Pub Date : 2024-06-14DOI: 10.1016/j.apnum.2024.06.015
Aws Mushtaq Mudheher, S. Pishbin, P. Darania, Shadi Malek Bagomghaleh
In the present study, we construct a considerably fast convergent multistep collocation technique in order to solve Volterra integral equations, especially first-kind ones with variable vanishing delays. Through a robust theoretical analysis, the optimal global convergence of the numerically achieved solutions to their exact counterparts has been demonstrated with the corresponding high orders. The allusion to the strategy of reformulating a first-kind Volterra integral equation into a second-kind Volterra functional integral equation, assists us for the establishment of regularity, existence and uniqueness features of analytical solution over under consideration equation. The existence and uniqueness of numerical solution have also been shown. Eventually, some test problems have been provided to evaluate effectiveness of the proposed multistep collocation technique.
{"title":"High-rate convergent multistep collocation techniques to a first-kind Volterra integral equation along with the proportional vanishing delay","authors":"Aws Mushtaq Mudheher, S. Pishbin, P. Darania, Shadi Malek Bagomghaleh","doi":"10.1016/j.apnum.2024.06.015","DOIUrl":"10.1016/j.apnum.2024.06.015","url":null,"abstract":"<div><p>In the present study, we construct a considerably fast convergent multistep collocation technique in order to solve Volterra integral equations, especially first-kind ones with variable vanishing delays. Through a robust theoretical analysis, the optimal global convergence of the numerically achieved solutions to their exact counterparts has been demonstrated with the corresponding high orders. The allusion to the strategy of reformulating a first-kind Volterra integral equation into a second-kind Volterra functional integral equation, assists us for the establishment of regularity, existence and uniqueness features of analytical solution over under consideration equation. The existence and uniqueness of numerical solution have also been shown. Eventually, some test problems have been provided to evaluate effectiveness of the proposed multistep collocation technique.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 188-205"},"PeriodicalIF":2.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141405620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.apnum.2024.06.013
Mufutau Ajani Rufai , Bruno Carpentieri , Higinio Ramos
This paper proposes a new pair of block techniques (NPBT) for the direct solution of third-order singular initial-value problems (IVPs). The proposed method uses a polynomial and two intermediate points to approximate the theoretical solution of third-order singular IVPs, resulting in a reasonable approximation within the integration interval. The method's essential features, including stability and convergence order, are analyzed. The proposed NPBT method is improved by using an embedding-like strategy that allows it to be executed in a variable step size mode in order to gain better efficiency. The effectiveness of the proposed method is assessed using various model problems. The approximate solution provided by the proposed NPBT method is more accurate than that of the existing methods utilized for comparison. This efficient solution positions NPBT as a good numerical method for integrating third-order singular IVP models in the fields of applied sciences and engineering.
{"title":"A new pair of block techniques for direct integration of third-order singular IVPs","authors":"Mufutau Ajani Rufai , Bruno Carpentieri , Higinio Ramos","doi":"10.1016/j.apnum.2024.06.013","DOIUrl":"10.1016/j.apnum.2024.06.013","url":null,"abstract":"<div><p>This paper proposes a new pair of block techniques (NPBT) for the direct solution of third-order singular initial-value problems (IVPs). The proposed method uses a polynomial and two intermediate points to approximate the theoretical solution of third-order singular IVPs, resulting in a reasonable approximation within the integration interval. The method's essential features, including stability and convergence order, are analyzed. The proposed NPBT method is improved by using an embedding-like strategy that allows it to be executed in a variable step size mode in order to gain better efficiency. The effectiveness of the proposed method is assessed using various model problems. The approximate solution provided by the proposed NPBT method is more accurate than that of the existing methods utilized for comparison. This efficient solution positions NPBT as a good numerical method for integrating third-order singular IVP models in the fields of applied sciences and engineering.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 222-231"},"PeriodicalIF":2.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.apnum.2024.06.010
Wenli Wang , Gangrong Qu , Caiqin Song , Youran Ge , Yuhan Liu
Image restoration is a large-scale discrete ill-posed problem, which can be transformed into a Tikhonov regularization problem that can approximate the original image. Kronecker product approximation is introduced into the Tikhonov regularization problem to produce an alternative problem of solving the generalized Sylvester matrix equation, reducing the scale of the image restoration problem. This paper considers solving this alternative problem by applying the conjugate gradient least squares (CGLS) method which has been demonstrated to be efficient and concise. The convergence of the CGLS method is analyzed, and it is demonstrated that the CGLS method converges to the least squares solution within the finite number of iteration steps. The effectiveness and superiority of the CGLS method are verified by numerical tests.
