首页 > 最新文献

Antioxidants & redox signaling最新文献

英文 中文
Peroxiredoxin 3 Deficiency Exacerbates DSS-Induced Acute Colitis via Exosomal miR-1260b-Mediated Barrier Disruption and Proinflammatory Signaling. 过氧化还原酶 3 缺乏会通过外泌体 miR-1260b 介导的屏障破坏和促炎信号转导加剧 DSS 诱导的急性结肠炎。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-29 DOI: 10.1089/ars.2023.0482
Jing Jin, Moajury Jung, Seong-Keun Sonn, Seungwoon Seo, Joowon Suh, Hyae Yon Kweon, Shin Hye Moon, Huiju Jo, Na Hyeon Yoon, Goo Taeg Oh

Aims: Peroxiredoxin3 (Prdx3) is an intracellular antioxidant enzyme that is specifically localized in mitochondria and protects against oxidative stress by removing mitochondrial reactive oxygen species (ROS). The intestinal epithelium provides a physical and biochemical barrier that segregates host tissues from commensal bacteria to maintain intestinal homeostasis. An imbalance between the cellular antioxidant defense system and oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Prdx3 in the intestinal epithelium under intestinal inflammation has not been elucidated. To investigate the potential role of Prdx3 in intestinal inflammation, we used intestinal epithelial cell (IEC)-specific Prdx3-knockout mice. Results: IEC-specific Prdx3-deficient mice showed more severe colitis phenotypes with greater degrees of body weight loss, colon shortening, barrier disruption, mitochondrial damage, and ROS generation in IECs. Furthermore, exosomal miR-1260b was dramatically increased in Prdx3-knockdown colonic epithelial cells. Mechanistically, Prdx3 deficiency promoted intestinal barrier disruption and inflammation via P38-mitogen-activated protein kinase/NFκB signaling. Innovation: This is the first study to report the protective role of Prdx3 in acute colitis using IEC-specific conditional knockout mice. Conclusion: Our study sheds light on the role of exosome-loaded miRNAs, particularly miR-1260b, in IBD. Targeting miR-1260b or modulating exosome-mediated intercellular communication may hold promise as potential therapeutic strategies for managing IBD and restoring intestinal barrier integrity.

目的:过氧化物歧化酶3(Prdx3)是一种细胞内抗氧化酶,特异性定位于线粒体,通过清除线粒体活性氧(ROS)来防止氧化应激。肠上皮提供了一道物理和生化屏障,将宿主组织与共生细菌隔离开来,以维持肠道平衡。细胞抗氧化防御系统与氧化应激之间的失衡与炎症性肠病(IBD)的发病机制有关。然而,Prdx3 在肠道炎症下的肠上皮细胞中的作用尚未阐明。为了研究Prdx3在肠道炎症中的潜在作用,我们使用了肠上皮细胞(IEC)特异性Prdx3基因敲除小鼠:结果:IEC特异性Prdx3缺陷小鼠表现出更严重的结肠炎表型,体重减轻、结肠缩短、屏障破坏、线粒体损伤和IEC中ROS生成的程度更高。此外,外泌体 miR-1260b 在 Prdx3 敲除的结肠上皮细胞中显著增加。从机制上讲,Prdx3 的缺乏通过 P38-MAPK/NFκB 信号转导促进了肠屏障的破坏和炎症。结论:我们的研究揭示了外泌体携带的miRNA,尤其是miR-1260b在IBD中的作用。靶向miR-1260b或调节外泌体介导的细胞间通讯可能有望成为控制IBD和恢复肠屏障完整性的潜在治疗策略。
{"title":"Peroxiredoxin 3 Deficiency Exacerbates DSS-Induced Acute Colitis via Exosomal miR-1260b-Mediated Barrier Disruption and Proinflammatory Signaling.","authors":"Jing Jin, Moajury Jung, Seong-Keun Sonn, Seungwoon Seo, Joowon Suh, Hyae Yon Kweon, Shin Hye Moon, Huiju Jo, Na Hyeon Yoon, Goo Taeg Oh","doi":"10.1089/ars.2023.0482","DOIUrl":"10.1089/ars.2023.0482","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Peroxiredoxin3 (Prdx3) is an intracellular antioxidant enzyme that is specifically localized in mitochondria and protects against oxidative stress by removing mitochondrial reactive oxygen species (ROS). The intestinal epithelium provides a physical and biochemical barrier that segregates host tissues from commensal bacteria to maintain intestinal homeostasis. An imbalance between the cellular antioxidant defense system and oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Prdx3 in the intestinal epithelium under intestinal inflammation has not been elucidated. To investigate the potential role of Prdx3 in intestinal inflammation, we used intestinal epithelial cell (IEC)-specific Prdx3-knockout mice. <b><i>Results:</i></b> IEC-specific Prdx3-deficient mice showed more severe colitis phenotypes with greater degrees of body weight loss, colon shortening, barrier disruption, mitochondrial damage, and ROS generation in IECs. Furthermore, exosomal miR-1260b was dramatically increased in Prdx3-knockdown colonic epithelial cells. Mechanistically, Prdx3 deficiency promoted intestinal barrier disruption and inflammation <i>via</i> P38-mitogen-activated protein kinase/NFκB signaling. <b><i>Innovation:</i></b> This is the first study to report the protective role of Prdx3 in acute colitis using IEC-specific conditional knockout mice. <b><i>Conclusion:</i></b> Our study sheds light on the role of exosome-loaded miRNAs, particularly miR-1260b, in IBD. Targeting miR-1260b or modulating exosome-mediated intercellular communication may hold promise as potential therapeutic strategies for managing IBD and restoring intestinal barrier integrity.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does Deteriorating Antioxidant Defense and Impaired γ-Glutamyl Cycle Induce Oxidative Stress and Hemolysis in Individuals with Sickle Cell Disease? 抗氧化防御能力下降和γ-谷氨酰循环受损是否会诱发镰状细胞病患者的氧化应激和溶血?
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-29 DOI: 10.1089/ars.2024.0594
Shruti Bhatt, Amit Kumar Mohapatra, Apratim Sai Rajesh, Satyabrata Meher, Alo Nag, Pradip Kumar Panda, Ranjan Kumar Nanda, Suman Kundu

