首页 > 最新文献

Applied Numerical Mathematics最新文献

英文 中文
Treatment of 3D diffusion problems with discontinuous coefficients and Dirac curvilinear sources 处理具有不连续系数和狄拉克曲线源的三维扩散问题
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-12 DOI: 10.1016/j.apnum.2024.09.012
Three-dimensional diffusion problems with discontinuous coefficients and unidimensional Dirac sources arise in a number of fields. The statement we pursue is a singular-regular expansion where the singularity, capturing the stiff behavior of the potential, is expressed by a convolution formula using the Green kernel of the Laplace operator. The correction term, aimed at restoring the boundary conditions, fulfills a variational Poisson equation set in the Sobolev space H1, which can be approximated using finite element methods. The mathematical justification of the proposed expansion is the main focus, particularly when the variable diffusion coefficients are continuous, or have jumps. A computational study concludes the paper with some numerical examples. The potential is approximated by a combined method: (singularity, by integral formulas, correction, by linear finite elements). The convergence is discussed to highlight the practical benefits brought by different expansions, for continuous and discontinuous coefficients.
三维扩散问题具有不连续系数和单维狄拉克源,出现在许多领域。我们所追求的是一种奇异正则展开,其中的奇异性捕捉到了势的僵硬行为,通过使用拉普拉斯算子的格林核的卷积公式来表达。校正项旨在恢复边界条件,满足索波列夫空间 H1 中的变式泊松方程组,可使用有限元方法对其进行近似。本文的重点是对所提出的扩展进行数学论证,尤其是当可变扩散系数是连续的或具有跳跃性时。本文最后通过一些数值实例对计算进行了研究。电势近似采用了一种组合方法:(奇异性、积分公式、修正、线性有限元)。本文对收敛性进行了讨论,以突出不同展开式对连续和不连续系数带来的实际好处。
{"title":"Treatment of 3D diffusion problems with discontinuous coefficients and Dirac curvilinear sources","authors":"","doi":"10.1016/j.apnum.2024.09.012","DOIUrl":"10.1016/j.apnum.2024.09.012","url":null,"abstract":"<div><div>Three-dimensional diffusion problems with discontinuous coefficients and unidimensional Dirac sources arise in a number of fields. The statement we pursue is a singular-regular expansion where the singularity, capturing the stiff behavior of the potential, is expressed by a convolution formula using the Green kernel of the Laplace operator. The correction term, aimed at restoring the boundary conditions, fulfills a variational Poisson equation set in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, which can be approximated using finite element methods. The mathematical justification of the proposed expansion is the main focus, particularly when the variable diffusion coefficients are continuous, or have jumps. A computational study concludes the paper with some numerical examples. The potential is approximated by a combined method: (singularity, by integral formulas, correction, by linear finite elements). The convergence is discussed to highlight the practical benefits brought by different expansions, for continuous and discontinuous coefficients.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations 针对二维非线性麦克斯韦方程的四阶 Runge-Kutta 指数时差和三角谱元法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.008

In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.

本文研究了一种求解非线性麦克斯韦方程的数值方案。该离散方案在空间上基于三角谱元法(TSEM),在时间上基于指数时差四阶 Runge-Kutta 法(ETDRK4)。TSEM 具有频谱精确性和几何灵活性的优点。ETD 方法包括对控制方程的线性部分进行精确积分,然后对涉及非线性项的积分进行近似。非线性项的时间积分采用 RK4 方案。描述了 ETDRK4 方法的稳定区域。此外,还利用并改进了复平面内的等高线积分,以计算 ETDRK4 实现所需的矩阵函数。数值结果表明,我们提出的方法在空间上与基函数阶数呈指数收敛,在时间上具有四阶精度。
{"title":"A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations","authors":"","doi":"10.1016/j.apnum.2024.09.008","DOIUrl":"10.1016/j.apnum.2024.09.008","url":null,"abstract":"<div><p>In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconvergent scheme for a system of green Fredholm integral equations 绿色弗雷德霍姆积分方程系统的超融合方案
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.009

In this study, a numerical scheme to a system of second-kind linear Fredholm integral equations featuring a Green's kernel function is proposed. This involves introducing Galerkin and iterated Galerkin (IG) methods based on piecewise polynomials to tackle the integral model. A thorough analysis of convergence and error for these proposed methods is carried out. Firstly, the existence and uniqueness of solutions for the Galerkin and iterated Galerkin methods are established. Later, the order of convergence is derived using tools from functional analysis and the boundedness property of Green's kernel. The Galerkin scheme has O(hα) order of convergence. Next, the superconvergence of the iterated Galerkin (IG) method is established. The IG method exhibits O(hα+α) order of convergence. Theoretical findings are validated through extensive numerical experiments.