{"title":"Tikhonov regularization with conjugate gradient least squares method for large-scale discrete ill-posed problem in image restoration","authors":"Wenli Wang , Gangrong Qu , Caiqin Song , Youran Ge , Yuhan Liu","doi":"10.1016/j.apnum.2024.06.010","DOIUrl":"10.1016/j.apnum.2024.06.010","url":null,"abstract":"<div><p>Image restoration is a large-scale discrete ill-posed problem, which can be transformed into a Tikhonov regularization problem that can approximate the original image. Kronecker product approximation is introduced into the Tikhonov regularization problem to produce an alternative problem of solving the generalized Sylvester matrix equation, reducing the scale of the image restoration problem. This paper considers solving this alternative problem by applying the conjugate gradient least squares (CGLS) method which has been demonstrated to be efficient and concise. The convergence of the CGLS method is analyzed, and it is demonstrated that the CGLS method converges to the least squares solution within the finite number of iteration steps. The effectiveness and superiority of the CGLS method are verified by numerical tests.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 147-161"},"PeriodicalIF":2.8,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141398286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1016/j.apnum.2024.06.008
Arvet Pedas, Mikk Vikerpuur
We study the smoothness properties of solutions to nonlinear Volterra integral equations of the second kind on a bounded interval . The kernel of the integral operator of the underlying equation may have a diagonal singularity and a boundary singularity. Information about them is given through certain estimates. To characterize the regularity of solutions of such equations we show that the solution belongs to an appropriately weighted space of smooth functions on , with possible singularities of the derivatives of the solution at the left endpoint of the interval .
{"title":"On the regularity of solutions to a class of nonlinear Volterra integral equations with singularities","authors":"Arvet Pedas, Mikk Vikerpuur","doi":"10.1016/j.apnum.2024.06.008","DOIUrl":"10.1016/j.apnum.2024.06.008","url":null,"abstract":"<div><p>We study the smoothness properties of solutions to nonlinear Volterra integral equations of the second kind on a bounded interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span>. The kernel of the integral operator of the underlying equation may have a diagonal singularity and a boundary singularity. Information about them is given through certain estimates. To characterize the regularity of solutions of such equations we show that the solution belongs to an appropriately weighted space of smooth functions on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span>, with possible singularities of the derivatives of the solution at the left endpoint of the interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>b</mi><mo>]</mo></math></span>.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 176-187"},"PeriodicalIF":2.8,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141394239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1016/j.apnum.2024.06.009
Suayip Toprakseven , Natesan Srinivasan
In this article, we study the weak Galerkin finite element method to solve a class of a third order singularly perturbed convection-diffusion differential equations. Using some knowledge on the exact solution, we prove a robust uniform convergence of order on the layer-adapted meshes including Bakhvalov-Shishkin type, and Bakhvalov-type and almost optimal uniform error estimates of order on Shishkin-type mesh with respect to the perturbation parameter in the energy norm using high-order piecewise discontinuous polynomials of degree k. Here N is the number mesh intervals. We conduct numerical examples to support our theoretical results.