Sickle cell disease (SCD) affects two-thirds of African and Indian children. Understanding the molecular mechanisms contributing to oxidative stress may be useful for therapeutic development in SCD. We evaluated plasma elemental levels of Indian SCD patients, trait, and healthy controls (n = 10 per group) via inductively coupled plasma mass spectrometry. In addition, erythrocyte metabolomics of Indian SCD and healthy (n = 5 per group) was carried out using liquid chromatography-mass spectrometry. Followed by assessment of antioxidant defense enzymes namely glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in erythrocytes and plasma of Indian SCD patients (n = 31) compared with trait (n = 10) and healthy (n = 10). In SCD plasma an elevated plasma 24 Mg, 44Ca, 66Zn, 208Pb, 39K and reduced 57Fe, 77Se, and 85Rb levels indicated higher hemolysis and anemia. Erythrocyte metabolome of SCD patients clustered separately from healthy revealed 135 significantly deregulated metabolic features, including trimethyllysine, pyroglutamate, glutathione, aminolevulinate, and d-glutamine, indicating oxidative stress and membrane fragility. Repressed GR, SOD, and CAT activities were observed in SCD patients of which GR and CAT activities did not change under hypoxia. These findings lead to the hypothesis that SCD-associated metabolic deregulations and a shift to ATP-consuming aberrant γ-glutamyl cycle leads to anemia, dehydration, oxidative stress, and hemolysis driving the biomechanical pathophysiology of erythrocyte of SCD patients.

三分之二的非洲和印度儿童患有镰状细胞病(SCD)。了解导致氧化应激的分子机制可能有助于开发 SCD 的疗法。我们通过 ICP-MS 评估了印度 SCD 患者、性状和健康对照组(每组 10 人)的血浆元素水平。此外,我们还使用 LC-MS 质谱仪对印度 SCD 患者和健康对照组(每组 5 人)的红细胞代谢组学进行了评估。随后,对印度 SCD 患者(31 人)的红细胞和血浆中的抗氧化防御酶,即谷胱甘肽还原酶(GR)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)进行了评估,并与性状(8 人)和健康人(9 人)进行了比较。在 SCD 血浆中,血浆 24Mg、44Ca、66Zn、208Pb、39K 水平升高,57Fe、77Se、85Rb 水平降低,表明溶血和贫血程度较高。SCD 患者的红细胞代谢组与正常红细胞代谢组分开聚类,显示出 135 个明显失调的代谢特征,包括三甲基赖氨酸、焦谷氨酸、谷胱甘肽、氨基乙酰丙酸和 D-谷氨酰胺,表明存在氧化应激和膜脆性。在 SCD 患者中观察到 GR、SOD 和 CAT 活性被抑制,其中 GR 和 CAT 活性在缺氧条件下没有变化。这些发现提出了一个假设,即与 SCD 相关的新陈代谢失调和转向消耗 ATP 的反常 γ-谷氨酰胺循环导致贫血、脱水、氧化应激和溶血,推动了 SCD 患者红细胞的生物力学病理生理学。
{"title":"Does Deteriorating Antioxidant Defense and Impaired γ-Glutamyl Cycle Induce Oxidative Stress and Hemolysis in Individuals with Sickle Cell Disease?","authors":"Shruti Bhatt, Amit Kumar Mohapatra, Apratim Sai Rajesh, Satyabrata Meher, Alo Nag, Pradip Kumar Panda, Ranjan Kumar Nanda, Suman Kundu","doi":"10.1089/ars.2024.0594","DOIUrl":"10.1089/ars.2024.0594","url":null,"abstract":"<p><p>Sickle cell disease (SCD) affects two-thirds of African and Indian children. Understanding the molecular mechanisms contributing to oxidative stress may be useful for therapeutic development in SCD. We evaluated plasma elemental levels of Indian SCD patients, trait, and healthy controls (<i>n</i> = 10 per group) <i>via</i> inductively coupled plasma mass spectrometry. In addition, erythrocyte metabolomics of Indian SCD and healthy (<i>n</i> = 5 per group) was carried out using liquid chromatography-mass spectrometry. Followed by assessment of antioxidant defense enzymes namely glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in erythrocytes and plasma of Indian SCD patients (<i>n</i> = 31) compared with trait (<i>n</i> = 10) and healthy (<i>n</i> = 10). In SCD plasma an elevated plasma <sup>24</sup> Mg, <sup>44</sup>Ca, <sup>66</sup>Zn, <sup>208</sup>Pb, <sup>39</sup>K and reduced <sup>57</sup>Fe, <sup>77</sup>Se, and <sup>85</sup>Rb levels indicated higher hemolysis and anemia. Erythrocyte metabolome of SCD patients clustered separately from healthy revealed 135 significantly deregulated metabolic features, including trimethyllysine, pyroglutamate, glutathione, aminolevulinate, and d-glutamine, indicating oxidative stress and membrane fragility. Repressed GR, SOD, and CAT activities were observed in SCD patients of which GR and CAT activities did not change under hypoxia. These findings lead to the hypothesis that SCD-associated metabolic deregulations and a shift to ATP-consuming aberrant γ-glutamyl cycle leads to anemia, dehydration, oxidative stress, and hemolysis driving the biomechanical pathophysiology of erythrocyte of SCD patients.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3. 探索癌症中碳酸酐酶的氧化还原和 pH 值:聚焦碳酸酐酶 3。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-26 DOI: 10.1089/ars.2024.0693
Yezhou Yu, Sally-Ann Poulsen, Giovanna Di Trapani, Kathryn F Tonissen

