首页 > 最新文献

Applied Numerical Mathematics最新文献

英文 中文
Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation 双谐波非线性薛定谔方程时间分割正弦伪谱法的最佳误差边界
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.007
Teng Zhang , Ying Ma
<div><div>We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>9</mn></math></span>, we prove error bounds at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm respectively, for the proposed TSSP method, with <em>τ</em> time step and <em>h</em> mesh size. For general dimensional cases with <span><math><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, the error bounds are at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm under the assumption that the exact solution is in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>10</mn></math></span>. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>- or <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-bound of the numerical solution which implies the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the
我们提出了双谐波非线性薛定谔方程(BNLS)的时间分割正弦伪谱(TSSP)方法,并建立了其最佳误差边界。在所提出的 TSSP 方法中,我们采用正弦伪谱法进行空间离散化,采用二阶斯特朗分裂法进行时间离散化。所提出的 TSSP 方法是显式和结构保留的,如时间对称、质量守恒和在离散化水平上保持原始 BNLS 的离散关系。假设一维 BNLS 的解属于 Hm,m≥9,我们证明了所提出的 TSSP 方法在 L2 准则和 H1 准则下的误差边界分别为 O(τ2+hm)和 O(τ2+hm-1),时间步长为 τ,网格大小为 h。对于 d=1,2,3的一般维数情况,假设精确解在 m≥10 的 Hm 中,误差边界在 L2 和 H2 规范下分别为 O(τ2+hm) 和 O(τ2+hm-2)。证明是基于局部截断误差的 Lie-commutator 约束、离散 Gronwall 不等式、能量法和数值解的 H1 或 H2 约束,这意味着数值解的 L∞ 约束。最后,报告了大量数值结果,以证实我们的最佳误差约束,并展示了解的丰富现象,包括高频波和孤子碰撞在空间的快速弥散。
{"title":"Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation","authors":"Teng Zhang ,&nbsp;Ying Ma","doi":"10.1016/j.apnum.2024.09.007","DOIUrl":"10.1016/j.apnum.2024.09.007","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we prove error bounds at &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm respectively, for the proposed TSSP method, with &lt;em&gt;τ&lt;/em&gt; time step and &lt;em&gt;h&lt;/em&gt; mesh size. For general dimensional cases with &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, the error bounds are at &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm under the assumption that the exact solution is in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;- or &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-bound of the numerical solution which implies the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method 基于量规-乌泽法的密度可变多流体力学方程数值近似法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-10 DOI: 10.1016/j.apnum.2024.09.006
Zhaowei Wang , Danxia Wang , Yanping Chen , Chenhui Zhang , Hongen Jia

In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.

本文考虑了密度可变的不可压缩磁流体动力学(MHD)系统的数值近似。首先,我们提供了基于高斯-乌泽法对流形式的一阶和二阶时间离散化方案。其次,我们证明了所提出的方案是无条件稳定的。我们还通过严格的理论分析提供了误差估计。然后,我们用空间有限元构建了一个完全离散的一阶方案,并提供了其稳定性结果。最后,我们通过一些数值实验来验证所提方案的有效性。此外,我们还介绍了守恒方案及其数值结果。
{"title":"Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method","authors":"Zhaowei Wang ,&nbsp;Danxia Wang ,&nbsp;Yanping Chen ,&nbsp;Chenhui Zhang ,&nbsp;Hongen Jia","doi":"10.1016/j.apnum.2024.09.006","DOIUrl":"10.1016/j.apnum.2024.09.006","url":null,"abstract":"<div><p>In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility 具有一般流动性的艾伦-卡恩方程的线性二阶无条件最大约束原则保留方案
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-10 DOI: 10.1016/j.apnum.2024.09.005
Dianming Hou , Tianxiang Zhang , Hongyi Zhu

In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in H1-norm for the case of constant mobility and L-norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.

