Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons最新文献
Pub Date : 1997-01-01DOI: 10.1163/092996397750131937
N. Clerc, J. Puizillout, C. Ducreux
The possibility for Alverine to change the activity of primary afferent neurons was investigated in rabbit nodose ganglion in vitro. Alverine, applied by pressure ejection or by superfusion, depolarized 92% of the C-type neurons and had no effect on the membrane potential A-type neurons. These results were not correlated with the values of input resistances which could be unchanged, increased or decreased. Alverine induces a strong increase (up to 100%) in the duration of the action potentials, due to a decrease of the voltage-dependent outward K + current. Using a higher dose, this effect is followed by an important decrease in the amplitude of the action potentials, resulting in a change of the full somatic spike into a smaller axonic one, called an 'A spike'. The application of tetrodotoxin (TTX 10 -6 M) revealed the presence of a TTX-resistant component. Alverine decreased the amplitude and increased the duration of this component, which depends on Ca 2+ channels as it persists in Na + reduced Krebs solution. Some C-neurons in the nodose ganglion have a slow after-hyperpolarization following the fast one; Alverine completely suppresses the slow after-hyperpolarization. Voltage-clamp experiments showed that Alverine has no immediate effect on the inward currents but progressively decreased the late potassium outward currents, which were maximal at positive membrane potentials. It is concluded that Alverine has powerful effects on different g Na , g K and g Ca conductances of the vagal afferent neurons. Depending on the doses injected, Alverine has excitatory or inhibitory influences on these visceral afferents. If the same channel equipment is present at the terminal level, Alverine can positively or negatively affect the synaptic transmission of vagal afferents in the nucleus of the solitary tract.
{"title":"Effects of Alverine on electrical properties of vagal afferent neurons in isolated rabbit nodose ganglion","authors":"N. Clerc, J. Puizillout, C. Ducreux","doi":"10.1163/092996397750131937","DOIUrl":"https://doi.org/10.1163/092996397750131937","url":null,"abstract":"The possibility for Alverine to change the activity of primary afferent neurons was investigated in rabbit nodose ganglion in vitro. Alverine, applied by pressure ejection or by superfusion, depolarized 92% of the C-type neurons and had no effect on the membrane potential A-type neurons. These results were not correlated with the values of input resistances which could be unchanged, increased or decreased. Alverine induces a strong increase (up to 100%) in the duration of the action potentials, due to a decrease of the voltage-dependent outward K + current. Using a higher dose, this effect is followed by an important decrease in the amplitude of the action potentials, resulting in a change of the full somatic spike into a smaller axonic one, called an 'A spike'. The application of tetrodotoxin (TTX 10 -6 M) revealed the presence of a TTX-resistant component. Alverine decreased the amplitude and increased the duration of this component, which depends on Ca 2+ channels as it persists in Na + reduced Krebs solution. Some C-neurons in the nodose ganglion have a slow after-hyperpolarization following the fast one; Alverine completely suppresses the slow after-hyperpolarization. Voltage-clamp experiments showed that Alverine has no immediate effect on the inward currents but progressively decreased the late potassium outward currents, which were maximal at positive membrane potentials. It is concluded that Alverine has powerful effects on different g Na , g K and g Ca conductances of the vagal afferent neurons. Depending on the doses injected, Alverine has excitatory or inhibitory influences on these visceral afferents. If the same channel equipment is present at the terminal level, Alverine can positively or negatively affect the synaptic transmission of vagal afferents in the nucleus of the solitary tract.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"143-157"},"PeriodicalIF":0.0,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750131937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64533174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1997-01-01DOI: 10.1163/092996397750131964
V. Lebedev, A. Moisseeva, G. Akoev, L. Kolosova, O. V. Riabchikova
The effect of transcranial electrical stimulation at analgesic regimen on regeneration of the rat sciatic nerve after transection and microsurgical suture was studied. Electroanalgesia was found to promote the regenerative outgrowth of the injured nerve fibers, that was manifested in acceleration of foot reinnervation with efferent and afferent nerve fibers by an average of 30 and 25%, respectively. Moreover, electrical stimulation was favorable for the better recovery of the functional properties of the damaged afferents at 9 months after surgery. The involvement of endogenous opioid peptides in regeneration of the peripheral nerves is discussed.