Significance: Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. Recent Advances: Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. Critical Issues: CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. Future Directions: CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target.

意义重大:氧化还原和 pH 值都是支持细胞生理功能的重要调节过程,此外还影响癌细胞的发育和肿瘤的进展。硫代氧化还原酶(Trx)和谷胱甘肽氧化还原系统以及碳酸酐酶(CA)蛋白分别被认为是细胞氧化还原和 pH 值的关键调节因子,Trx 系统和 CA 的成分被认为是癌症治疗靶标。然而,癌细胞中的氧化还原和 pH 轴是一个尚未得到充分探索的研究课题:对 CA 家族成员 CA3 的结构研究发现,其五个半胱氨酸残基中有两个位于蛋白质表面。对 CA3 的氧化还原调节修饰已经确定,包括谷胱甘肽化。CA3 已被证明能与其他蛋白质结合,包括 Bcl-2 associated athanogene 3 (BAG3) 和角鲨烯环氧化物酶 (SQLE),它们能分别调节癌细胞的自噬和促炎信号:CA3还与上皮-间质转化(EMT)过程有关,EMT会促进癌细胞转移,而CA3的过表达会激活PI3K/AKT/mTOR通路,从而上调细胞生长并抑制自噬。目前尚不清楚CA3是否通过其抗氧化功能调节癌症进展:CA3 是研究最少的 CA 同工酶之一。未来方向:CA3 是研究最少的 CA 同工酶之一,需要进一步研究以评估 CA3 的细胞抗氧化作用及其对癌症进展的影响。还需要鉴定其他结合伙伴,包括 CA3 是否与人体细胞中的 Trx 结合。开发特异性 CA3 抑制剂将促进这些功能研究,并使 CA3 成为癌症治疗靶点。
{"title":"Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3.","authors":"Yezhou Yu, Sally-Ann Poulsen, Giovanna Di Trapani, Kathryn F Tonissen","doi":"10.1089/ars.2024.0693","DOIUrl":"10.1089/ars.2024.0693","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. <b><i>Recent Advances:</i></b> Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. <b><i>Critical Issues:</i></b> CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. <b><i>Future Directions:</i></b> CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disturbance of Fetal Growth by Azithromycin Through Induction of ER Stress in the Placenta. 阿奇霉素通过诱导胎盘中的ER应激扰乱胎儿生长。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-25 DOI: 10.1089/ars.2024.0592
Fan Pan, Fan Zhang, Meng-Die Li, YaKun Liang, Wang-Sheng Wang, Kang Sun

Aim: Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. Results: Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (STS, CYP11A1, and CYP19A1) and insulin-like growth factor binding protein (IGFBP) cleavage (PAPPA and ADAM12) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including CEBPA itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. Innovation and Conclusion: These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage via inducing ER stress in placental syncytiotrophoblasts.