本研究提出了一种以格林核函数为特征的第二类线性弗雷德霍姆积分方程系统的数值方案。其中包括引入基于分次多项式的 Galerkin 和迭代 Galerkin (IG) 方法来处理积分模型。对这些拟议方法的收敛性和误差进行了全面分析。首先,确定了 Galerkin 方法和迭代 Galerkin 方法解的存在性和唯一性。随后,利用函数分析工具和格林内核的有界属性推导出收敛阶次。Galerkin 方案的收敛阶数为 O(hα)。接着,建立了迭代 Galerkin(IG)方法的超收敛性。IG 方法的收敛阶数为 O(hα+α⁎)。大量的数值实验验证了理论结论。
{"title":"Superconvergent scheme for a system of green Fredholm integral equations","authors":"","doi":"10.1016/j.apnum.2024.09.009","DOIUrl":"10.1016/j.apnum.2024.09.009","url":null,"abstract":"<div><p>In this study, a numerical scheme to a system of second-kind linear Fredholm integral equations featuring a Green's kernel function is proposed. This involves introducing Galerkin and iterated Galerkin (IG) methods based on piecewise polynomials to tackle the integral model. A thorough analysis of convergence and error for these proposed methods is carried out. Firstly, the existence and uniqueness of solutions for the Galerkin and iterated Galerkin methods are established. Later, the order of convergence is derived using tools from functional analysis and the boundedness property of Green's kernel. The Galerkin scheme has <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Next, the superconvergence of the iterated Galerkin (IG) method is established. The IG method exhibits <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi><mo>+</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Theoretical findings are validated through extensive numerical experiments.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical method for Ψ-fractional integro-differential equations by Bell polynomials 用贝尔多项式计算Ψ-分式积分微分方程的数值方法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.011

In this work, we focus on a class of Ψ− fractional integro-differential equations (Ψ-FIDEs) involving Ψ-Caputo derivative. The objective of this paper is to derive the numerical solution of Ψ-FIDEs in the truncated Bell series. Firstly, Ψ-FIDEs by using the definition of Ψ− Caputo derivative is converted into a singular integral equation. Then, a computational procedure based on the Bell polynomials, Gauss-Legendre quadrature rule, and collocation method is developed to effectively solve the singular integral equation. The convergence of the approximation obtained in the presented strategy is investigated. Finally, the effectiveness and superiority of our method are revealed by numerical samples. The results of the suggested approach are compared with the results obtained by extended Chebyshev cardinal wavelets method (EChCWM).