{"title":"An efficient weak Galerkin FEM for third-order singularly perturbed convection-diffusion differential equations on layer-adapted meshes","authors":"Suayip Toprakseven , Natesan Srinivasan","doi":"10.1016/j.apnum.2024.06.009","DOIUrl":"10.1016/j.apnum.2024.06.009","url":null,"abstract":"<div><p>In this article, we study the weak Galerkin finite element method to solve a class of a third order singularly perturbed convection-diffusion differential equations. Using some knowledge on the exact solution, we prove a robust uniform convergence of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on the layer-adapted meshes including Bakhvalov-Shishkin type, and Bakhvalov-type and almost optimal uniform error estimates of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>ln</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on Shishkin-type mesh with respect to the perturbation parameter in the energy norm using high-order piecewise discontinuous polynomials of degree <em>k</em>. Here <em>N</em> is the number mesh intervals. We conduct numerical examples to support our theoretical results.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 130-146"},"PeriodicalIF":2.8,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1016/j.apnum.2024.06.004
Linshuang He , Jun Guo , Minfu Feng
In this paper, we develop two discontinuous Galerkin (DG) finite element methods to solve the linear poroelasticity in the total pressure formulation, where displacement, fluid pressure, and total pressure are unknowns. The fully-discrete standard DG and conforming DG methods are presented based on the discontinuous approximations in space and the implicit Euler discretization in time. Compared to the standard DG method with penalty terms, the conforming DG method removes all stabilizers and maintains conforming finite element formulation by utilizing weak operators defined over discontinuous functions. The two methods provide locally conservative solutions and achieve locking-free properties in poroelasticity. We also derive the well-posedness and optimal a priori error estimates, which show that our methods satisfy parameter-robustness with respect to the infinitely large Lamé constant and the null-constrained specific storage coefficient. Several numerical experiments are performed to verify these theoretical results, even in heterogeneous porous media.
{"title":"Analysis of two discontinuous Galerkin finite element methods for the total pressure formulation of linear poroelasticity model","authors":"Linshuang He , Jun Guo , Minfu Feng","doi":"10.1016/j.apnum.2024.06.004","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.004","url":null,"abstract":"<div><p>In this paper, we develop two discontinuous Galerkin (DG) finite element methods to solve the linear poroelasticity in the total pressure formulation, where displacement, fluid pressure, and total pressure are unknowns. The fully-discrete standard DG and conforming DG methods are presented based on the discontinuous approximations in space and the implicit Euler discretization in time. Compared to the standard DG method with penalty terms, the conforming DG method removes all stabilizers and maintains conforming finite element formulation by utilizing weak operators defined over discontinuous functions. The two methods provide locally conservative solutions and achieve locking-free properties in poroelasticity. We also derive the well-posedness and optimal <em>a priori</em> error estimates, which show that our methods satisfy parameter-robustness with respect to the infinitely large Lamé constant and the null-constrained specific storage coefficient. Several numerical experiments are performed to verify these theoretical results, even in heterogeneous porous media.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 60-85"},"PeriodicalIF":2.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1016/j.apnum.2024.06.006
Mengmeng Liu , Tao Guo , Mahmoud A. Zaky , Ahmed S. Hendy
An alternating direction implicit (ADI) scheme is proposed to study the numerical solution of a three-dimensional integrodifferential equation (IDE) with multi-term tempered singular kernels. Firstly, we employ the Crank-Nicolson method and the product integral (PI) rule on a uniform grid to approximate the temporal derivative and the multi-term tempered-type integral terms, thus establishing a second-order temporal discrete scheme. Then, a second-order finite difference method is used for spatial discretization and combined with the ADI technique to improve computational efficiency. Based on regularity conditions, the stability and convergence analysis of the ADI scheme is given by the energy argument. Finally, numerical examples confirm the results of the theoretical analysis and show that the method is effective.
本文提出了一种交替方向隐式(ADI)方案,用于研究具有多期回火奇异内核的三维积分微分方程(IDE)的数值解法。首先,我们在均匀网格上采用 Crank-Nicolson 方法和积积分(PI)规则来逼近时域导数和多期回火型积分项,从而建立了一个二阶时域离散方案。然后,采用二阶有限差分法进行空间离散化,并结合 ADI 技术提高计算效率。基于正则条件,通过能量论证给出了 ADI 方案的稳定性和收敛性分析。最后,数值实例证实了理论分析的结果,并表明该方法是有效的。
{"title":"An accurate second-order ADI scheme for three-dimensional tempered evolution problems arising in heat conduction with memory","authors":"Mengmeng Liu , Tao Guo , Mahmoud A. Zaky , Ahmed S. Hendy","doi":"10.1016/j.apnum.2024.06.006","DOIUrl":"10.1016/j.apnum.2024.06.006","url":null,"abstract":"<div><p>An alternating direction implicit (ADI) scheme is proposed to study the numerical solution of a three-dimensional integrodifferential equation (IDE) with multi-term tempered singular kernels. Firstly, we employ the Crank-Nicolson method and the product integral (PI) rule on a uniform grid to approximate the temporal derivative and the multi-term tempered-type integral terms, thus establishing a second-order temporal discrete scheme. Then, a second-order finite difference method is used for spatial discretization and combined with the ADI technique to improve computational efficiency. Based on regularity conditions, the stability and convergence analysis of the ADI scheme is given by the energy argument. Finally, numerical examples confirm the results of the theoretical analysis and show that the method is effective.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 111-129"},"PeriodicalIF":2.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141391137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1016/j.apnum.2024.05.026