目的:阿奇霉素(AZM)被广泛用于治疗妊娠支原体感染。然而,目前尚未充分评估其对胎盘的副作用。在此,我们利用人类胎盘合胞滋养细胞和小鼠模型,研究了妊娠期使用阿奇霉素是否会对胎盘功能和妊娠结局产生不利影响:结果:对经 AZM 处理的人胎盘合胞滋养细胞进行的转录组分析表明,ER 应激相关基因的表达增加,激素产生和生长因子处理基因的表达减少。验证研究表明,AZM 增加了 ER 应激介质(磷酸化 eIF2α、ATF4 和 CHOP)的丰度,降低了人胎盘合胞滋养细胞中参与孕酮和雌二醇合成(STS、CYP11A1 和 CYP19A1)以及 IGFBP 裂解(PAPPA 和 ADAM12)的酶的丰度。抑制ER应激阻断了AZM诱导的CYP19A1、CYP11A1、PAPPA和ADAM12表达的下降,表明AZM对这些基因表达的抑制是继发于AZM诱导的ER应激。进一步的机制研究表明,ER应激时增加的ATF4可能与C/EBPα发生抑制性相互作用,从而抑制,包括CEBPA本身在内的这些基因的表达。小鼠研究表明,服用 AZM 会导致胎儿体重下降,ER 应激介质增加,母体血液中的胰岛素样生长因子、雌激素和孕酮水平下降,而抑制 ER 应激可减轻这种情况:这些研究结果首先证实了妊娠期常用的AZM可能会通过诱导胎盘合胞滋养细胞的ER应激,抑制雌激素和孕激素合成的关键酶,破坏IGFBP裂解的关键蛋白酶,从而影响胎儿的生长。
{"title":"Disturbance of Fetal Growth by Azithromycin Through Induction of ER Stress in the Placenta.","authors":"Fan Pan, Fan Zhang, Meng-Die Li, YaKun Liang, Wang-Sheng Wang, Kang Sun","doi":"10.1089/ars.2024.0592","DOIUrl":"10.1089/ars.2024.0592","url":null,"abstract":"<p><p><b><i>Aim:</i></b> Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. <b><i>Results:</i></b> Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (<i>STS</i>, <i>CYP11A1</i>, and <i>CYP19A1</i>) and insulin-like growth factor binding protein (IGFBP) cleavage (<i>PAPPA</i> and <i>ADAM12</i>) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including <i>CEBPA</i> itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. <b><i>Innovation and Conclusion:</i></b> These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage <i>via</i> inducing ER stress in placental syncytiotrophoblasts.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sirt3-Mediated Opa1 Deacetylation Protects Against Sepsis-Induced Acute Lung Injury by Inhibiting Alveolar Macrophage Pro-Inflammatory Polarization. SIRT3 介导的 OPA1 去乙酰化可抑制肺泡巨噬细胞促炎极化,从而防止脓毒症诱发的急性肺损伤。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-12 DOI: 10.1089/ars.2023.0322
Maomao Sun, Yuying Li, Gege Xu, Junrui Zhu, Ruimin Lu, Sheng An, Zhenhua Zeng, Zhiya Deng, Ran Cheng, Qin Zhang, Yi Yao, Junjie Wu, Yuan Zhang, Hongbin Hu, Zhongqing Chen, Qiaobing Huang, Jie Wu

Aims: Mitochondrial dynamics in alveolar macrophages (AMs) are associated with sepsis-induced acute lung injury (ALI). In this study, we aimed to investigate whether changes in mitochondrial dynamics could alter the polarization of AMs in sepsis-induced ALI and to explore the regulatory mechanism of mitochondrial dynamics by focusing on sirtuin (SIRT)3-induced optic atrophy protein 1 (OPA1) deacetylation. Results: The AMs of sepsis-induced ALI showed imbalanced mitochondrial dynamics and polarization to the M1 macrophage phenotype. In sepsis, SIRT3 overexpression promotes mitochondrial dynamic equilibrium in AMs. However, 3-(1H-1, 2, 3-triazol-4-yl) pyridine (3TYP)-specific inhibition of SIRT3 increased the mitochondrial dynamic imbalance and pro-inflammatory polarization of AMs and further aggravated sepsis-induced ALI. OPA1 is directly bound to and deacetylated by SIRT3 in AMs. In AMs of sepsis-induced ALI, SIRT3 protein expression was decreased and OPA1 acetylation was increased. OPA1 acetylation at the lysine 792 amino acid residue (OPA1-K792) promotes self-cleavage and is associated with an imbalance in mitochondrial dynamics. However, decreased acetylation of OPA1-K792 reversed the pro-inflammatory polarization of AMs and protected the barrier function of alveolar epithelial cells in sepsis-induced ALI. Innovation: Our study revealed, for the first time, the regulation of mitochondrial dynamics and AM polarization by SIRT3-mediated deacetylation of OPA1 in sepsis-induced ALI, which may serve as an intervention target for precision therapy of the disease. Conclusions: Our data suggest that imbalanced mitochondrial dynamics promote pro-inflammatory polarization of AMs in sepsis-induced ALI and that deacetylation of OPA1 mediated by SIRT3 improves mitochondrial dynamic equilibrium, thereby ameliorating lung injury.