在这项工作中,我们重点研究一类涉及Ψ-卡普托导数的Ψ-分数积分微分方程(Ψ-FIDEs)。本文旨在推导截断贝尔数列中 Ψ-FIDE 的数值解。首先,利用Ψ-卡普托导数的定义将Ψ-FIDEs 转化为奇异积分方程。然后,建立了基于贝尔多项式、高斯-勒根特正交规则和配位法的计算程序,以有效求解奇异积分方程。研究了所提出策略中得到的近似值的收敛性。最后,通过数值样本揭示了我们方法的有效性和优越性。建议方法的结果与扩展切比雪夫心形小波方法(EChCWM)的结果进行了比较。
{"title":"A numerical method for Ψ-fractional integro-differential equations by Bell polynomials","authors":"","doi":"10.1016/j.apnum.2024.09.011","DOIUrl":"10.1016/j.apnum.2024.09.011","url":null,"abstract":"<div><p>In this work, we focus on a class of Ψ− fractional integro-differential equations (Ψ-FIDEs) involving Ψ-Caputo derivative. The objective of this paper is to derive the numerical solution of Ψ-FIDEs in the truncated Bell series. Firstly, Ψ-FIDEs by using the definition of Ψ− Caputo derivative is converted into a singular integral equation. Then, a computational procedure based on the Bell polynomials, Gauss-Legendre quadrature rule, and collocation method is developed to effectively solve the singular integral equation. The convergence of the approximation obtained in the presented strategy is investigated. Finally, the effectiveness and superiority of our method are revealed by numerical samples. The results of the suggested approach are compared with the results obtained by extended Chebyshev cardinal wavelets method (EChCWM).</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation 双谐波非线性薛定谔方程时间分割正弦伪谱法的最佳误差边界
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.007
<div><div>We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>9</mn></math></span>, we prove error bounds at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm respectively, for the proposed TSSP method, with <em>τ</em> time step and <em>h</em> mesh size. For general dimensional cases with <span><math><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, the error bounds are at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm under the assumption that the exact solution is in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>10</mn></math></span>. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>- or <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-bound of the numerical solution which implies the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the
我们提出了双谐波非线性薛定谔方程(BNLS)的时间分割正弦伪谱(TSSP)方法,并建立了其最佳误差边界。在所提出的 TSSP 方法中,我们采用正弦伪谱法进行空间离散化,采用二阶斯特朗分裂法进行时间离散化。所提出的 TSSP 方法是显式和结构保留的,如时间对称、质量守恒和在离散化水平上保持原始 BNLS 的离散关系。假设一维 BNLS 的解属于 Hm,m≥9,我们证明了所提出的 TSSP 方法在 L2 准则和 H1 准则下的误差边界分别为 O(τ2+hm)和 O(τ2+hm-1),时间步长为 τ,网格大小为 h。对于 d=1,2,3的一般维数情况,假设精确解在 m≥10 的 Hm 中,误差边界在 L2 和 H2 规范下分别为 O(τ2+hm) 和 O(τ2+hm-2)。证明是基于局部截断误差的 Lie-commutator 约束、离散 Gronwall 不等式、能量法和数值解的 H1 或 H2 约束,这意味着数值解的 L∞ 约束。最后,报告了大量数值结果,以证实我们的最佳误差约束,并展示了解的丰富现象,包括高频波和孤子碰撞在空间的快速弥散。
{"title":"Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation","authors":"","doi":"10.1016/j.apnum.2024.09.007","DOIUrl":"10.1016/j.apnum.2024.09.007","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we prove error bounds at &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm respectively, for the proposed TSSP method, with &lt;em&gt;τ&lt;/em&gt; time step and &lt;em&gt;h&lt;/em&gt; mesh size. For general dimensional cases with &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, the error bounds are at &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm under the assumption that the exact solution is in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;- or &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-bound of the numerical solution which implies the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method 基于量规-乌泽法的密度可变多流体力学方程数值近似法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-10 DOI: 10.1016/j.apnum.2024.09.006

In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.

本文考虑了密度可变的不可压缩磁流体动力学(MHD)系统的数值近似。首先,我们提供了基于高斯-乌泽法对流形式的一阶和二阶时间离散化方案。其次,我们证明了所提出的方案是无条件稳定的。我们还通过严格的理论分析提供了误差估计。然后,我们用空间有限元构建了一个完全离散的一阶方案,并提供了其稳定性结果。最后,我们通过一些数值实验来验证所提方案的有效性。此外,我们还介绍了守恒方案及其数值结果。
{"title":"Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method","authors":"","doi":"10.1016/j.apnum.2024.09.006","DOIUrl":"10.1016/j.apnum.2024.09.006","url":null,"abstract":"<div><p>In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility 具有一般流动性的艾伦-卡恩方程的线性二阶无条件最大约束原则保留方案
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-10 DOI: 10.1016/j.apnum.2024.09.005

In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in H1-norm for the case of constant mobility and L-norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.

