suggesting NK attenuated ischemic injury by its enzymatic activity. We conducted a proteomic analysis and found inflammation and coagulation were involved in the occurrence of tMCAO model and in the therapeutic effect of NK. <b><i>Innovation and Conclusion:</i></b> In conclusion, these data demonstrated that NK had multifaceted neuroprotection in ischemic brain injury, and the therapeutic effect of NK was related with serine endopeptidase activity.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}