Xin An, Xiaohua Lan, Zizhen Feng, Xiaohong Li, Qisheng Su
The complex mechanism of colorectal cancer development is closely associated with epigenetic modifications and is caused by overexpression and/or inactivation of oncogenes. Histone modifying enzymes catalyze histone modifications to alter gene expression, which plays a crucial role in the development and progression of colorectal cancer. Currently, there is more frequent study on histone acetylation, methylation, and phosphorylation, and their mechanisms in colorectal cancer development are clearer. This article elaborates on the role of histone modification in epigenetics in colorectal cancer development and discusses recent advances in using it as biomarkers and therapeutic targets for the treatment of colorectal cancer. The review aims to demonstrate the significant role of histone modification as a new therapeutic target in colorectal cancer and provides insights into the novel diagnostic and therapeutic options it offers.
{"title":"Histone modification: Biomarkers and potential therapies in colorectal cancer","authors":"Xin An, Xiaohua Lan, Zizhen Feng, Xiaohong Li, Qisheng Su","doi":"10.1111/ahg.12528","DOIUrl":"10.1111/ahg.12528","url":null,"abstract":"<p>The complex mechanism of colorectal cancer development is closely associated with epigenetic modifications and is caused by overexpression and/or inactivation of oncogenes. Histone modifying enzymes catalyze histone modifications to alter gene expression, which plays a crucial role in the development and progression of colorectal cancer. Currently, there is more frequent study on histone acetylation, methylation, and phosphorylation, and their mechanisms in colorectal cancer development are clearer. This article elaborates on the role of histone modification in epigenetics in colorectal cancer development and discusses recent advances in using it as biomarkers and therapeutic targets for the treatment of colorectal cancer. The review aims to demonstrate the significant role of histone modification as a new therapeutic target in colorectal cancer and provides insights into the novel diagnostic and therapeutic options it offers.</p>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"87 6","pages":"274-284"},"PeriodicalIF":1.9,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ahg.12528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adiposity has gradually become a global public threat over the years with drastic increase in the attributable deaths and disability adjusted life years (DALYs). Given an increased metabolic risk among Asians as compared to Europeans for any given body mass index (BMI) and considering the differences in genetic architecture between them, the present review aims to summarize the findings from genome-wide scans for various adiposity indices and related anthropometric measures from Asian populations. The search for related studies, published till February 2022, were made on PubMed and GWAS Catalog using search strategy built with relevant keywords joined by Boolean operators. It was recorded that out of a total of 47 identified studies, maximum studies are from Korean population (n = 14), followed by Chinese (n = 7), and Japanese (n = 6). Nearly 200 loci have been identified for BMI, 660 for height, 16 for weight, 28 for circumferences (waist and hip), 32 for ratios (waist hip ratio [WHR] and thoracic hip ratio [THR]), 5 for body fat, 16 for obesity, and 28 for adiposity-related blood markers among Asians. It was observed that though, most of the loci were unique for each trait, there were 3 loci in common to BMI and WHR. Apart from validation of variants identified in European setting, there were many novel loci discovered in Asian populations. Notably, 125 novel loci form Asian studies have been reported for BMI, 47 for height, 5 for waist circumference, and 2 for adiponectin level to the existing knowledge of the genetic framework of adiposity and related measures. It is necessary to examine more advanced adiposity measures, specifically of relevance to abdominal adiposity, a major risk factor for cardiometabolic disorders among Asians. Moreover, in spite of being one continent, there is diversity among different ethnicities across Asia in terms of lifestyle, climate, geography, genetic structure and consequently the phenotypic manifestations. Hence, it is also important to consider ethnic specific studies for identifying and validating reliable genetic variants of adiposity measures among Asians.
{"title":"Genetic architecture of adiposity measures among Asians: Findings from GWAS","authors":"Tripti Agarwal, Tanica Lyngdoh, Rajesh Khadgawat, Dorairaj Prabhakaran, Giriraj Ratan Chandak, Gagandeep Kaur Walia","doi":"10.1111/ahg.12526","DOIUrl":"10.1111/ahg.12526","url":null,"abstract":"<p>Adiposity has gradually become a global public threat over the years with drastic increase in the attributable deaths and disability adjusted life years (DALYs). Given an increased metabolic risk among Asians as compared to Europeans for any given body mass index (BMI) and considering the differences in genetic architecture between them, the present review aims to summarize the findings from genome-wide scans for various adiposity indices and related anthropometric measures from Asian populations. The search for related studies, published till February 2022, were made on PubMed and GWAS Catalog using search strategy built with relevant keywords joined by Boolean operators. It was recorded that out of a total of 47 identified studies, maximum studies are from Korean population (<i>n</i> = 14), followed by Chinese (<i>n</i> = 7), and Japanese (<i>n</i> = 6). Nearly 200 loci have been identified for BMI, 660 for height, 16 for weight, 28 for circumferences (waist and hip), 32 for ratios (waist hip ratio [WHR] and thoracic hip ratio [THR]), 5 for body fat, 16 for obesity, and 28 for adiposity-related blood markers among Asians. It was observed that though, most of the loci were unique for each trait, there were 3 loci in common to BMI and WHR. Apart from validation of variants identified in European setting, there were many novel loci discovered in Asian populations. Notably, 125 novel loci form Asian studies have been reported for BMI, 47 for height, 5 for waist circumference, and 2 for adiponectin level to the existing knowledge of the genetic framework of adiposity and related measures. It is necessary to examine more advanced adiposity measures, specifically of relevance to abdominal adiposity, a major risk factor for cardiometabolic disorders among Asians. Moreover, in spite of being one continent, there is diversity among different ethnicities across Asia in terms of lifestyle, climate, geography, genetic structure and consequently the phenotypic manifestations. Hence, it is also important to consider ethnic specific studies for identifying and validating reliable genetic variants of adiposity measures among Asians.</p>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"87 6","pages":"255-273"},"PeriodicalIF":1.9,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ahg.12526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}