{"title":"Electrophysiological study of the effect of transcranial electrical stimulation on the functional recovery of the damaged sciatic nerve in the rat","authors":"V. Lebedev, A. Moisseeva, G. Akoev, L. Kolosova, O. V. Riabchikova","doi":"10.1163/092996397750131964","DOIUrl":"https://doi.org/10.1163/092996397750131964","url":null,"abstract":"The effect of transcranial electrical stimulation at analgesic regimen on regeneration of the rat sciatic nerve after transection and microsurgical suture was studied. Electroanalgesia was found to promote the regenerative outgrowth of the injured nerve fibers, that was manifested in acceleration of foot reinnervation with efferent and afferent nerve fibers by an average of 30 and 25%, respectively. Moreover, electrical stimulation was favorable for the better recovery of the functional properties of the damaged afferents at 9 months after surgery. The involvement of endogenous opioid peptides in regeneration of the peripheral nerves is discussed.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"177-183"},"PeriodicalIF":0.0,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750131964","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64533259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1997-01-01DOI: 10.1163/092996397750132008
W. Grampp, S. Theander
A previously unnoticed outward membrane current has been identified, characterized and specified as a so-called A-current in the slowly and rapidly adapting lobster stretch receptor neurone. In both cells the current was, after blockage of a tetrodotoxin-sensitive Na + current and a tetraethylammonium- and 4-aminopyridine-sensitive delayed rectifier current, seen to activate fully within about 25 ms of square-shaped depolarizations beyond voltage levels of -40 to -30 mV and, then, to inactivate completely with a (voltage independent, within the voltage span under observation) time constant of 110 ms. The A-currents of rapidly and slowly adapting receptors were noticed to differ significantly from each other in that the A-current of the rapidly adapting cell is activated, and inactivated, at 10-15 mV more negative voltage levels than the A-current of the slowly adapting cell. Also, the maximum permeability of the A-channel system appeared to be distinctly larger in the rapidly than in the slowly adapting cell. Both of these circumstances were able to explain why, at a given level of membrane depolarization, a markedly stronger A-current is activated in the rapidly than in the slowly adapting cell. On the basis of experimental data it was possible to formulate a mathematical A-current description which was incorporated into a previously published model of the lobster stretch receptor neurone. Using this model, evidence was obtained that the A-current may play a functionally significant role (in the rapidly adapting cell) by increasing the speed of action potential repolarization and thereby enhancing the cell's dynamic stimulus sensitivity.