在这项工作中,我们研究了具有一般流动性的 Allen-Cahn 方程的线性二阶数值方法。所提出的方案结合了用于时间逼近的两步式一阶和二阶后向微分公式以及用于空间离散化的中心有限差分法,还包括两个额外的稳定项。在相邻时间步长比和两个稳定参数的温和约束下,数值方案的离散最大约束原理得到了严格证明。此外,我们还得到了恒定流动性情况下的 H1 规范误差估计和一般流动性情况下的 L∞ 规范误差估计,以及这两种情况下的能量稳定性。最后,我们进行了大量的数值实验来验证理论结果,并开发了一种自适应时间步进策略来证明所提方法的性能。
{"title":"A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility","authors":"","doi":"10.1016/j.apnum.2024.09.005","DOIUrl":"10.1016/j.apnum.2024.09.005","url":null,"abstract":"<div><p>In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the case of constant mobility and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type 对流扩散型多尺度二维抛物奇异扰动系统的高效均匀收敛方法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-06 DOI: 10.1016/j.apnum.2024.09.002

In this work we solve initial-boundary value problems associated to coupled 2D parabolic singularly perturbed systems of convection-diffusion type. The analysis is focused on the cases where the diffusion parameters are small, distinct and also they may have different order of magnitude. In such cases, overlapping regular boundary layers appear at the outflow boundary of the spatial domain. The fully discrete scheme combines the classical upwind scheme defined on an appropriate Shishkin mesh to discretize the spatial variables, and the fractional implicit Euler method joins to a decomposition of the difference operator in directions and components to integrate in time. We prove that the resulting method is uniformly convergent of first order in time and of almost first order in space. Moreover, as only small tridiagonal linear systems must be solved to advance in time, the computational cost of our method is remarkably smaller than the corresponding ones to other implicit methods considered in the previous literature for the same type of problems. The numerical results, obtained for some test problems, corroborate in practice the good behavior and the advantages of the algorithm.

在这项研究中,我们解决了与对流-扩散型耦合二维抛物线奇异扰动系统相关的初始边界值问题。分析的重点是扩散参数较小、不同且数量级不同的情况。在这种情况下,空间域的流出边界会出现重叠的规则边界层。完全离散方案结合了在适当的 Shishkin 网格上定义的经典上风方案,以离散空间变量,并结合分数隐式欧拉方法,将差分算子分解为方向和分量,以进行时间积分。我们证明所得到的方法在时间上是一阶均匀收敛,在空间上几乎是一阶均匀收敛。此外,由于只需求解较小的三对角线性系统就能在时间上前进,因此我们方法的计算成本明显低于以往文献中针对同类问题的其他隐式方法。一些测试问题的数值结果证实了该算法在实践中的良好表现和优势。
{"title":"An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type","authors":"","doi":"10.1016/j.apnum.2024.09.002","DOIUrl":"10.1016/j.apnum.2024.09.002","url":null,"abstract":"<div><p>In this work we solve initial-boundary value problems associated to coupled 2D parabolic singularly perturbed systems of convection-diffusion type. The analysis is focused on the cases where the diffusion parameters are small, distinct and also they may have different order of magnitude. In such cases, overlapping regular boundary layers appear at the outflow boundary of the spatial domain. The fully discrete scheme combines the classical upwind scheme defined on an appropriate Shishkin mesh to discretize the spatial variables, and the fractional implicit Euler method joins to a decomposition of the difference operator in directions and components to integrate in time. We prove that the resulting method is uniformly convergent of first order in time and of almost first order in space. Moreover, as only small tridiagonal linear systems must be solved to advance in time, the computational cost of our method is remarkably smaller than the corresponding ones to other implicit methods considered in the previous literature for the same type of problems. The numerical results, obtained for some test problems, corroborate in practice the good behavior and the advantages of the algorithm.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002344/pdfft?md5=113f28e912fce44133fdc1f89be35392&pid=1-s2.0-S0168927424002344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilized explicit peer methods with parallelism across the stages for stiff problems 针对僵化问题的跨阶段并行稳定显式同行方法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-05 DOI: 10.1016/j.apnum.2024.08.023

In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) [5] for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.

In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.