Muhammad Usman , Muhammad Hamid , Dianchen Lu , Zhengdi Zhang
The behavior of nonlinear dynamical systems arising in mathematical physics through numerical tools is a challenging task for researchers. In this context, an efficient semi-spectral method is proposed and applied to observe the robust solutions for the mathematical physics problems. Firstly, the space variable is approximated by the Vieta-Lucas polynomials and then the s-stage one-step method is applied to discretize the temporal variable which transfers the problem in the form . Novel operational matrices of integer order are developed to replace the spatial derivative terms presented in the discussed problem. Related theorems are included in the study to validate the approach mathematically. The proposed semi-spectral schemes convert the considered nonlinear problem to a system of linear algebraic equations which is easier to tackle. We also accomplish an investigation on the error bound and convergence to confirm the mathematical formulation of the computational algorithm. To show the accuracy and effectiveness of the suggested computational method numerous test problems, such as the advection-diffusion problem, generalized Burger-Huxley, sine-Gordon, and modified KdV–Burgers’ equations are considered. An inclusive comparative examination demonstrates the currently suggested computational method in terms of credibility, accuracy, and reliability. Moreover, the coupling of the spectral method with the fourth-order Runge-Kutta method seems outstanding to handle the nonlinear problem to examine the precise smooth and non-smooth solutions of physical problems. The computational order of convergence (COC) is computed numerically through numerous simulations of the proposed schemes. It is found that the proposed schemes are in exponential order of convergence in the spatial direction and the COC in the temporal direction validates the studies in the literature.
{"title":"Innovative coupling of s-stage one-step and spectral methods for non-smooth solutions of nonlinear problems","authors":"Muhammad Usman , Muhammad Hamid , Dianchen Lu , Zhengdi Zhang","doi":"10.1016/j.apnum.2024.05.026","DOIUrl":"10.1016/j.apnum.2024.05.026","url":null,"abstract":"<div><p>The behavior of nonlinear dynamical systems arising in mathematical physics through numerical tools is a challenging task for researchers. In this context, an efficient semi-spectral method is proposed and applied to observe the robust solutions for the mathematical physics problems. Firstly, the space variable is approximated by the Vieta-Lucas polynomials and then the <em>s</em>-stage one-step method is applied to discretize the temporal variable which transfers the problem in the form <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><msup><mrow><mi>C</mi></mrow><mi>n</mi></msup><mo>+</mo><mstyle><mi>Δ</mi></mstyle><mi>t</mi><mi>ϕ</mi><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mi>C</mi></mrow><mi>n</mi></msup><mo>,</mo><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mi>n</mi></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>. Novel operational matrices of integer order are developed to replace the spatial derivative terms presented in the discussed problem. Related theorems are included in the study to validate the approach mathematically. The proposed semi-spectral schemes convert the considered nonlinear problem to a system of linear algebraic equations which is easier to tackle. We also accomplish an investigation on the error bound and convergence to confirm the mathematical formulation of the computational algorithm. To show the accuracy and effectiveness of the suggested computational method numerous test problems, such as the advection-diffusion problem, generalized Burger-Huxley, sine-Gordon, and modified KdV–Burgers’ equations are considered. An inclusive comparative examination demonstrates the currently suggested computational method in terms of credibility, accuracy, and reliability. Moreover, the coupling of the spectral method with the fourth-order Runge-Kutta method seems outstanding to handle the nonlinear problem to examine the precise smooth and non-smooth solutions of physical problems. The computational order of convergence (COC) is computed numerically through numerous simulations of the proposed schemes. It is found that the proposed schemes are in exponential order of convergence in the spatial direction and the COC in the temporal direction validates the studies in the literature.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 329-351"},"PeriodicalIF":2.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141395881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.apnum.2024.05.025
Pep Mulet , Juan Ruiz-Álvarez , Chi-Wang Shu , Dionisio F. Yáñez
The weighted essentially non-oscillatory technique using a stencil of 2r points (WENO-2r) is an interpolatory method that consists in obtaining a higher approximation order from the non-linear combination of interpolants of nodes. The result is an interpolant of order 2r at the smooth parts and order when an isolated discontinuity falls at any grid interval of the large stencil except at the central one. Recently, a new WENO method based on Aitken-Neville's algorithm has been designed for interpolation of equally spaced data at the mid-points and presents progressive order of accuracy close to discontinuities. This paper is devoted to constructing a general progressive WENO method for non-necessarily uniformly spaced data and several variables interpolating in any point of the central interval. Also, we provide explicit formulas for linear and non-linear weights and prove the order obtained. Finally, some numerical experiments are presented to check the theoretical results.
