首页 > 最新文献

Applied Spectroscopy最新文献

英文 中文
Evaluation of Breast Cancer Gene Type 1 (BRCA1) Protein Levels in Cancer Tissue Using Surface-Enhanced Raman Spectroscopy. 使用表面增强拉曼光谱评估乳腺癌基因1型(BRCA1)蛋白在癌组织中的水平。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-05 DOI: 10.1177/00037028241297716
Ece Miser-Salihoğlu, Hasan İlhan, Uğur Tamer, Sevgi Akaydin

Raman spectroscopy is a chemical process that utilizes the interaction between light and matter to get significant insights into the structure or characteristics of matter. Raman spectroscopy techniques, such as quantitative evaluation, early diagnostic capabilities, and elucidation of the spectral properties of tissues, are excellent candidates for use in research. In cancer, changes in genes and proteins expressed by related genes are associated with a poor prognosis and aggressive tumor characteristics. Due to modifications and regulatory steps in protein translation, the results of the messenger RNA (mRNA) expression of genes may not correctly reflect the results of protein expression. For this reason, the mRNA and protein expressions of genes are studied in parallel in molecular studies on cancer. In our study, the breast cancer gene type 1 (BRCA1) gene, which is frequently studied in breast cancer and is relatively more difficult to measure by traditional methods due to its high molecular weight, was selected, and protein quantification was performed in tissue samples by Raman spectroscopy. With Raman spectroscopy, it is possible to obtain rapid and precise quantitative results even with a small amount of sample, so it is quite advantageous compared to traditional methods. In our study, we performed surface-enhanced Raman spectroscopy (SERS) to analyze the quantitative protein amount. SERS is a highly sensitive method for detecting compounds at low concentrations. For this purpose, magnetic nanoparticles modified with protein antibodies were used, and the target protein was withdrawn from the complex environment and transferred to an appropriate buffer environment. The calibration curve for BRCA1, which plots Raman intensity against concentration, was derived by calculating the average response reading from duplicate assays conducted under identical conditions. The BRCA1 protein levels of cells were determined from the regression curve of the BRCA1 protein. The relation between the concentration of BRCA1 protein and SERS spectrum intensity was determined to be logarithmic in the range of 300 µg·mL-1 to 292 ng·mL-1 (R2 = 0.9928, limit of detection = 10.41 µg·mL-1, and limit of quantitation = 31.24 µg·mL-1).