在这项工作中,我们研究了具有一般流动性的 Allen-Cahn 方程的线性二阶数值方法。所提出的方案结合了用于时间逼近的两步式一阶和二阶后向微分公式以及用于空间离散化的中心有限差分法,还包括两个额外的稳定项。在相邻时间步长比和两个稳定参数的温和约束下,数值方案的离散最大约束原理得到了严格证明。此外,我们还得到了恒定流动性情况下的 H1 规范误差估计和一般流动性情况下的 L∞ 规范误差估计,以及这两种情况下的能量稳定性。最后,我们进行了大量的数值实验来验证理论结果,并开发了一种自适应时间步进策略来证明所提方法的性能。
{"title":"A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility","authors":"Dianming Hou ,&nbsp;Tianxiang Zhang ,&nbsp;Hongyi Zhu","doi":"10.1016/j.apnum.2024.09.005","DOIUrl":"10.1016/j.apnum.2024.09.005","url":null,"abstract":"<div><p>In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the case of constant mobility and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type 对流扩散型多尺度二维抛物奇异扰动系统的高效均匀收敛方法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-06 DOI: 10.1016/j.apnum.2024.09.002
C. Clavero , J.C. Jorge

In this work we solve initial-boundary value problems associated to coupled 2D parabolic singularly perturbed systems of convection-diffusion type. The analysis is focused on the cases where the diffusion parameters are small, distinct and also they may have different order of magnitude. In such cases, overlapping regular boundary layers appear at the outflow boundary of the spatial domain. The fully discrete scheme combines the classical upwind scheme defined on an appropriate Shishkin mesh to discretize the spatial variables, and the fractional implicit Euler method joins to a decomposition of the difference operator in directions and components to integrate in time. We prove that the resulting method is uniformly convergent of first order in time and of almost first order in space. Moreover, as only small tridiagonal linear systems must be solved to advance in time, the computational cost of our method is remarkably smaller than the corresponding ones to other implicit methods considered in the previous literature for the same type of problems. The numerical results, obtained for some test problems, corroborate in practice the good behavior and the advantages of the algorithm.

在这项研究中,我们解决了与对流-扩散型耦合二维抛物线奇异扰动系统相关的初始边界值问题。分析的重点是扩散参数较小、不同且数量级不同的情况。在这种情况下,空间域的流出边界会出现重叠的规则边界层。完全离散方案结合了在适当的 Shishkin 网格上定义的经典上风方案,以离散空间变量,并结合分数隐式欧拉方法,将差分算子分解为方向和分量,以进行时间积分。我们证明所得到的方法在时间上是一阶均匀收敛,在空间上几乎是一阶均匀收敛。此外,由于只需求解较小的三对角线性系统就能在时间上前进,因此我们方法的计算成本明显低于以往文献中针对同类问题的其他隐式方法。一些测试问题的数值结果证实了该算法在实践中的良好表现和优势。
{"title":"An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type","authors":"C. Clavero ,&nbsp;J.C. Jorge","doi":"10.1016/j.apnum.2024.09.002","DOIUrl":"10.1016/j.apnum.2024.09.002","url":null,"abstract":"<div><p>In this work we solve initial-boundary value problems associated to coupled 2D parabolic singularly perturbed systems of convection-diffusion type. The analysis is focused on the cases where the diffusion parameters are small, distinct and also they may have different order of magnitude. In such cases, overlapping regular boundary layers appear at the outflow boundary of the spatial domain. The fully discrete scheme combines the classical upwind scheme defined on an appropriate Shishkin mesh to discretize the spatial variables, and the fractional implicit Euler method joins to a decomposition of the difference operator in directions and components to integrate in time. We prove that the resulting method is uniformly convergent of first order in time and of almost first order in space. Moreover, as only small tridiagonal linear systems must be solved to advance in time, the computational cost of our method is remarkably smaller than the corresponding ones to other implicit methods considered in the previous literature for the same type of problems. The numerical results, obtained for some test problems, corroborate in practice the good behavior and the advantages of the algorithm.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002344/pdfft?md5=113f28e912fce44133fdc1f89be35392&pid=1-s2.0-S0168927424002344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilized explicit peer methods with parallelism across the stages for stiff problems 针对僵化问题的跨阶段并行稳定显式同行方法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-05 DOI: 10.1016/j.apnum.2024.08.023
Giovanni Pagano

In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) [5] for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.

In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.

