Pub Date : 2025-11-01Epub Date: 2025-06-30DOI: 10.1177/00037028251349556
Shelly Kinney, Tae-Chun Park, Hannah Clubb, Paul Armstrong, Thomas Lübberstedt, M Paul Scott
The waxy gene of maize is a high value breeding target, but it is time consuming to separate waxy and wild-type kernels. A common method involves staining the endosperm with iodine. Near-infrared reflectance (NIR) spectroscopy has been used in several species including maize with success. A custom-built single kernel NIR spectroscopy instrument was used to scan 2880 individual kernels from 60 samples with a diversity of pedigrees, with both waxy, wild type, and heterozygous kernels represented. Chemical analysis was performed to classify the kernels with the waxy or wild type phenotypes. Linear discriminant analysis (LDA) was conducted to develop a prediction equation for single kernel NIR spectroscopy. The discriminant results showed that there was an 88% accuracy in predicting waxy kernels as waxy, and a 96% accuracy in predicting wild type kernels as wild type. A receiver operating characteristic (ROC) curve was determined to allow threshold adjustment to meet desired true positive or false negative rates. Thus, the prediction equation can be used in breeding programs to select for waxy kernels in an efficient and effective manner using a single kernel NIR instrument. This approach will benefit breeders of waxy corn by providing a rapid, automated non-destructive method for identification of waxy kernels in segregating breeding populations.
{"title":"Classification of Waxy Maize Kernels Using Single Kernel Near-Infrared Reflectance Spectroscopy.","authors":"Shelly Kinney, Tae-Chun Park, Hannah Clubb, Paul Armstrong, Thomas Lübberstedt, M Paul Scott","doi":"10.1177/00037028251349556","DOIUrl":"10.1177/00037028251349556","url":null,"abstract":"<p><p>The waxy gene of maize is a high value breeding target, but it is time consuming to separate waxy and wild-type kernels. A common method involves staining the endosperm with iodine. Near-infrared reflectance (NIR) spectroscopy has been used in several species including maize with success. A custom-built single kernel NIR spectroscopy instrument was used to scan 2880 individual kernels from 60 samples with a diversity of pedigrees, with both waxy, wild type, and heterozygous kernels represented. Chemical analysis was performed to classify the kernels with the waxy or wild type phenotypes. Linear discriminant analysis (LDA) was conducted to develop a prediction equation for single kernel NIR spectroscopy. The discriminant results showed that there was an 88% accuracy in predicting waxy kernels as waxy, and a 96% accuracy in predicting wild type kernels as wild type. A receiver operating characteristic (ROC) curve was determined to allow threshold adjustment to meet desired true positive or false negative rates. Thus, the prediction equation can be used in breeding programs to select for waxy kernels in an efficient and effective manner using a single kernel NIR instrument. This approach will benefit breeders of waxy corn by providing a rapid, automated non-destructive method for identification of waxy kernels in segregating breeding populations.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1597-1604"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144526203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-05-14DOI: 10.1177/00037028251334152
Friederike Münch, Benedikt Hauer, Ingo Breunig, Daniel Carl
Polymer films with a thickness in the two-digit micrometer range are coated with nanometer-thin oxide layers in roll-to-roll coating systems. The coating improves the properties of the film, such as gas or water permeation. Maintaining a sufficiently large coating thickness is crucial to ensure its barrier function; thus, inline quality control of the thickness is indispensable. For this purpose, we have developed a sensing principle that addresses specific absorption bands of the coating via a reflection measurement in the infrared spectral range. However, for thin and weakly absorbing polymer substrates, light is reflected not only by the coating and the surface of the polymer. Partly it is also transmitted and reflected by the backside of the film, leading to interference effects that significantly affect the measurement signal. As industrial films vary in thickness by several percent and their exact values are unknown, determining the thickness of an oxide coating is hindered. In this paper, we demonstrate an approach for measuring coating thickness on such varying polymer films by averaging the interferences obtained at multiple angles of incidence. Calculations and measurements on industrial film samples indicate the effectiveness of our approach. It produces results with nm precision and nm accuracy for a thickness in the range of 5-100 nm. Furthermore, we discuss a possible implementation of this approach in an inline measurement system by fulfilling its requirements, for example, versatility and compactness.