目的:肺泡巨噬细胞(AMs)中线粒体的动态变化与脓毒症诱发的急性肺损伤(ALI)有关。本研究旨在探讨线粒体动力学的变化是否能改变脓毒症诱导的急性肺损伤中AMs的极化,并通过关注SIRT3诱导的视神经萎缩蛋白1(OPA1)去乙酰化探讨线粒体动力学的调控机制:结果:脓毒症诱导的ALI的AM表现出线粒体动力学失衡,并极化为M1巨噬细胞表型。在败血症中,SIRT3 的过表达可促进 AMs 线粒体动态平衡。然而,3TYP特异性抑制SIRT3会增加AM的线粒体动态失衡和促炎极化,并进一步加重败血症诱发的ALI。OPA1 在 AMs 中直接与 SIRT3 结合并被 SIRT3 去乙酰化。在败血症诱导的 ALI 的 AMs 中,SIRT3 蛋白表达减少,OPA1 乙酰化增加。OPA1 在赖氨酸 792 氨基酸残基(OPA1-K792)处的乙酰化可促进自我裂解,并与线粒体动力学失衡有关。然而,在脓毒症诱导的 ALI 中,减少 OPA1-K792 的乙酰化可逆转 AMs 的促炎极化,并保护肺泡上皮细胞的屏障功能:我们的研究首次揭示了SIRT3介导的OPA1去乙酰化对脓毒症诱导的ALI中线粒体动力学和AMs极化的调控,这可能成为疾病精准治疗的干预靶点:我们的数据表明,线粒体动力学失衡会促进脓毒症诱发的 ALI 中 AMs 的促炎极化,而 SIRT3 介导的 OPA1 去乙酰化可改善线粒体动力学平衡,从而改善肺损伤。
{"title":"Sirt3-Mediated Opa1 Deacetylation Protects Against Sepsis-Induced Acute Lung Injury by Inhibiting Alveolar Macrophage Pro-Inflammatory Polarization.","authors":"Maomao Sun, Yuying Li, Gege Xu, Junrui Zhu, Ruimin Lu, Sheng An, Zhenhua Zeng, Zhiya Deng, Ran Cheng, Qin Zhang, Yi Yao, Junjie Wu, Yuan Zhang, Hongbin Hu, Zhongqing Chen, Qiaobing Huang, Jie Wu","doi":"10.1089/ars.2023.0322","DOIUrl":"10.1089/ars.2023.0322","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Mitochondrial dynamics in alveolar macrophages (AMs) are associated with sepsis-induced acute lung injury (ALI). In this study, we aimed to investigate whether changes in mitochondrial dynamics could alter the polarization of AMs in sepsis-induced ALI and to explore the regulatory mechanism of mitochondrial dynamics by focusing on sirtuin (SIRT)3-induced optic atrophy protein 1 (OPA1) deacetylation. <b><i>Results:</i></b> The AMs of sepsis-induced ALI showed imbalanced mitochondrial dynamics and polarization to the M1 macrophage phenotype. In sepsis, SIRT3 overexpression promotes mitochondrial dynamic equilibrium in AMs. However, 3-(1H-1, 2, 3-triazol-4-yl) pyridine (3TYP)-specific inhibition of SIRT3 increased the mitochondrial dynamic imbalance and pro-inflammatory polarization of AMs and further aggravated sepsis-induced ALI. OPA1 is directly bound to and deacetylated by SIRT3 in AMs. In AMs of sepsis-induced ALI, SIRT3 protein expression was decreased and OPA1 acetylation was increased. OPA1 acetylation at the lysine 792 amino acid residue (OPA1-K792) promotes self-cleavage and is associated with an imbalance in mitochondrial dynamics. However, decreased acetylation of OPA1-K792 reversed the pro-inflammatory polarization of AMs and protected the barrier function of alveolar epithelial cells in sepsis-induced ALI. <b><i>Innovation:</i></b> Our study revealed, for the first time, the regulation of mitochondrial dynamics and AM polarization by SIRT3-mediated deacetylation of OPA1 in sepsis-induced ALI, which may serve as an intervention target for precision therapy of the disease. <b><i>Conclusions:</i></b> Our data suggest that imbalanced mitochondrial dynamics promote pro-inflammatory polarization of AMs in sepsis-induced ALI and that deacetylation of OPA1 mediated by SIRT3 improves mitochondrial dynamic equilibrium, thereby ameliorating lung injury.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superoxide is an Intrinsic Signaling Molecule Triggering Muscle Hypertrophy. 超氧化物是引发肌肉肥大的内在信号分子。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-12 DOI: 10.1089/ars.2024.0595
Siyu Lu, Yiming Zhou, Mincong Liu, Lijun Gong, Li Liu, Zhigui Duan, Keke Chen, Frank J Gonzalez, Fang Wei, Rong Xiang, Guolin Li

Aims: Redox signaling plays a key role in skeletal muscle remodeling induced by exercise and prolonged inactivity, but it is unclear which oxidant triggers myofiber hypertrophy due to the lack of strategies to precisely regulate individual oxidants in vivo. In this study, we used tetrathiomolybdate (TM) to dissociate the link between superoxide (O2•-) and hydrogen peroxide and thereby to specifically explore the role of O2•- in muscle hypertrophy in C2C12 cells and mice. Results: TM can linearly regulate intracellular O2•- levels by inhibition of superoxide dismutase 1 (SOD1). A 70% increase in O2•- levels in C2C12 myoblast cells and mice is necessary and sufficient for triggering hypertrophy of differentiated myotubes and can enhance exercise performance by more than 50% in mice. SOD1 knockout blocks TM-induced O2•- increments and thereby prevents hypertrophy, whereas SOD1 restoration rescues all these effects. Scavenging O2•- with antioxidants abolishes TM-induced hypertrophy and the enhancement of exercise performance, whereas the restoration of O2•- levels with a O2•- generator promotes muscle hypertrophy independent of SOD1 activity. Innovation and Conclusion: These findings suggest that O2•- is an endogenous initiator of myofiber hypertrophy and that TM may be used to treat muscle wasting diseases. Our work not only suggests a novel druggable mechanism to increase muscle mass but also provides a tool for precisely regulating O2•- levels in vivo.