在本手稿中,我们提出了一系列新的稳定化显式可并行同行方法,用于解决僵硬的初值问题(IVPs)。这些方法是通过使用 Bassenne 等人(2021 年)[5] 为构建线性隐式 Runge-Kutta (RK) 方案系列而提出的一类预处理器而得到的。在本文中,我们将上述预处理器与显式两步同行方法相结合,得到了一类新的允许级并行的线性隐式数值方案。通过深入的理论研究,我们设定了预处理和基础显式方法的自由参数,从而推导出具有良好稳定性和较小局部截断误差(LTE)的二阶、三阶和四阶新同级方案。在应用背景下产生的偏微分方程(PDEs)上进行的数值实验表明,这里提出的新同阶方法非常高效,并突出了它们与其他线性隐式数值方案的竞争力。
{"title":"Stabilized explicit peer methods with parallelism across the stages for stiff problems","authors":"Giovanni Pagano","doi":"10.1016/j.apnum.2024.08.023","DOIUrl":"10.1016/j.apnum.2024.08.023","url":null,"abstract":"<div><p>In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) <span><span>[5]</span></span> for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.</p><p>In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and reliable algorithms for computing the zeros of Althammer polynomials 计算阿尔塔默多项式零点的快速可靠算法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-05 DOI: 10.1016/j.apnum.2024.09.004
Teresa Laudadio , Nicola Mastronardi , Paul Van Dooren

In this manuscript, we propose a stable algorithm for computing the zeros of Althammer polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located inside the interval (1,1). The Althammer polynomial pn(x) of degree n satisfies a long recurrence relation, whose coefficients can be arranged into a Hessenberg matrix of order n, with eigenvalues equal to the zeros of the considered polynomial.

Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard balancing procedures do not improve their condition numbers. Here, we introduce a novel algorithm for computing the zeros of pn(x), which first transforms the Hessenberg matrix into a similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and then computes the zeros of pn(x) as the eigenvalues of the latter tridiagonal matrix. Moreover, we propose a second algorithm, faster but less accurate than the former one, which computes the zeros of pn(x) as the eigenvalues of a truncated Hessenberg matrix, obtained by properly neglecting some diagonals in the upper part of the original matrix. The computational complexity of the proposed algorithms are, respectively, O(n36), and O(2n), with n in general.

在本手稿中,我们提出了一种计算阿尔塔默多项式零点的稳定算法。这些多项式在索波列夫内积方面是正交的,如果它们的度数是偶数,它们就是偶数,否则就是奇数。此外,它们的零点是实数、独特的,并且位于区间(-1,1)内。度数为 n 的 Althammer 多项式 pn(x) 满足长递推关系,其系数可以排列成阶数为 n 的海森伯矩阵,其特征值等于所考虑多项式的零点。在这里,我们引入了一种计算 pn(x) 的零点的新算法,它首先将海森堡矩阵转化为类似的对称三对角矩阵,即特征值完全有条件的矩阵,然后将 pn(x) 的零点计算为后一个三对角矩阵的特征值。此外,我们还提出了第二种算法,计算 pn(x) 的零点为截断的海森伯矩阵的特征值,该矩阵是通过适当忽略原始矩阵上部的一些对角线而得到的。所提算法的计算复杂度分别为 O(n36)和 O(ℓ2n),一般情况下为 ℓ≪n。
{"title":"Fast and reliable algorithms for computing the zeros of Althammer polynomials","authors":"Teresa Laudadio ,&nbsp;Nicola Mastronardi ,&nbsp;Paul Van Dooren","doi":"10.1016/j.apnum.2024.09.004","DOIUrl":"10.1016/j.apnum.2024.09.004","url":null,"abstract":"<div><p>In this manuscript, we propose a stable algorithm for computing the zeros of Althammer polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located inside the interval <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. The Althammer polynomial <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of degree <em>n</em> satisfies a long recurrence relation, whose coefficients can be arranged into a Hessenberg matrix of order <em>n</em>, with eigenvalues equal to the zeros of the considered polynomial.</p><p>Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard balancing procedures do not improve their condition numbers. Here, we introduce a novel algorithm for computing the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, which first transforms the Hessenberg matrix into a similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and then computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of the latter tridiagonal matrix. Moreover, we propose a second algorithm, faster but less accurate than the former one, which computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of a truncated Hessenberg matrix, obtained by properly neglecting some diagonals in the upper part of the original matrix. The computational complexity of the proposed algorithms are, respectively, <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></math></span>, with <span><math><mi>ℓ</mi><mo>≪</mo><mi>n</mi></math></span> in general.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002356/pdfft?md5=5d69aaffe1451682d680a99c82c21156&pid=1-s2.0-S0168927424002356-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal control for Darcy's equation in a heterogeneous porous media 异质多孔介质中达西方程的优化控制
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-04 DOI: 10.1016/j.apnum.2024.08.027
SeongHee Jeong, Sanghyun Lee