拉曼光谱是一种化学过程,它利用光和物质之间的相互作用来获得对物质结构或特征的重要见解。拉曼光谱技术,如定量评估,早期诊断能力和阐明组织的光谱特性,是在研究中使用的优秀候选人。在癌症中,相关基因表达的基因和蛋白的改变与不良预后和侵袭性肿瘤特征相关。由于蛋白质翻译过程中的修饰和调控步骤,基因的信使RNA (mRNA)表达结果可能不能正确反映蛋白质的表达结果。因此,在癌症的分子研究中,基因的mRNA和蛋白表达是并行研究的。我们的研究选择乳腺癌基因1型(BRCA1)基因,该基因在乳腺癌中研究较多,由于其分子量较大,传统方法测量难度较大。我们选择BRCA1基因,通过拉曼光谱对组织样品进行蛋白定量。利用拉曼光谱技术,即使在少量的样品中也可以获得快速、精确的定量结果,与传统方法相比具有很大的优势。在我们的研究中,我们使用表面增强拉曼光谱(SERS)来定量分析蛋白质的数量。SERS是一种检测低浓度化合物的高灵敏度方法。为此,利用蛋白抗体修饰的磁性纳米颗粒,将靶蛋白从复杂环境中取出,转移到合适的缓冲环境中。BRCA1的校准曲线,绘制拉曼强度与浓度的关系,是通过计算在相同条件下进行的重复检测的平均响应读数得出的。通过BRCA1蛋白回归曲线测定细胞的BRCA1蛋白水平。BRCA1蛋白浓度与SERS光谱强度在300µg·mL-1 ~ 292 ng·mL-1范围内呈对数关系(R2 = 0.9928,检出限= 10.41µg·mL-1,定量限= 31.24µg·mL-1)。
{"title":"Evaluation of Breast Cancer Gene Type 1 (BRCA1) Protein Levels in Cancer Tissue Using Surface-Enhanced Raman Spectroscopy.","authors":"Ece Miser-Salihoğlu, Hasan İlhan, Uğur Tamer, Sevgi Akaydin","doi":"10.1177/00037028241297716","DOIUrl":"https://doi.org/10.1177/00037028241297716","url":null,"abstract":"<p><p>Raman spectroscopy is a chemical process that utilizes the interaction between light and matter to get significant insights into the structure or characteristics of matter. Raman spectroscopy techniques, such as quantitative evaluation, early diagnostic capabilities, and elucidation of the spectral properties of tissues, are excellent candidates for use in research. In cancer, changes in genes and proteins expressed by related genes are associated with a poor prognosis and aggressive tumor characteristics. Due to modifications and regulatory steps in protein translation, the results of the messenger RNA (mRNA) expression of genes may not correctly reflect the results of protein expression. For this reason, the mRNA and protein expressions of genes are studied in parallel in molecular studies on cancer. In our study, the breast cancer gene type 1 (BRCA1) gene, which is frequently studied in breast cancer and is relatively more difficult to measure by traditional methods due to its high molecular weight, was selected, and protein quantification was performed in tissue samples by Raman spectroscopy. With Raman spectroscopy, it is possible to obtain rapid and precise quantitative results even with a small amount of sample, so it is quite advantageous compared to traditional methods. In our study, we performed surface-enhanced Raman spectroscopy (SERS) to analyze the quantitative protein amount. SERS is a highly sensitive method for detecting compounds at low concentrations. For this purpose, magnetic nanoparticles modified with protein antibodies were used, and the target protein was withdrawn from the complex environment and transferred to an appropriate buffer environment. The calibration curve for BRCA1, which plots Raman intensity against concentration, was derived by calculating the average response reading from duplicate assays conducted under identical conditions. The BRCA1 protein levels of cells were determined from the regression curve of the BRCA1 protein. The relation between the concentration of BRCA1 protein and SERS spectrum intensity was determined to be logarithmic in the range of 300 µg·mL<sup>-1</sup> to 292 ng·mL<sup>-1</sup> (<i>R</i><sup>2</sup> = 0.9928, limit of detection = 10.41 µg·mL<sup>-1</sup>, and limit of quantitation = 31.24 µg·mL<sup>-1</sup>).</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241297716"},"PeriodicalIF":2.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shortwave Infrared Hyperspectral Imaging to Detect Contaminants in the U.S. Food Supply. 短波红外高光谱成像检测美国食品供应中的污染物。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-04 DOI: 10.1177/00037028241301089
David M Malakauskas, Hongjian Ding, Ben P Berman, Nap Thantu, Kevin L Karem, Victoria M Gammino

The U.S. Food and Drug Administration (FDA) ensures the safety of the nation's food supply using sampling and laboratory analysis of imported and domestic foods. Accurate detection and identification of extraneous filth elements in inspected food samples is critical in producing evidence for regulatory decision-making. As part of ongoing efforts to increase the efficiency and accuracy of data collection, to better inform regulatory decision-making, scientists at the FDA have been exploring the application of emerging imaging technologies. To this end, we tested the ability of shortwave infrared (SWIR) hyperspectral image analysis to simultaneously detect and identify filth elements from a variety of chemically digested single- and multiple-ingredient food matrices. We tested five stored-product beetle species on a background of four different food matrix types. Our analyses successfully detected whole beetles and fragments as small as 0.65 mm in 95% of samples. All beetle species tested were accurately detected from the background matrices, and initial classification results show identification to genus. Our results show that SWIR spectral image analysis is a very promising technology for application in the detection and identification of filth elements in food products in a regulatory context and further development has the potential to increase analytical efficiency at FDA regulatory labs.