目的:氧化还原信号在运动和长期不运动诱导的骨骼肌重塑中起着关键作用,但由于缺乏在体内精确调节单个氧化剂的策略,目前还不清楚哪种氧化剂会引发肌纤维肥大。在这项研究中,我们使用四硫代钼酸盐(TM)来分离超氧化物和 H2O2 之间的联系,从而具体探讨超氧化物在 C2C12 细胞和小鼠肌肉肥大中的作用:结果:TM 可通过抑制超氧化物歧化酶 1(SOD1)线性调节细胞内的超氧化物水平。C2C12 肌母细胞和小鼠体内超氧化物水平增加 70% 是引发分化肌管肥大的必要且充分条件,并能使小鼠的运动表现提高 50%以上。SOD1 基因敲除可阻止 TM 诱导的超氧化物增加,从而防止肥大,而恢复 SOD1 则可挽救所有这些效应。用抗氧化剂清除超氧化物可消除 TM 诱导的肥大和运动能力的提高,而用超氧化物发生器恢复超氧化物水平可促进肌肉肥大,与 SOD1 的活性无关:这些研究结果表明,超氧化物是肌纤维肥大的内源性启动因子,TM 可用于治疗肌肉萎缩性疾病。我们的工作不仅为增加肌肉质量提供了一种新的药物机制,还为精确调节体内超氧化物水平提供了一种工具。
{"title":"Superoxide is an Intrinsic Signaling Molecule Triggering Muscle Hypertrophy.","authors":"Siyu Lu, Yiming Zhou, Mincong Liu, Lijun Gong, Li Liu, Zhigui Duan, Keke Chen, Frank J Gonzalez, Fang Wei, Rong Xiang, Guolin Li","doi":"10.1089/ars.2024.0595","DOIUrl":"10.1089/ars.2024.0595","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Redox signaling plays a key role in skeletal muscle remodeling induced by exercise and prolonged inactivity, but it is unclear which oxidant triggers myofiber hypertrophy due to the lack of strategies to precisely regulate individual oxidants <i>in vivo</i>. In this study, we used tetrathiomolybdate (TM) to dissociate the link between superoxide (O<sub>2</sub><sup>•-</sup>) and hydrogen peroxide and thereby to specifically explore the role of O<sub>2</sub><sup>•-</sup> in muscle hypertrophy in C2C12 cells and mice. <b><i>Results:</i></b> TM can linearly regulate intracellular O<sub>2</sub><sup>•-</sup> levels by inhibition of superoxide dismutase 1 (SOD1). A 70% increase in O<sub>2</sub><sup>•-</sup> levels in C2C12 myoblast cells and mice is necessary and sufficient for triggering hypertrophy of differentiated myotubes and can enhance exercise performance by more than 50% in mice. SOD1 knockout blocks TM-induced O<sub>2</sub><sup>•-</sup> increments and thereby prevents hypertrophy, whereas SOD1 restoration rescues all these effects. Scavenging O<sub>2</sub><sup>•-</sup> with antioxidants abolishes TM-induced hypertrophy and the enhancement of exercise performance, whereas the restoration of O<sub>2</sub><sup>•-</sup> levels with a O<sub>2</sub><sup>•-</sup> generator promotes muscle hypertrophy independent of SOD1 activity. <b><i>Innovation and Conclusion:</i></b> These findings suggest that O<sub>2</sub><sup>•-</sup> is an endogenous initiator of myofiber hypertrophy and that TM may be used to treat muscle wasting diseases. Our work not only suggests a novel druggable mechanism to increase muscle mass but also provides a tool for precisely regulating O<sub>2</sub><sup>•-</sup> levels <i>in vivo</i>.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Antioxidant Ergothioneine Alleviates Cisplatin-Induced Hearing Loss through the Nrf2 Pathway. 抗氧化剂麦角硫因通过Nrf2途径缓解顺铂诱导的听力损失
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-11 DOI: 10.1089/ars.2024.0648
Wenji Zhao, Fan Wu, Rui Hu, Jintao Lou, Guisheng Chen, Ziyi Cai, Suijun Chen

Aims: Cisplatin (CDDP) is a commonly used chemotherapeutic agent for treating head and neck tumors. However, there is high incidence of ototoxicity in patients treated with CDDP, which may be caused by the excessive reactive oxygen species (ROS) generation in the inner ear. Many studies have demonstrated the strong antioxidant effects of ergothioneine (EGT). Therefore, we assumed that EGT could also attenuate cisplatin-induced hearing loss (CIHL) as well. However, the protective effect and mechanism of EGT on CIHL have not been elucidated as so far. In this study, we investigated whether EGT could treat CIHL and the mechanism. Results: In our study, we confirmed the protective effect of EGT on preventing CDDP-induced toxicity both in vitro and in vivo. The auditory brainstem response threshold shift in the EGT + CDDP treatment mice was 30 dB less than that in the CDDP treatment mice. EGT suppressed production of ROS and proapoptotic proteins both in tissue and cells. By silencing nuclear factor erythroid 2-related factor 2 (Nrf2), we confirmed that EGT protected against CIHL via the Nrf2 pathway. We also found that SLC22A4 (OCTN1), an important molecule involved in transporting EGT, was expressed in the cochlea. Innovation: Our results revealed the role of EGT in the prevention of CIHL by activating Nrf2/HO-1/NQO-1 pathway, and broadened a new perspective therapeutic target of EGT. Conclusion: EGT decreased ROS production and promoted the expression of antioxidative enzymes to maintain redox homeostasis in sensory hair cells. Overall, our results indicated that EGT may serve as a novel treatment drug to attenuate CIHL.