{"title":"Properties of an A-current in slowly and rapidly adapting stretch receptor neurones of lobster","authors":"W. Grampp, S. Theander","doi":"10.1163/092996397750132008","DOIUrl":"https://doi.org/10.1163/092996397750132008","url":null,"abstract":"A previously unnoticed outward membrane current has been identified, characterized and specified as a so-called A-current in the slowly and rapidly adapting lobster stretch receptor neurone. In both cells the current was, after blockage of a tetrodotoxin-sensitive Na + current and a tetraethylammonium- and 4-aminopyridine-sensitive delayed rectifier current, seen to activate fully within about 25 ms of square-shaped depolarizations beyond voltage levels of -40 to -30 mV and, then, to inactivate completely with a (voltage independent, within the voltage span under observation) time constant of 110 ms. The A-currents of rapidly and slowly adapting receptors were noticed to differ significantly from each other in that the A-current of the rapidly adapting cell is activated, and inactivated, at 10-15 mV more negative voltage levels than the A-current of the slowly adapting cell. Also, the maximum permeability of the A-channel system appeared to be distinctly larger in the rapidly than in the slowly adapting cell. Both of these circumstances were able to explain why, at a given level of membrane depolarization, a markedly stronger A-current is activated in the rapidly than in the slowly adapting cell. On the basis of experimental data it was possible to formulate a mathematical A-current description which was incorporated into a previously published model of the lobster stretch receptor neurone. Using this model, evidence was obtained that the A-current may play a functionally significant role (in the rapidly adapting cell) by increasing the speed of action potential repolarization and thereby enhancing the cell's dynamic stimulus sensitivity.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"211-227"},"PeriodicalIF":0.0,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750132008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64533367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1997-01-01DOI: 10.1163/092996397750131892
K. Steen, P. Reeh, D. Stefanidis
The effects of acetylsalicylic acid (ASA) and of salicylic acid (SA) on pH-induced nociceptor excitation were investigated in a rat skin-saphenous nerve preparation in vitro, where isolated receptive fields of identified single nerve fibers were superfused at the corium side with controlled solutions to test their chemosensitivity. A total of 133 unmyelinated mechano-heat-sensitive ('polymodal') C-fibers were superfused with an acidic solution (CO2-saturated synthetic interstitial fluid; pH 6.1) for at least 10 min. If fibers responded to the acid pH (n=89; 67%), ASA or SA was added after 10 min for a 10 min period in various concentrations (ASA: 10-5 up to 10-3 M; SA: 10-7 up to 10-3 M), and the pH stimulation was continued for at least another 15 min. In most cases, only one substance was applied at one concentration per fiber. A bell-shaped dose-response curve of reversible, weak effects on pH-induced discharge resulted from SA, with a maximum effect at 10-5 M (14% suppression, n=16, P<0.01); at 10-3 M an excitatory action of SA in acidic solution became apparent (17% increase in discharge, n=9, P= NS). The application of freshly dissolved ASA led to a linear dose-response curve, with a significant reduction in discharge rate (10-4 M: 12.4%, n=11, P<0.02; 10-3 M: 42%, n=10, P<0.03). The major reduction was irreversible within at least 26 min of wash-out. Before and after each experiment, the threshold to punctuate mechanical stimulation (von Frey) was determined and found not to be significantly altered with both ASA and SA. Plasma concentrations in the 10-4 M range are normally reached with therapeutic ASA doses and much higher concentrations have to be expected in acidic tissues. Our results may, thus, help to explain aspirin's antinociceptive action. The role of prostaglandin synthesis inhibition is discussed.
{"title":"Acetylsalicylic acid reduces pH-induced excitation of rat cutaneous nociceptors in vitro","authors":"K. Steen, P. Reeh, D. Stefanidis","doi":"10.1163/092996397750131892","DOIUrl":"https://doi.org/10.1163/092996397750131892","url":null,"abstract":"The effects of acetylsalicylic acid (ASA) and of salicylic acid (SA) on pH-induced nociceptor excitation were investigated in a rat skin-saphenous nerve preparation in vitro, where isolated receptive fields of identified single nerve fibers were superfused at the corium side with controlled solutions to test their chemosensitivity. A total of 133 unmyelinated mechano-heat-sensitive ('polymodal') C-fibers were superfused with an acidic solution (CO2-saturated synthetic interstitial fluid; pH 6.1) for at least 10 min. If fibers responded to the acid pH (n=89; 67%), ASA or SA was added after 10 min for a 10 min period in various concentrations (ASA: 10-5 up to 10-3 M; SA: 10-7 up to 10-3 M), and the pH stimulation was continued for at least another 15 min. In most cases, only one substance was applied at one concentration per fiber. A bell-shaped dose-response curve of reversible, weak effects on pH-induced discharge resulted from SA, with a maximum effect at 10-5 M (14% suppression, n=16, P<0.01); at 10-3 M an excitatory action of SA in acidic solution became apparent (17% increase in discharge, n=9, P= NS). The application of freshly dissolved ASA led to a linear dose-response curve, with a significant reduction in discharge rate (10-4 M: 12.4%, n=11, P<0.02; 10-3 M: 42%, n=10, P<0.03). The major reduction was irreversible within at least 26 min of wash-out. Before and after each experiment, the threshold to punctuate mechanical stimulation (von Frey) was determined and found not to be significantly altered with both ASA and SA. Plasma concentrations in the 10-4 M range are normally reached with therapeutic ASA doses and much higher concentrations have to be expected in acidic tissues. Our results may, thus, help to explain aspirin's antinociceptive action. The role of prostaglandin synthesis inhibition is discussed.