{"title":"Multi-Angle Averaging Approach for Measuring the Coating Thickness on Thin Transparent Polymer Films.","authors":"Friederike Münch, Benedikt Hauer, Ingo Breunig, Daniel Carl","doi":"10.1177/00037028251334152","DOIUrl":"10.1177/00037028251334152","url":null,"abstract":"<p><p>Polymer films with a thickness in the two-digit micrometer range are coated with nanometer-thin oxide layers in roll-to-roll coating systems. The coating improves the properties of the film, such as gas or water permeation. Maintaining a sufficiently large coating thickness is crucial to ensure its barrier function; thus, inline quality control of the thickness is indispensable. For this purpose, we have developed a sensing principle that addresses specific absorption bands of the coating via a reflection measurement in the infrared spectral range. However, for thin and weakly absorbing polymer substrates, light is reflected not only by the coating and the surface of the polymer. Partly it is also transmitted and reflected by the backside of the film, leading to interference effects that significantly affect the measurement signal. As industrial films vary in thickness by several percent and their exact values are unknown, determining the thickness of an oxide coating is hindered. In this paper, we demonstrate an approach for measuring coating thickness on such varying polymer films by averaging the interferences obtained at multiple angles of incidence. Calculations and measurements on industrial film samples indicate the effectiveness of our approach. It produces results with <math><mo>±</mo><mn>2</mn></math> nm precision and <math><mo>±</mo><mn>5</mn></math> nm accuracy for a thickness in the range of 5-100 nm. Furthermore, we discuss a possible implementation of this approach in an inline measurement system by fulfilling its requirements, for example, versatility and compactness.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1615-1624"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12569136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144075614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-06-26DOI: 10.1177/00037028251345774
Thomas G Mayerhöfer, Oleksii Ilchenko, Andrii Kutsyk, Jürgen Popp
Classical quantitative chemometrics based on absorbance spectra has been routinely performed for approximately 40 years. Since absorbance is a function of the absorption index, it is natural to extend chemometric methods to the refractive index function. This function, related to the absorption index via the Kramers--Kronig relations, is derived from corrections applied to absorbance spectra to ensure compliance with wave optics principles. In this note, we demonstrate that, at least in the quasi-thermodynamically ideal binary system of benzene and toluene, classical quantitative chemometrics performs better when based on refractive index spectra than when based on absorption index spectra. The primary reason for this difference is that the refractive index at a given wavenumber integrates all changes resulting from absorptions at higher wavenumbers. This property is particularly advantageous in non-absorbing regions, where absorption index spectra provide no information about the system's composition.
{"title":"Quantitative Chemometrics Using Refractive Index Spectra.","authors":"Thomas G Mayerhöfer, Oleksii Ilchenko, Andrii Kutsyk, Jürgen Popp","doi":"10.1177/00037028251345774","DOIUrl":"10.1177/00037028251345774","url":null,"abstract":"<p><p>Classical quantitative chemometrics based on absorbance spectra has been routinely performed for approximately 40 years. Since absorbance is a function of the absorption index, it is natural to extend chemometric methods to the refractive index function. This function, related to the absorption index via the Kramers--Kronig relations, is derived from corrections applied to absorbance spectra to ensure compliance with wave optics principles. In this note, we demonstrate that, at least in the quasi-thermodynamically ideal binary system of benzene and toluene, classical quantitative chemometrics performs better when based on refractive index spectra than when based on absorption index spectra. The primary reason for this difference is that the refractive index at a given wavenumber integrates all changes resulting from absorptions at higher wavenumbers. This property is particularly advantageous in non-absorbing regions, where absorption index spectra provide no information about the system's composition.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1659-1664"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144493783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-04-17DOI: 10.1177/00037028251332975
Lize Coetzee, Esa Jaatinen
This paper presents a novel analytical technique for evaluating fluorescence lifetimes excited by a nanosecond pulsed laser using a linearized rate equation approach that accounts for the incident pulse temporal distribution, an equivalent instrument response function, and non-exponential fluorescence decay which limits the application of traditional fluorescence lifetime techniques in stand-off applications. The approach is applied to model the fluorescence of a variety of pharmaceutical powders and phosphorescing samples exhibiting non-exponential decay and compared to results obtained with the maximum entropy method. Fluorescence lifetimes are found to be 3-5 ns, typical for organic fluorescent powders, and phosphorescence lifetimes were on the order of hundreds of nanoseconds. The approach also shows potential for determining the composition of mixed samples and can be readily extended to model increasingly complex scenarios with additional fluorescing or phosphorescing components.