目的:顺铂(CDDP)是治疗头颈部肿瘤的常用化疗药物。然而,接受 CDDP 治疗的患者耳毒性发生率很高,其原因可能是内耳中产生了过多的活性氧(ROS)。许多研究表明麦角硫因(EGT)具有很强的抗氧化作用。因此,我们认为麦角硫因也能减轻 CIHL。然而,迄今为止,麦角硫因对 CIHL 的保护作用和机制尚未得到阐明。在这项研究中,我们探讨了 EGT 能否治疗 CIHL 及其机制:结果:我们在研究中证实了 EGT 在体外和体内预防顺铂诱导毒性的保护作用。EGT+CDDP治疗小鼠的听性脑干反应(ABR)阈值移动比CDDP治疗小鼠低30分贝。EGT 可抑制组织和细胞中 ROS 和促凋亡蛋白的产生。通过沉默Nrf2,我们证实了EGT通过Nrf2途径保护CIHL。我们还发现,SLC22A4(OCTN1)是参与EGT运输的重要分子,在耳蜗中也有表达:创新性:我们的研究结果揭示了EGT通过激活Nrf2/HO-1/NQO-1通路在预防CIHL中的作用,并为EGT的治疗靶点开辟了新的前景:结论:EGT能减少ROS的产生并促进抗氧化酶的表达,从而维持感觉毛细胞(HCs)的氧化还原平衡。总之,我们的研究结果表明,EGT可作为一种新型治疗药物来减轻CIHL。
{"title":"The Antioxidant Ergothioneine Alleviates Cisplatin-Induced Hearing Loss through the Nrf2 Pathway.","authors":"Wenji Zhao, Fan Wu, Rui Hu, Jintao Lou, Guisheng Chen, Ziyi Cai, Suijun Chen","doi":"10.1089/ars.2024.0648","DOIUrl":"10.1089/ars.2024.0648","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Cisplatin (CDDP) is a commonly used chemotherapeutic agent for treating head and neck tumors. However, there is high incidence of ototoxicity in patients treated with CDDP, which may be caused by the excessive reactive oxygen species (ROS) generation in the inner ear. Many studies have demonstrated the strong antioxidant effects of ergothioneine (EGT). Therefore, we assumed that EGT could also attenuate cisplatin-induced hearing loss (CIHL) as well. However, the protective effect and mechanism of EGT on CIHL have not been elucidated as so far. In this study, we investigated whether EGT could treat CIHL and the mechanism. <b><i>Results:</i></b> In our study, we confirmed the protective effect of EGT on preventing CDDP-induced toxicity both <i>in vitro</i> and <i>in vivo</i>. The auditory brainstem response threshold shift in the EGT + CDDP treatment mice was 30 dB less than that in the CDDP treatment mice. EGT suppressed production of ROS and proapoptotic proteins both in tissue and cells. By silencing nuclear factor erythroid 2-related factor 2 (Nrf2), we confirmed that EGT protected against CIHL <i>via</i> the Nrf2 pathway. We also found that SLC22A4 (OCTN1), an important molecule involved in transporting EGT, was expressed in the cochlea. <b><i>Innovation:</i></b> Our results revealed the role of EGT in the prevention of CIHL by activating Nrf2/HO-1/NQO-1 pathway, and broadened a new perspective therapeutic target of EGT. <b><i>Conclusion:</i></b> EGT decreased ROS production and promoted the expression of antioxidative enzymes to maintain redox homeostasis in sensory hair cells. Overall, our results indicated that EGT may serve as a novel treatment drug to attenuate CIHL.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. 颗粒物和交通噪声诱发心血管损伤与经典风险因素高血压之间的病理机制协同作用。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-11 DOI: 10.1089/ars.2024.0659
Marin Kuntic, Omar Hahad, Sadeer Al-Kindi, Matthias Oelze, Jos Lelieveld, Andreas Daiber, Thomas Münzel
{"title":"Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension.","authors":"Marin Kuntic, Omar Hahad, Sadeer Al-Kindi, Matthias Oelze, Jos Lelieveld, Andreas Daiber, Thomas Münzel","doi":"10.1089/ars.2024.0659","DOIUrl":"10.1089/ars.2024.0659","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cholesterol Metabolism in Neurodegenerative Diseases. 神经退行性疾病中的胆固醇代谢。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-11 DOI: 10.1089/ars.2024.0674
Keqiang He, Zhiwei Zhao, Juan Zhang, Dingfeng Li, Sheng Wang, Qiang Liu

Significance: Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. Recent Advances: A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of de novo cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. Critical Issues: Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. Future Direction: Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms.

重要意义胆固醇在大脑中起着至关重要的作用,它在大脑中高度集中并受到严格调节,以支持大脑的正常功能。它是细胞膜的重要组成部分,可确保细胞膜的完整性,同时也是大脑各种过程的关键调节因子。大脑中胆固醇代谢失调与大脑功能受损以及阿尔茨海默病(AD)、帕金森病(PD)和亨廷顿病(HD)等神经退行性疾病的发病有关:一项重大进展是确定了星形胶质细胞来源的载脂蛋白是神经元中胆固醇生物合成的关键调节因子,从而深入了解了细胞外信号如何影响神经元的胆固醇水平。此外,基于抗体的疗法(尤其是针对注意力缺失症的疗法)的开发为治疗干预提供了大有可为的机会:尽管开展了大量研究,但胆固醇与神经退行性疾病之间的关系仍无定论。区分血浆胆固醇和脑胆固醇至关重要,因为这两种胆固醇是相对独立的。在评估基于他汀类药物的治疗方法时,应考虑这种区分。不仅要评估大脑中的总胆固醇含量,还要评估其在不同类型脑细胞中的分布情况:确定大脑/血浆胆固醇水平变化与大脑功能障碍/神经退行性疾病发病之间的因果关系仍然是一个关键目标。此外,在病理条件下对各类脑细胞的胆固醇稳态进行细胞特异性分析,将加深我们对神经退行性疾病中胆固醇代谢的了解。控制胆固醇水平以恢复平衡可能是缓解神经症状的一种新方法。
{"title":"Cholesterol Metabolism in Neurodegenerative Diseases.","authors":"Keqiang He, Zhiwei Zhao, Juan Zhang, Dingfeng Li, Sheng Wang, Qiang Liu","doi":"10.1089/ars.2024.0674","DOIUrl":"10.1089/ars.2024.0674","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Cholesterol plays a crucial role in the brain, where it is highly concentrated and tightly regulated to support normal brain functions. It serves as a vital component of cell membranes, ensuring their integrity, and acts as a key regulator of various brain processes. Dysregulation of cholesterol metabolism in the brain has been linked to impaired brain function and the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. <b><i>Recent Advances:</i></b> A significant advancement has been the identification of astrocyte-derived apoliprotein E as a key regulator of <i>de novo</i> cholesterol biosynthesis in neurons, providing insights into how extracellular signals influence neuronal cholesterol levels. In addition, the development of antibody-based therapies, particularly for AD, presents promising opportunities for therapeutic interventions. <b><i>Critical Issues:</i></b> Despite significant research, the association between cholesterol and neurodegenerative diseases remains inconclusive. It is crucial to distinguish between plasma cholesterol and brain cholesterol, as these pools are relatively independent. This differentiation should be considered when evaluating statin-based treatment approaches. Furthermore, assessing not only the total cholesterol content in the brain but also its distribution among different types of brain cells is essential. <b><i>Future Direction:</i></b> Establishing a causal link between changes in brain/plasma cholesterol levels and the onset of brain dysfunction/neurodegenerative diseases remains a key objective. In addition, conducting cell-specific analyses of cholesterol homeostasis in various types of brain cells under pathological conditions will enhance our understanding of cholesterol metabolism in neurodegenerative diseases. Manipulating cholesterol levels to restore homeostasis may represent a novel approach for alleviating neurological symptoms.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CARD11-BCL10-MALT1 Complex-Dependent MALT1 Activation Facilitates Myocardial Oxidative Stress in Doxorubicin-Treated Mice via Enhancing k48-Linked Ubiquitination of Nrf2. 依赖于 CARD11-BCL10-MALT1 复合物的 MALT1 激活通过增强 Nrf2 的 k48 链接泛素化促进了多柔比星处理小鼠的心肌氧化应激。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-10 DOI: 10.1089/ars.2023.0543
Li-Qun Lu, Ming-Rui Li, Xu-Yan Liu, Dan Peng, Hong-Rui Liu, Xiao-Jie Zhang, Xiu-Ju Luo, Jun Peng

Aims: Downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffering ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. Results: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species as well as decreases in the activities of antioxidative enzymes, concomitant with a downregulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1 and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), subsequently disrupted the assembly of CARD11, B cell lymphoma 10 (BCL10), and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. Innovation and Conclusion: The E3 ubiquitin ligase function of MALT1 accounts for the downregulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and the subsequent activation of MALT1.

目的:核因子红细胞2相关因子2(Nrf2)下调是多柔比星(DOX)诱导心肌氧化应激的原因之一,而抑制粘膜相关淋巴组织淋巴瘤转位蛋白1(MALT1)可提高大鼠心脏缺血再灌注时的Nrf2蛋白水平,表明MALT1与Nrf2之间存在联系。本研究旨在探讨MALT1在DOX诱导的心肌氧化应激中的作用及其内在机制:结果:小鼠单次注射 DOX(15 毫克/千克,静脉注射)诱导心肌氧化应激,表现为活性氧化物水平升高,抗氧化酶活性降低,同时 Nrf2 下调;MALT1 抑制剂可逆转这些现象。在 DOX 诱导的心肌细胞氧化应激中也观察到了类似的现象。从机理上讲,敲除或抑制 MALT1 明显减弱了 Nrf2 与 MALT1 之间的相互作用,并减少了 Nrf2 与 k48 链接的泛素化。此外,抑制或敲除钙/钙调蛋白依赖性蛋白激酶II(CaMKII-δ)可减少Caspase recruitment domain-containing protein 11(CARD11)的磷酸化,进而破坏CARD11、B细胞淋巴瘤10(BCL10)和MALT1(CBM)复合物的组装,并减少DOX处理的小鼠或心肌细胞中MALT1依赖的Nrf2与k48连接的泛素化:MALT1的E3泛素连接酶功能导致了DOX处理小鼠Nrf2的下调和心肌氧化应激的加重,而CaMKII-δ依赖的CARD11磷酸化触发了CBM复合物的组装和随后MALT1的激活。
{"title":"CARD11-BCL10-MALT1 Complex-Dependent MALT1 Activation Facilitates Myocardial Oxidative Stress in Doxorubicin-Treated Mice via Enhancing k48-Linked Ubiquitination of Nrf2.","authors":"Li-Qun Lu, Ming-Rui Li, Xu-Yan Liu, Dan Peng, Hong-Rui Liu, Xiao-Jie Zhang, Xiu-Ju Luo, Jun Peng","doi":"10.1089/ars.2023.0543","DOIUrl":"10.1089/ars.2023.0543","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffering ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. <b><i>Results:</i></b> The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species as well as decreases in the activities of antioxidative enzymes, concomitant with a downregulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1 and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), subsequently disrupted the assembly of CARD11, B cell lymphoma 10 (BCL10), and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. <b><i>Innovation and Conclusion:</i></b> The E3 ubiquitin ligase function of MALT1 accounts for the downregulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and the subsequent activation of MALT1.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Antioxidants & redox signaling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1