在本手稿中,我们提出了一系列新的稳定化显式可并行同行方法,用于解决僵硬的初值问题(IVPs)。这些方法是通过使用 Bassenne 等人(2021 年)[5] 为构建线性隐式 Runge-Kutta (RK) 方案系列而提出的一类预处理器而得到的。在本文中,我们将上述预处理器与显式两步同行方法相结合,得到了一类新的允许级并行的线性隐式数值方案。通过深入的理论研究,我们设定了预处理和基础显式方法的自由参数,从而推导出具有良好稳定性和较小局部截断误差(LTE)的二阶、三阶和四阶新同级方案。在应用背景下产生的偏微分方程(PDEs)上进行的数值实验表明,这里提出的新同阶方法非常高效,并突出了它们与其他线性隐式数值方案的竞争力。
{"title":"Stabilized explicit peer methods with parallelism across the stages for stiff problems","authors":"","doi":"10.1016/j.apnum.2024.08.023","DOIUrl":"10.1016/j.apnum.2024.08.023","url":null,"abstract":"<div><p>In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) <span><span>[5]</span></span> for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.</p><p>In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and reliable algorithms for computing the zeros of Althammer polynomials 计算阿尔塔默多项式零点的快速可靠算法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-05 DOI: 10.1016/j.apnum.2024.09.004

In this manuscript, we propose a stable algorithm for computing the zeros of Althammer polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located inside the interval (1,1). The Althammer polynomial pn(x) of degree n satisfies a long recurrence relation, whose coefficients can be arranged into a Hessenberg matrix of order n, with eigenvalues equal to the zeros of the considered polynomial.

Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard balancing procedures do not improve their condition numbers. Here, we introduce a novel algorithm for computing the zeros of pn(x), which first transforms the Hessenberg matrix into a similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and then computes the zeros of pn(x) as the eigenvalues of the latter tridiagonal matrix. Moreover, we propose a second algorithm, faster but less accurate than the former one, which computes the zeros of pn(x) as the eigenvalues of a truncated Hessenberg matrix, obtained by properly neglecting some diagonals in the upper part of the original matrix. The computational complexity of the proposed algorithms are, respectively, O(n36), and O(2n), with n in general.

在本手稿中,我们提出了一种计算阿尔塔默多项式零点的稳定算法。这些多项式在索波列夫内积方面是正交的,如果它们的度数是偶数,它们就是偶数,否则就是奇数。此外,它们的零点是实数、独特的,并且位于区间(-1,1)内。度数为 n 的 Althammer 多项式 pn(x) 满足长递推关系,其系数可以排列成阶数为 n 的海森伯矩阵,其特征值等于所考虑多项式的零点。在这里,我们引入了一种计算 pn(x) 的零点的新算法,它首先将海森堡矩阵转化为类似的对称三对角矩阵,即特征值完全有条件的矩阵,然后将 pn(x) 的零点计算为后一个三对角矩阵的特征值。此外,我们还提出了第二种算法,计算 pn(x) 的零点为截断的海森伯矩阵的特征值,该矩阵是通过适当忽略原始矩阵上部的一些对角线而得到的。所提算法的计算复杂度分别为 O(n36)和 O(ℓ2n),一般情况下为 ℓ≪n。
{"title":"Fast and reliable algorithms for computing the zeros of Althammer polynomials","authors":"","doi":"10.1016/j.apnum.2024.09.004","DOIUrl":"10.1016/j.apnum.2024.09.004","url":null,"abstract":"<div><p>In this manuscript, we propose a stable algorithm for computing the zeros of Althammer polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located inside the interval <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. The Althammer polynomial <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of degree <em>n</em> satisfies a long recurrence relation, whose coefficients can be arranged into a Hessenberg matrix of order <em>n</em>, with eigenvalues equal to the zeros of the considered polynomial.</p><p>Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard balancing procedures do not improve their condition numbers. Here, we introduce a novel algorithm for computing the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, which first transforms the Hessenberg matrix into a similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and then computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of the latter tridiagonal matrix. Moreover, we propose a second algorithm, faster but less accurate than the former one, which computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of a truncated Hessenberg matrix, obtained by properly neglecting some diagonals in the upper part of the original matrix. The computational complexity of the proposed algorithms are, respectively, <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></math></span>, with <span><math><mi>ℓ</mi><mo>≪</mo><mi>n</mi></math></span> in general.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002356/pdfft?md5=5d69aaffe1451682d680a99c82c21156&pid=1-s2.0-S0168927424002356-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Numerical Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1