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"77-94"},"PeriodicalIF":0.0,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750131892","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64533556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1997-01-01DOI: 10.1163/092996397750131928
Ai-Qing Zhu, S. Terashima
Mechanical pressure (P) and touch (M) neurons, two types of slowly adapting neurons, can be distinguished in the trigeminal ganglion of crotaline snakes, Trimeresurus flavoviridis, by their electrophysiological membrane properties. Intracellular stimulation and the recording of the responses from P and M neurons in vivo was performed with microelectrodes. The characteristics of the receptive field (RF) of both types of neurons were examined. P neurons had a much larger RF size and a higher mechanical threshold than those of M neurons. Both of them responded with discharges to mechanical stimulation. The active and passive electrophysiological membrane properties were measured from nine P and 18 M neurons. The active membrane properties of P neurons showed a larger amplitude and longer duration of action potential, a larger after-hyperpolarization with a longer duration to half-decay, and a higher electric threshold in response to intracellularly injected depolarizing current than M neurons. The passive membrane properties of P neurons showed a higher input resistance, much longer time constant, and larger capacitance than M neurons. The rebound spike which responded to injecting sufficient hyperpolarizing current was sometimes observed, and had a longer latency in P neurons than M neurons. These results indicated that some electrophysiological membrane properties of primary sensory neurons are dependent on their sensory modalities.
{"title":"The characteristics of slowly adapting mechanical sensory neurons in the trigeminal ganglia of crotaline snakes","authors":"Ai-Qing Zhu, S. Terashima","doi":"10.1163/092996397750131928","DOIUrl":"https://doi.org/10.1163/092996397750131928","url":null,"abstract":"Mechanical pressure (P) and touch (M) neurons, two types of slowly adapting neurons, can be distinguished in the trigeminal ganglion of crotaline snakes, Trimeresurus flavoviridis, by their electrophysiological membrane properties. Intracellular stimulation and the recording of the responses from P and M neurons in vivo was performed with microelectrodes. The characteristics of the receptive field (RF) of both types of neurons were examined. P neurons had a much larger RF size and a higher mechanical threshold than those of M neurons. Both of them responded with discharges to mechanical stimulation. The active and passive electrophysiological membrane properties were measured from nine P and 18 M neurons. The active membrane properties of P neurons showed a larger amplitude and longer duration of action potential, a larger after-hyperpolarization with a longer duration to half-decay, and a higher electric threshold in response to intracellularly injected depolarizing current than M neurons. The passive membrane properties of P neurons showed a higher input resistance, much longer time constant, and larger capacitance than M neurons. The rebound spike which responded to injecting sufficient hyperpolarizing current was sometimes observed, and had a longer latency in P neurons than M neurons. These results indicated that some electrophysiological membrane properties of primary sensory neurons are dependent on their sensory modalities.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"129-141"},"PeriodicalIF":0.0,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750131928","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64533621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1997-01-01DOI: 10.1163/092996397750131865
O. Dick, Y. A. Bedrov, G. Akoev
We examine the hypothesis for mechanisms of temperature transduction in peripheral thermoreceptors and the question of their similarity or specificity in comparison with analogous mechanisms in thermosensitive neurons. The mechanisms are analyzed on the basis of the data obtained for both of the objects on the assumption that transduction mechanisms in thermoreceptors and thermosensitive neurons are similar. A correlation between the data enables us to suppose that among the processes of the cytoplasmic membrane (the Na + -K + pump and ionic channels) the mechanisms of active and passive transport through the endoplasmic reticulum membrane take part in temperature transduction. We describe the mathematical model including all the mechanisms and examine the question of the possibility to identify its parameters.