In this paper, we investigate optimal control problems in heterogeneous porous media. The optimal control problem is governed by the Darcy's flow equation; where the pressure is the state variable and the source/sink is the control variable. Then we introduce the reduced optimal control problem which contains only the state variable by replacing the control variable with a dependent quantity of the state variable based on the Darcy's equation. Here we employ C0 interior penalty finite element methods for the spatial discretization to solve the reduced optimal control problem resulting in a fourth-order variational inequality. We use P2 Lagrange finite elements for C0 interior penalty methods, which require fewer degrees of freedom than C1 finite element methods. We provide a priori error estimates and stability analyses by considering a heterogeneous permeability coefficient. Several numerical examples validate the given theories and illustrate the capabilities of the proposed algorithm.

本文研究了异质多孔介质中的优化控制问题。优化控制问题受达西流动方程支配,其中压力是状态变量,源/汇是控制变量。然后,我们以达西方程为基础,用状态变量的一个因变量代替控制变量,引入了只包含状态变量的简化最优控制问题。在此,我们采用 C0 内部惩罚有限元方法进行空间离散化,以求解简化最优控制问题,从而得到一个四阶变分不等式。我们使用 P2 拉格朗日有限元进行 C0 内部惩罚方法,它比 C1 有限元方法需要更少的自由度。通过考虑异质渗透系数,我们提供了先验误差估计和稳定性分析。几个数值示例验证了给出的理论,并说明了所提算法的能力。
{"title":"Optimal control for Darcy's equation in a heterogeneous porous media","authors":"SeongHee Jeong,&nbsp;Sanghyun Lee","doi":"10.1016/j.apnum.2024.08.027","DOIUrl":"10.1016/j.apnum.2024.08.027","url":null,"abstract":"<div><p>In this paper, we investigate optimal control problems in heterogeneous porous media. The optimal control problem is governed by the Darcy's flow equation; where the pressure is the state variable and the source/sink is the control variable. Then we introduce the reduced optimal control problem which contains only the state variable by replacing the control variable with a dependent quantity of the state variable based on the Darcy's equation. Here we employ <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> interior penalty finite element methods for the spatial discretization to solve the reduced optimal control problem resulting in a fourth-order variational inequality. We use <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> Lagrange finite elements for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> interior penalty methods, which require fewer degrees of freedom than <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> finite element methods. We provide a priori error estimates and stability analyses by considering a heterogeneous permeability coefficient. Several numerical examples validate the given theories and illustrate the capabilities of the proposed algorithm.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonstaggered central scheme with steady-state discretization for solving the open channel flows via the flux globalization 采用稳态离散的非交错中心方案,通过流量全局化解决明渠水流问题
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-03 DOI: 10.1016/j.apnum.2024.08.022
Zhen Li

The paper proposed a second-order steady-state-preserving nonstaggered central scheme for solving one-layer and two-layer open channel flows via the flux globalization. The global flux transforms the model into the homogeneous form, avoiding the complex discretization of the source terms. However, when the traditional appropriate quadrature rule discrete the global variables, the scheme tends to maintain only the moving-water equilibrium but not the “lake at rest” equilibrium. This paper proposes a new discretization method, the steady-state discretization (SSD) method of global variables, so that not only the still-water equilibrium can be maintained, but also the moving-water equilibrium, i.e., the discharge, the energy and the global flux are equilibrium. The scheme also ensures that the cross-sectional wet area is positive by introducing a “draining” time-step technique. Numerical experiments verify that the scheme is well-balanced, positivity-preserving and robust when flowing through open channel flows under the continuous or discontinuous bottom topography and channel width, and exactly capturing small perturbations and propagating interfaces of the steady-state solution.

本文提出了一种二阶稳态保留非交错中心方案,通过通量全局化来求解单层和双层明渠流动。全局通量将模型转化为同质形式,避免了源项的复杂离散化。然而,当采用传统的适当正交规则离散全局变量时,该方案往往只能维持动水平衡,而不能维持 "静止湖泊 "平衡。本文提出了一种新的离散化方法--全局变量稳态离散化(SSD)方法,这样不仅能保持静水平衡,还能保持动水平衡,即排泄量、能量和全局通量都是平衡的。该方案还通过引入 "排水 "时间步长技术,确保横截面湿面积为正值。数值实验验证了该方案在连续或不连续的底部地形和河道宽度条件下流经明渠水流时具有良好的平衡性、保正性和稳健性,并能准确捕捉稳态解的小扰动和传播界面。
{"title":"Nonstaggered central scheme with steady-state discretization for solving the open channel flows via the flux globalization","authors":"Zhen Li","doi":"10.1016/j.apnum.2024.08.022","DOIUrl":"10.1016/j.apnum.2024.08.022","url":null,"abstract":"<div><p>The paper proposed a second-order steady-state-preserving nonstaggered central scheme for solving one-layer and two-layer open channel flows via the flux globalization. The global flux transforms the model into the homogeneous form, avoiding the complex discretization of the source terms. However, when the traditional appropriate quadrature rule discrete the global variables, the scheme tends to maintain only the moving-water equilibrium but not the “lake at rest” equilibrium. This paper proposes a new discretization method, the steady-state discretization (SSD) method of global variables, so that not only the still-water equilibrium can be maintained, but also the moving-water equilibrium, i.e., the discharge, the energy and the global flux are equilibrium. The scheme also ensures that the cross-sectional wet area is positive by introducing a “draining” time-step technique. Numerical experiments verify that the scheme is well-balanced, positivity-preserving and robust when flowing through open channel flows under the continuous or discontinuous bottom topography and channel width, and exactly capturing small perturbations and propagating interfaces of the steady-state solution.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A parameter-uniform hybrid method for singularly perturbed parabolic 2D convection-diffusion-reaction problems 奇异扰动抛物线二维对流-扩散-反应问题的参数统一混合方法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-03 DOI: 10.1016/j.apnum.2024.08.026
Mrityunjoy Barman , Srinivasan Natesan , Ali Sendur

The solution of the singular perturbation problems (SPP) of convection-diffusion-reaction type may exhibit regular and corner layers in a rectangular domain. In this work, we construct and analyze a parameter-uniform operator-splitting alternating direction implicit (ADI) scheme to efficiently solve a two-dimensional parabolic singularly perturbed problem with two positive parameters. The proposed model is a combination of the backward-Euler method defined on a uniform mesh in time and a hybrid method in space defined on a special Shishkin mesh. The analysis is presented on a layer adapted piecewise-uniform Shishkin mesh. The developed numerical method is proved to be first-order convergent in time and almost second-order convergent in space. The numerical experiments are performed to validate the theoretical convergence results and illustrate the efficiency of the current strategy.

对流-扩散-反应型奇异扰动问题(SPP)的解在矩形域中可能会出现规则层和角层。在这项工作中,我们构建并分析了一种参数均匀算子分割交替方向隐式(ADI)方案,用于高效求解具有两个正参数的二维抛物线奇异扰动问题。所提出的模型结合了时间上定义在均匀网格上的后向-欧拉法和空间上定义在特殊 Shishkin 网格上的混合法。分析是在适应层的片状均匀 Shishkin 网格上进行的。事实证明,所开发的数值方法在时间上是一阶收敛的,在空间上几乎是二阶收敛的。数值实验验证了理论收敛结果,并说明了当前策略的效率。
{"title":"A parameter-uniform hybrid method for singularly perturbed parabolic 2D convection-diffusion-reaction problems","authors":"Mrityunjoy Barman ,&nbsp;Srinivasan Natesan ,&nbsp;Ali Sendur","doi":"10.1016/j.apnum.2024.08.026","DOIUrl":"10.1016/j.apnum.2024.08.026","url":null,"abstract":"<div><p>The solution of the singular perturbation problems (SPP) of convection-diffusion-reaction type may exhibit regular and corner layers in a rectangular domain. In this work, we construct and analyze a parameter-uniform operator-splitting alternating direction implicit (ADI) scheme to efficiently solve a two-dimensional parabolic singularly perturbed problem with two positive parameters. The proposed model is a combination of the backward-Euler method defined on a uniform mesh in time and a hybrid method in space defined on a special Shishkin mesh. The analysis is presented on a layer adapted piecewise-uniform Shishkin mesh. The developed numerical method is proved to be first-order convergent in time and almost second-order convergent in space. The numerical experiments are performed to validate the theoretical convergence results and illustrate the efficiency of the current strategy.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical approach for soil microbiota growth prediction through physics-informed neural network 通过物理信息神经网络预测土壤微生物群生长的数值方法
IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-03 DOI: 10.1016/j.apnum.2024.08.025
Salvatore Cuomo, Mariapia De Rosa, Francesco Piccialli, Laura Pompameo, Vincenzo Vocca

In recent years, there has been a growing interest in leveraging Scientific Machine Learning (SciML) techniques to address challenges in solving Partial Differential Equations (PDEs). This study focuses on forecasting the growth of microbial populations in soil using a novel numerical methodology, the Physics-Informed Neural Network (PINN). This approach is crucial in overcoming the inherent challenges associated with the general unculturability of soil bacteria. PINNs can be used to model the growth of bacterial and fungal populations, considering environmental factors like temperature, solar radiation, air humidity, soil hydration status, and external weather conditions. In this paper, some stability issues related to the mathematical model have been analyzed. Moreover, by utilizing field data and applying equations that describe the biological mechanisms of microbial growth, a PINN was trained to predict the development of the microbiota over time. The results demonstrate that the use of PINNs for studying microbial growth and evolution is a promising tool for enhancing agriculture, optimizing cultivation processes, and facilitating efficient resource management.

近年来,利用科学机器学习(SciML)技术解决偏微分方程(PDE)求解难题的兴趣日益浓厚。本研究的重点是利用一种新颖的数值方法--物理信息神经网络(PINN)预测土壤中微生物种群的生长情况。这种方法对于克服与土壤细菌的普遍不可培养性相关的固有挑战至关重要。考虑到温度、太阳辐射、空气湿度、土壤水分状况和外部天气条件等环境因素,PINN 可用于模拟细菌和真菌种群的生长。本文分析了与数学模型相关的一些稳定性问题。此外,通过利用实地数据和应用描述微生物生长生物机制的方程,训练了一个 PINN,以预测微生物群随着时间的推移而发展。结果表明,利用 PINN 研究微生物的生长和进化是一种很有前途的工具,可用于改善农业、优化栽培过程和促进有效的资源管理。
{"title":"A numerical approach for soil microbiota growth prediction through physics-informed neural network","authors":"Salvatore Cuomo,&nbsp;Mariapia De Rosa,&nbsp;Francesco Piccialli,&nbsp;Laura Pompameo,&nbsp;Vincenzo Vocca","doi":"10.1016/j.apnum.2024.08.025","DOIUrl":"10.1016/j.apnum.2024.08.025","url":null,"abstract":"<div><p>In recent years, there has been a growing interest in leveraging Scientific Machine Learning (SciML) techniques to address challenges in solving Partial Differential Equations (PDEs). This study focuses on forecasting the growth of microbial populations in soil using a novel numerical methodology, the Physics-Informed Neural Network (PINN). This approach is crucial in overcoming the inherent challenges associated with the general unculturability of soil bacteria. PINNs can be used to model the growth of bacterial and fungal populations, considering environmental factors like temperature, solar radiation, air humidity, soil hydration status, and external weather conditions. In this paper, some stability issues related to the mathematical model have been analyzed. Moreover, by utilizing field data and applying equations that describe the biological mechanisms of microbial growth, a PINN was trained to predict the development of the microbiota over time. The results demonstrate that the use of PINNs for studying microbial growth and evolution is a promising tool for enhancing agriculture, optimizing cultivation processes, and facilitating efficient resource management.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Numerical Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1