{"title":"Determination of Laser-Induced Fluorescence Lifetimes Excited by Pulses of Comparable Duration.","authors":"Lize Coetzee, Esa Jaatinen","doi":"10.1177/00037028251332975","DOIUrl":"10.1177/00037028251332975","url":null,"abstract":"<p><p>This paper presents a novel analytical technique for evaluating fluorescence lifetimes excited by a nanosecond pulsed laser using a linearized rate equation approach that accounts for the incident pulse temporal distribution, an equivalent instrument response function, and non-exponential fluorescence decay which limits the application of traditional fluorescence lifetime techniques in stand-off applications. The approach is applied to model the fluorescence of a variety of pharmaceutical powders and phosphorescing samples exhibiting non-exponential decay and compared to results obtained with the maximum entropy method. Fluorescence lifetimes are found to be 3-5 ns, typical for organic fluorescent powders, and phosphorescence lifetimes were on the order of hundreds of nanoseconds. The approach also shows potential for determining the composition of mixed samples and can be readily extended to model increasingly complex scenarios with additional fluorescing or phosphorescing components.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1640-1651"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12569139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143955096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-06-18DOI: 10.1177/00037028251344294
Sreya Sarkar, Andreas Stumpf, Zhenqi Shi, Dawen Kou
In-line monitoring of continuous crystallization processes can provide real-time information about the polymorph composition, potentially providing a superior understanding and control of the crystallization kinetics throughout the process. Here, we present a case study using in-line Raman spectroscopy as a process analytical technology (PAT) tool to enable fast, in-situ, non-destructive, and quantitative measurement of complex polymorphic transitions during flow-induced continuous crystallization of a model compound, which has two main polymorphs only showing subtle differences in the fingerprint regions of their Raman spectra. Second derivative Raman spectra were used for qualitative monitoring of polymorph changes, and a Gaussian curve fitting method was developed and utilized for quantitative determinations of polymorph compositions in continuous crystallizations under an array of process conditions. This study illustrates the complex and dynamic nature of polymorph transitions during continuous crystallization under various process conditions as well as the ability of in-line Raman spectroscopy to monitor the process qualitatively and quantitatively in order to have greater understanding of the process design space and to avoid conditions that lead to undesired polymorphs in the crystallization process.
{"title":"In-Line Raman Spectroscopy for Polymorph Monitoring During Continuous Crystallization.","authors":"Sreya Sarkar, Andreas Stumpf, Zhenqi Shi, Dawen Kou","doi":"10.1177/00037028251344294","DOIUrl":"10.1177/00037028251344294","url":null,"abstract":"<p><p>In-line monitoring of continuous crystallization processes can provide real-time information about the polymorph composition, potentially providing a superior understanding and control of the crystallization kinetics throughout the process. Here, we present a case study using in-line Raman spectroscopy as a process analytical technology (PAT) tool to enable fast, in-situ, non-destructive, and quantitative measurement of complex polymorphic transitions during flow-induced continuous crystallization of a model compound, which has two main polymorphs only showing subtle differences in the fingerprint regions of their Raman spectra. Second derivative Raman spectra were used for qualitative monitoring of polymorph changes, and a Gaussian curve fitting method was developed and utilized for quantitative determinations of polymorph compositions in continuous crystallizations under an array of process conditions. This study illustrates the complex and dynamic nature of polymorph transitions during continuous crystallization under various process conditions as well as the ability of in-line Raman spectroscopy to monitor the process qualitatively and quantitatively in order to have greater understanding of the process design space and to avoid conditions that lead to undesired polymorphs in the crystallization process.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1563-1572"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144315835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-03-28DOI: 10.1177/00037028251327207
Ling Lin, Honghui Zeng, Shuo Wang, Kang Wang, Gang Li
The dynamic spectroscopic method, as a noninvasive blood component measurement method, currently uses spectrometers as the main measurement instrument. However, spectrometers have limited accuracy in measuring light intensity at each wavelength, which restricts the measurement accuracy of the dynamic spectrum method. In this paper, a combination of a multispectral camera and a spectrometer is utilized for the first time to measure spectral photoplethysmography (PPG) signals. Both the high amplitude resolution and high accuracy of the multispectral camera in terms of sampling values and the advantage of the spectrometer in terms of the number of wavelengths are exploited. According to the experimental data, this method effectively improves the measurement results. In particular, when measuring for hemoglobin, the mean absolute percentage error (MAPE) decreased by 25.3% and 22.9%, respectively compared with a single spectrometer and a multispectral camera. For platelet measurements, the MAPE decreased by 28.9% and 22.8%, respectively. For total bilirubin measurements, the MAPE decreased by 14.5 and 26.3%, respectively. It demonstrates that the noninvasive blood component measurement method of a combined multispectral camera and spectrometer can effectively reduce the interference of non-target components and improve measurement accuracy.
{"title":"Combining a Multispectral Camera and Spectrometer for Spectral Data Acquisition and Noninvasive Blood Composition Measurement.","authors":"Ling Lin, Honghui Zeng, Shuo Wang, Kang Wang, Gang Li","doi":"10.1177/00037028251327207","DOIUrl":"10.1177/00037028251327207","url":null,"abstract":"<p><p>The dynamic spectroscopic method, as a noninvasive blood component measurement method, currently uses spectrometers as the main measurement instrument. However, spectrometers have limited accuracy in measuring light intensity at each wavelength, which restricts the measurement accuracy of the dynamic spectrum method. In this paper, a combination of a multispectral camera and a spectrometer is utilized for the first time to measure spectral photoplethysmography (PPG) signals. Both the high amplitude resolution and high accuracy of the multispectral camera in terms of sampling values and the advantage of the spectrometer in terms of the number of wavelengths are exploited. According to the experimental data, this method effectively improves the measurement results. In particular, when measuring for hemoglobin, the mean absolute percentage error (MAPE) decreased by 25.3% and 22.9%, respectively compared with a single spectrometer and a multispectral camera. For platelet measurements, the MAPE decreased by 28.9% and 22.8%, respectively. For total bilirubin measurements, the MAPE decreased by 14.5 and 26.3%, respectively. It demonstrates that the noninvasive blood component measurement method of a combined multispectral camera and spectrometer can effectively reduce the interference of non-target components and improve measurement accuracy.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1583-1596"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143727444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-03-17DOI: 10.1177/00037028251318757
Nobuyasu Itoh
Raman microscopes are widely used in various fields and their spectral resolutions differ greatly depending on the system and optical components. Thus, it is important to evaluate the spectral resolution of Raman systems under measurement conditions. Although calcite is a crystal with a trigonal structure and its narrow peak at ∼1086 cm-1 has been used to evaluate the spectral resolution of Raman spectrometers, the peak width of calcite itself, ∼1.3 cm-1 at full width half-maximum (FWHM), is not negligible under high spectral resolution conditions. Because the calcite peak at ∼1086 cm-1 originates from symmetric stretching, which is a common vibration mode for carbonate salts, we examined strontium carbonate (SrCO3), barium carbonate (BaCO3), and lead carbonate (PbCO3) reagents to find a material having a narrower peak width than calcite. SrCO3, BaCO3, and PbCO3 peaks originating from symmetric stretching were observed at 1072, 1059, and 1054 cm-1, respectively, and their peak widths at FWHM (0.67, 0.92, and 1.09 cm-1, respectively) were narrower than that of calcite (1.36 cm-1). The narrow peak width of SrCO3 was strongly dependent on its purity, probably due to its high structural regularity, and the change in the peak width (FWHM) was only 0.12 cm-1 between 5 °C and 45 °C. Thus, we concluded that the high-purity SrCO3 peak at 1072 cm-1 was the narrowest peak of Raman scattering light under ambient conditions and is suitable for evaluating high spectral resolution for Raman spectrometers.
{"title":"High-Purity Strontium Carbonate Shows the Narrowest Peak Width of Raman Scattered Light.","authors":"Nobuyasu Itoh","doi":"10.1177/00037028251318757","DOIUrl":"10.1177/00037028251318757","url":null,"abstract":"<p><p>Raman microscopes are widely used in various fields and their spectral resolutions differ greatly depending on the system and optical components. Thus, it is important to evaluate the spectral resolution of Raman systems under measurement conditions. Although calcite is a crystal with a trigonal structure and its narrow peak at ∼1086 cm<sup>-1</sup> has been used to evaluate the spectral resolution of Raman spectrometers, the peak width of calcite itself, ∼1.3 cm<sup>-1</sup> at full width half-maximum (FWHM), is not negligible under high spectral resolution conditions. Because the calcite peak at ∼1086 cm<sup>-1</sup> originates from symmetric stretching, which is a common vibration mode for carbonate salts, we examined strontium carbonate (SrCO<sub>3</sub>), barium carbonate (BaCO<sub>3</sub>), and lead carbonate (PbCO<sub>3</sub>) reagents to find a material having a narrower peak width than calcite. SrCO<sub>3</sub>, BaCO<sub>3</sub>, and PbCO<sub>3</sub> peaks originating from symmetric stretching were observed at 1072, 1059, and 1054 cm<sup>-1</sup>, respectively, and their peak widths at FWHM (0.67, 0.92, and 1.09 cm<sup>-1</sup>, respectively) were narrower than that of calcite (1.36 cm<sup>-1</sup>). The narrow peak width of SrCO<sub>3</sub> was strongly dependent on its purity, probably due to its high structural regularity, and the change in the peak width (FWHM) was only 0.12 cm<sup>-1</sup> between 5 °C and 45 °C. Thus, we concluded that the high-purity SrCO<sub>3</sub> peak at 1072 cm<sup>-1</sup> was the narrowest peak of Raman scattering light under ambient conditions and is suitable for evaluating high spectral resolution for Raman spectrometers.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1652-1658"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-04-15DOI: 10.1177/00037028251329418
Brandon Demory, Jorge Arteaga, Sarah Sahota-Dhillon, Sayantani Ghosh, Tiziana Bond, Allan Chang
Fiber-based Raman spectroscopy enhances the Raman signal by maximizing the overlap of the optical field and the gas species. However, filling the hollow-core fiber (HCF) with gas requires time that is dependent on the fiber core diameter, fiber length, and pressure of the gas. At ambient pressure, the fiber gas uptake is driven by diffusion into the fiber ends, severely limiting the response time of the system. By laser drilling access holes to the core along the length of the fiber, the uptake time of the gas is reduced, improving the system response time. In this work, we study the carbon dioxide (CO2) sensor dynamics based on Raman signal intensity generated in HCFs. The signal intensity versus gas concentration is characterized by controlling the CO2 concentration in the surrounding environment of the fiber. Next, we characterize the gas uptake time in HCFs as a function of fiber length. Finally, we optimize the access hole configuration along the fiber, demonstrating reduced sensor uptake time by a factor of three.
{"title":"Enhanced Carbon Dioxide Uptake in Drilled Hollow Core Fibers for Raman Spectroscopy.","authors":"Brandon Demory, Jorge Arteaga, Sarah Sahota-Dhillon, Sayantani Ghosh, Tiziana Bond, Allan Chang","doi":"10.1177/00037028251329418","DOIUrl":"10.1177/00037028251329418","url":null,"abstract":"<p><p>Fiber-based Raman spectroscopy enhances the Raman signal by maximizing the overlap of the optical field and the gas species. However, filling the hollow-core fiber (HCF) with gas requires time that is dependent on the fiber core diameter, fiber length, and pressure of the gas. At ambient pressure, the fiber gas uptake is driven by diffusion into the fiber ends, severely limiting the response time of the system. By laser drilling access holes to the core along the length of the fiber, the uptake time of the gas is reduced, improving the system response time. In this work, we study the carbon dioxide (CO<sub>2</sub>) sensor dynamics based on Raman signal intensity generated in HCFs. The signal intensity versus gas concentration is characterized by controlling the CO<sub>2</sub> concentration in the surrounding environment of the fiber. Next, we characterize the gas uptake time in HCFs as a function of fiber length. Finally, we optimize the access hole configuration along the fiber, demonstrating reduced sensor uptake time by a factor of three.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1605-1614"},"PeriodicalIF":2.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143966191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-24DOI: 10.1177/00037028251394393
Fran Adar, John Rabolt, Changhao Liu, Isao Noda
Polyhydroxybutyrate hydroxyhexanoate (PHBHx) is a bio polymer that is manufactured and degraded by microbes. Because of the potential to replace polymers derived from petrochemicals with these materials, there is a high level of expectation for its commercial uses if its physical and chemical properties can be understood and controlled. Among other things these properties are determined by the polymer's morphology - that is its crystallinity, and orientation of both crystalline and amorphous phases. The focus on the Raman characteristics of the crystalline phase enables elucidation of the characteristics of the polymer experiencing dynamic crystallization under various conditions. In this article we will start by reviewing the changes in the Raman spectrum from an amorphous to a crystalline material in an isothermal crystallization study. In that study a correlation field splitting between a CH stretching band that interacts with the carbonyl group on the opposite chain in the unit cell was identified. Then we will show the polarized Raman spectra of single crystals which enable an explanation of the residual amorphous material seen in the spectra of single crystals. Using the information from the single crystal measurements we can then study the Raman behavior of spherulites and confirm the model that proposes an explanation for the appearance of rings in the polarized light microscope (PLM) images of some spherulites. The polarized Raman studies confirm that the crystal ribbons that grow along the radii are twisting about the growth direction. The 2D-COS analysis of the polarized spectra of spherulites suggest the presence of strain that has been proposed to induce the twisting.
{"title":"EXPRESS: Combining Polarization Analysis and Isothermal Crystallization Behavior Elucidated by Two-Dimensional Correlation Spectroscopy for Understanding the Crystallization Properties of Poly[(R)-3-Hydroxybutyrate-co-(R)-3-Hydroxyhexanoate.","authors":"Fran Adar, John Rabolt, Changhao Liu, Isao Noda","doi":"10.1177/00037028251394393","DOIUrl":"10.1177/00037028251394393","url":null,"abstract":"<p><p>Polyhydroxybutyrate hydroxyhexanoate (PHBHx) is a bio polymer that is manufactured and degraded by microbes. Because of the potential to replace polymers derived from petrochemicals with these materials, there is a high level of expectation for its commercial uses if its physical and chemical properties can be understood and controlled. Among other things these properties are determined by the polymer's morphology - that is its crystallinity, and orientation of both crystalline and amorphous phases. The focus on the Raman characteristics of the crystalline phase enables elucidation of the characteristics of the polymer experiencing dynamic crystallization under various conditions. In this article we will start by reviewing the changes in the Raman spectrum from an amorphous to a crystalline material in an isothermal crystallization study. In that study a correlation field splitting between a CH stretching band that interacts with the carbonyl group on the opposite chain in the unit cell was identified. Then we will show the polarized Raman spectra of single crystals which enable an explanation of the residual amorphous material seen in the spectra of single crystals. Using the information from the single crystal measurements we can then study the Raman behavior of spherulites and confirm the model that proposes an explanation for the appearance of rings in the polarized light microscope (PLM) images of some spherulites. The polarized Raman studies confirm that the crystal ribbons that grow along the radii are twisting about the growth direction. The 2D-COS analysis of the polarized spectra of spherulites suggest the presence of strain that has been proposed to induce the twisting.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251394393"},"PeriodicalIF":2.2,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145353558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-24DOI: 10.1177/00037028251394346
Whitney E Schuler, Paige K Williams, Zechariah B Kitzhaber, Caitlyn M English, Tammi L Richardson, Nikos Vitzilaios, Michael L Myrick
A small remote Raman sensor was used to measure the Raman scattering signal from clear, still water as a function of water depth (12 cm and 396 cm depth), sensor distance above the water surface (20-300 cm), and angle of incidence (0-80°) to the normal of the water surface. Under thick- and thin-sample conditions, the signal depends on either the inverse, or the inverse square, of sensor distance from the water surface, respectively. A model is derived that fits data for different sensor distances, water depths, and angles of incidence. Fits to the measured data are consistent with the known intensity of water Raman scattering and the specifications of the detection system. This manuscript provides a mathematical model that can be used to predict and evaluate the performance of remote sensors and can be expanded to account for differing experimental conditions.
{"title":"Pathlength, Altitude and Angle of Incidence Dependence of Remote Water Raman Scattering.","authors":"Whitney E Schuler, Paige K Williams, Zechariah B Kitzhaber, Caitlyn M English, Tammi L Richardson, Nikos Vitzilaios, Michael L Myrick","doi":"10.1177/00037028251394346","DOIUrl":"10.1177/00037028251394346","url":null,"abstract":"<p><p>A small remote Raman sensor was used to measure the Raman scattering signal from clear, still water as a function of water depth (12 cm and 396 cm depth), sensor distance above the water surface (20-300 cm), and angle of incidence (0-80°) to the normal of the water surface. Under thick- and thin-sample conditions, the signal depends on either the inverse, or the inverse square, of sensor distance from the water surface, respectively. A model is derived that fits data for different sensor distances, water depths, and angles of incidence. Fits to the measured data are consistent with the known intensity of water Raman scattering and the specifications of the detection system. This manuscript provides a mathematical model that can be used to predict and evaluate the performance of remote sensors and can be expanded to account for differing experimental conditions.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251394346"},"PeriodicalIF":2.2,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145353610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}