{"title":"A non-separable progressive multivariate WENO-2r point value","authors":"Pep Mulet , Juan Ruiz-Álvarez , Chi-Wang Shu , Dionisio F. Yáñez","doi":"10.1016/j.apnum.2024.05.025","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.05.025","url":null,"abstract":"<div><p>The weighted essentially non-oscillatory technique using a stencil of 2<em>r</em> points (WENO-2<em>r</em>) is an interpolatory method that consists in obtaining a higher approximation order from the non-linear combination of interpolants of <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> nodes. The result is an interpolant of order 2<em>r</em> at the smooth parts and order <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> when an isolated discontinuity falls at any grid interval of the large stencil except at the central one. Recently, a new WENO method based on Aitken-Neville's algorithm has been designed for interpolation of equally spaced data at the mid-points and presents progressive order of accuracy close to discontinuities. This paper is devoted to constructing a general progressive WENO method for non-necessarily uniformly spaced data and several variables interpolating in any point of the central interval. Also, we provide explicit formulas for linear and non-linear weights and prove the order obtained. Finally, some numerical experiments are presented to check the theoretical results.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 26-47"},"PeriodicalIF":2.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001399/pdfft?md5=9095bb1320e9de7aaba4607ca987adba&pid=1-s2.0-S0168927424001399-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.apnum.2024.06.007
Yuyu He , Hongtao Chen , Bolin Chen
In this paper, we develop efficient compact difference schemes for the coupled nonlinear Schrödinger-KdV (CNLS-KdV) equations to conserve all the physical invariants, namely, the energy of oscillations, the number of plasmon, the number of particle and the momentum. By combining the exponential scalar auxiliary variable (E-SAV) approach, we reconstruct the original CNLS-KdV equations and adopt the compact difference method and Crank-Nicolson method to develop energy stable scheme. The E-SAV compact difference scheme preserves the total energy and the number of particle. We further introduce two Lagrange multipliers for the E-SAV reformulation system to develop compact difference scheme, which preserves exactly the number of plasmon and the momentum. At each time step for the second scheme, we only need to solve linear systems with constant coefficients and nonlinear quadratic algebraic equations which can be efficiently solved by Newton's iteration. Numerical experiments are given to show the effectiveness, accuracy and performance of the proposed schemes.
{"title":"Physical invariants-preserving compact difference schemes for the coupled nonlinear Schrödinger-KdV equations","authors":"Yuyu He , Hongtao Chen , Bolin Chen","doi":"10.1016/j.apnum.2024.06.007","DOIUrl":"10.1016/j.apnum.2024.06.007","url":null,"abstract":"<div><p>In this paper, we develop efficient compact difference schemes for the coupled nonlinear Schrödinger-KdV (CNLS-KdV) equations to conserve all the physical invariants, namely, the energy of oscillations, the number of plasmon, the number of particle and the momentum. By combining the exponential scalar auxiliary variable (E-SAV) approach, we reconstruct the original CNLS-KdV equations and adopt the compact difference method and Crank-Nicolson method to develop energy stable scheme. The E-SAV compact difference scheme preserves the total energy and the number of particle. We further introduce two Lagrange multipliers for the E-SAV reformulation system to develop compact difference scheme, which preserves exactly the number of plasmon and the momentum. At each time step for the second scheme, we only need to solve linear systems with constant coefficients and nonlinear quadratic algebraic equations which can be efficiently solved by Newton's iteration. Numerical experiments are given to show the effectiveness, accuracy and performance of the proposed schemes.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 162-175"},"PeriodicalIF":2.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141399769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}