{"title":"On extension of the structure of the temperature transduction model in peripheral thermoreceptors","authors":"O. Dick, Y. A. Bedrov, G. Akoev","doi":"10.1163/092996397750131865","DOIUrl":"https://doi.org/10.1163/092996397750131865","url":null,"abstract":"We examine the hypothesis for mechanisms of temperature transduction in peripheral thermoreceptors and the question of their similarity or specificity in comparison with analogous mechanisms in thermosensitive neurons. The mechanisms are analyzed on the basis of the data obtained for both of the objects on the assumption that transduction mechanisms in thermoreceptors and thermosensitive neurons are similar. A correlation between the data enables us to suppose that among the processes of the cytoplasmic membrane (the Na + -K + pump and ionic channels) the mechanisms of active and passive transport through the endoplasmic reticulum membrane take part in temperature transduction. We describe the mathematical model including all the mechanisms and examine the question of the possibility to identify its parameters.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"33-42"},"PeriodicalIF":0.0,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750131865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64533068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.1163/092996397750131883
D. Borovikov, L. V. Borovikova, V. Ermishkin, S. Revenko
To study the features of ionic conductance system in termination of sensory units the responses of feline cutaneous A-β mechano-sensitive and C-fiber mechano-heat-sensitive (CMH) units to mechanical and heat stimuli were recorded in intact skin and under the action of subcutaneously applied tetrodotoxin (TTX). Both mechanical and thermal sensitivity of CMH units were not inhibited by 30 μM and in some units by 300 μM TTX, while the responses of A-β units to mechanical stimulation was eliminated by 3 μM TTX. Taking into account the data on low-frequency use-dependent inhibition of CMH unit termination by amine local anesthetics, the availability of TTX-resistant sodium channels in the somatic membrane of C-neurons liable to low-frequency use-dependent inhibition and the slow inactivation of these channels which corresponds to the requirements of mathematical simulation of spike initiation in C-fibers, our results are thought to indicate the presence of TTX-resistant sodium channels in the regenerative region of cutaneous afferent C-fibers.
{"title":"The resistance of cutaneous feline C-fiber mechano-heat-sensitive unit termination to tetrodotoxin and its possible relation to tetrodotoxin-resistant sodium channels","authors":"D. Borovikov, L. V. Borovikova, V. Ermishkin, S. Revenko","doi":"10.1163/092996397750131883","DOIUrl":"https://doi.org/10.1163/092996397750131883","url":null,"abstract":"To study the features of ionic conductance system in termination of sensory units the responses of feline cutaneous A-β mechano-sensitive and C-fiber mechano-heat-sensitive (CMH) units to mechanical and heat stimuli were recorded in intact skin and under the action of subcutaneously applied tetrodotoxin (TTX). Both mechanical and thermal sensitivity of CMH units were not inhibited by 30 μM and in some units by 300 μM TTX, while the responses of A-β units to mechanical stimulation was eliminated by 3 μM TTX. Taking into account the data on low-frequency use-dependent inhibition of CMH unit termination by amine local anesthetics, the availability of TTX-resistant sodium channels in the somatic membrane of C-neurons liable to low-frequency use-dependent inhibition and the slow inactivation of these channels which corresponds to the requirements of mathematical simulation of spike initiation in C-fibers, our results are thought to indicate the presence of TTX-resistant sodium channels in the regenerative region of cutaneous afferent C-fibers.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"61 1","pages":"65-75"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750131883","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64533118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons