This paper is concerned with the interplay between statistical asymmetry and spectral methods. Suppose we are interested in estimating a rank-1 and symmetric matrix , yet only a randomly perturbed version M is observed. The noise matrix M - M ⋆ is composed of independent (but not necessarily homoscedastic) entries and is, therefore, not symmetric in general. This might arise if, for example, we have two independent samples for each entry of M ⋆ and arrange them in an asymmetric fashion. The aim is to estimate the leading eigenvalue and the leading eigenvector of M ⋆. We demonstrate that the leading eigenvalue of the data matrix M can be times more accurate (up to some log factor) than its (unadjusted) leading singular value of M in eigenvalue estimation. Moreover, the eigen-decomposition approach is fully adaptive to heteroscedasticity of noise, without the need of any prior knowledge about the noise distributions. In a nutshell, this curious phenomenon arises since the statistical asymmetry automatically mitigates the bias of the eigenvalue approach, thus eliminating the need of careful bias correction. Additionally, we develop appealing non-asymptotic eigenvector perturbation bounds; in particular, we are able to bound the perterbation of any linear function of the leading eigenvector of M (e.g. entrywise eigenvector perturbation). We also provide partial theory for the more general rank-r case. The takeaway message is this: arranging the data samples in an asymmetric manner and performing eigen-decomposition could sometimes be quite beneficial.
Many high-dimensional hypothesis tests aim to globally examine marginal or low-dimensional features of a high-dimensional joint distribution, such as testing of mean vectors, covariance matrices and regression coefficients. This paper constructs a family of U-statistics as unbiased estimators of the ℓ p -norms of those features. We show that under the null hypothesis, the U-statistics of different finite orders are asymptotically independent and normally distributed. Moreover, they are also asymptotically independent with the maximum-type test statistic, whose limiting distribution is an extreme value distribution. Based on the asymptotic independence property, we propose an adaptive testing procedure which combines p-values computed from the U-statistics of different orders. We further establish power analysis results and show that the proposed adaptive procedure maintains high power against various alternatives.