美国食品和药物管理局(FDA)通过对进口和国内食品进行抽样和实验室分析,确保国家食品供应的安全。准确检测和鉴定被检食品样品中的外来污染元素对于为监管决策提供证据至关重要。为了提高数据收集的效率和准确性,更好地为监管决策提供信息,FDA的科学家们一直在探索新兴成像技术的应用。为此,我们测试了短波红外(SWIR)高光谱图像分析同时检测和识别各种化学消化的单成分和多成分食品基质中的污染元素的能力。我们在四种不同食物基质的背景下对五种储藏品甲虫进行了测试。我们的分析成功地在95%的样品中检测到完整的甲虫和小至0.65毫米的碎片。从背景基质中准确地检出了所有的甲虫种类,初步分类结果为属。我们的研究结果表明,SWIR光谱图像分析是一种非常有前途的技术,应用于食品中污染元素的检测和鉴定,在监管背景下,进一步发展有可能提高FDA监管实验室的分析效率。
{"title":"Shortwave Infrared Hyperspectral Imaging to Detect Contaminants in the U.S. Food Supply.","authors":"David M Malakauskas, Hongjian Ding, Ben P Berman, Nap Thantu, Kevin L Karem, Victoria M Gammino","doi":"10.1177/00037028241301089","DOIUrl":"https://doi.org/10.1177/00037028241301089","url":null,"abstract":"<p><p>The U.S. Food and Drug Administration (FDA) ensures the safety of the nation's food supply using sampling and laboratory analysis of imported and domestic foods. Accurate detection and identification of extraneous filth elements in inspected food samples is critical in producing evidence for regulatory decision-making. As part of ongoing efforts to increase the efficiency and accuracy of data collection, to better inform regulatory decision-making, scientists at the FDA have been exploring the application of emerging imaging technologies. To this end, we tested the ability of shortwave infrared (SWIR) hyperspectral image analysis to simultaneously detect and identify filth elements from a variety of chemically digested single- and multiple-ingredient food matrices. We tested five stored-product beetle species on a background of four different food matrix types. Our analyses successfully detected whole beetles and fragments as small as 0.65 mm in 95% of samples. All beetle species tested were accurately detected from the background matrices, and initial classification results show identification to genus. Our results show that SWIR spectral image analysis is a very promising technology for application in the detection and identification of filth elements in food products in a regulatory context and further development has the potential to increase analytical efficiency at FDA regulatory labs.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241301089"},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time In Vivo Human Skin Testing Using a Handheld Fourier Transform Infrared Spectrometer with a Three-Bounce Two-Pass Attenuated Total Reflection Interface. 使用手持傅立叶变换红外光谱仪进行实时体内人体皮肤测试,该光谱仪具有三反弹两通道衰减全反射接口。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-04 DOI: 10.1177/00037028241298714
Samuel F Williams, John Chittock, Kirsty Brown, Linda J Kay, Michael J Cork, Simon G Danby

Attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FT-IR) is used to characterize a vast array of materials at the molecular level in various industry types. Here we compare the performance of a portable spectrometer with a novel three-bounce-two-pass (3B2P) ATR scanning interface to the same device with a standard one-bounce (1B) ATR, and to a benchtop spectrometer with a 10-bounce (10B) ATR, in ideal sample-interface conditions and an applied dermatological study setting. In both application settings, the benchtop 10B ATR interface showed the highest signal-to-noise ratio (SNR), however, the novel 3B2P produced a six-fold increase in the sensitivity of the portable spectrometer when analyzing isopropanol and showed the greatest consistency of SNR of all devices when analyzing isopropanol and in vivo skin samples. Spectral data were sourced from a recently undertaken dermatological study involving a cohort of 180 healthy, full-term babies, using both 1B and 3B2P interfaces. Use of the 3B2P interface resulted in a 55% greater successful high-quality spectrum collection rate, compared to the 1B, and showed significantly superior SNR at both observed study time points, i.e., birth (1B: 68.37; 3B2P: 77.37), and at four weeks (1B: 74.53; 3B2P: 80.22). The utility of ATR FT-IR spectrometers as a dermatological clinical tool was also exemplified here, by quantifying the moisture level of newborn skin. By gathering rich spectroscopic data on the molecular structure of the skin, this technique holds great promise for the quantification of skin disease-specific biomarkers.

衰减全反射(ATR)傅里叶变换红外光谱(FT-IR)用于在各种工业类型的分子水平上表征大量材料。在理想的样品界面条件和应用皮肤病学研究环境下,我们比较了具有新型三跳两通(3B2P) ATR扫描接口的便携式光谱仪与具有标准单跳(1B) ATR的同一设备以及具有10跳(10B) ATR的台式光谱仪的性能。在这两种应用设置中,台式10B ATR接口显示出最高的信噪比(SNR),然而,新型3B2P在分析异丙醇时使便携式光谱仪的灵敏度提高了6倍,并且在分析异丙醇和体内皮肤样品时显示出所有设备中信噪比的最大一致性。光谱数据来自最近开展的一项皮肤病学研究,涉及180名健康足月婴儿,使用1B和3B2P接口。与1B相比,使用3B2P接口的成功高质量频谱采集率提高了55%,并且在两个观察研究时间点(即出生时间点)都显示出明显优越的信噪比(1B: 68.37;3B2P: 77.37),四周时(1B: 74.53;3 b2p: 80.22)。通过量化新生儿皮肤的水分水平,ATR FT-IR光谱仪作为皮肤科临床工具的效用也得到了例证。通过收集皮肤分子结构的丰富光谱数据,该技术对皮肤病特异性生物标志物的量化具有很大的希望。
{"title":"Real-Time In Vivo Human Skin Testing Using a Handheld Fourier Transform Infrared Spectrometer with a Three-Bounce Two-Pass Attenuated Total Reflection Interface.","authors":"Samuel F Williams, John Chittock, Kirsty Brown, Linda J Kay, Michael J Cork, Simon G Danby","doi":"10.1177/00037028241298714","DOIUrl":"https://doi.org/10.1177/00037028241298714","url":null,"abstract":"<p><p>Attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FT-IR) is used to characterize a vast array of materials at the molecular level in various industry types. Here we compare the performance of a portable spectrometer with a novel three-bounce-two-pass (3B2P) ATR scanning interface to the same device with a standard one-bounce (1B) ATR, and to a benchtop spectrometer with a 10-bounce (10B) ATR, in ideal sample-interface conditions and an applied dermatological study setting. In both application settings, the benchtop 10B ATR interface showed the highest signal-to-noise ratio (SNR), however, the novel 3B2P produced a six-fold increase in the sensitivity of the portable spectrometer when analyzing isopropanol and showed the greatest consistency of SNR of all devices when analyzing isopropanol and in vivo skin samples. Spectral data were sourced from a recently undertaken dermatological study involving a cohort of 180 healthy, full-term babies, using both 1B and 3B2P interfaces. Use of the 3B2P interface resulted in a 55% greater successful high-quality spectrum collection rate, compared to the 1B, and showed significantly superior SNR at both observed study time points, i.e., birth (1B: 68.37; 3B2P: 77.37), and at four weeks (1B: 74.53; 3B2P: 80.22). The utility of ATR FT-IR spectrometers as a dermatological clinical tool was also exemplified here, by quantifying the moisture level of newborn skin. By gathering rich spectroscopic data on the molecular structure of the skin, this technique holds great promise for the quantification of skin disease-specific biomarkers.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241298714"},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman Spectroscopy as an Effective Tool for Assessment of Structural Quality and Polymorphism of Gallium Oxide (Ga2O3) Thin Films. 拉曼光谱是评估氧化镓(Ga2O3)薄膜结构质量和多态性的有效工具。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-01 Epub Date: 2024-08-02 DOI: 10.1177/00037028241267925
Giulia Spaggiari, Roberto Fornari, Piero Mazzolini, Francesco Mezzadri, Antonella Parisini, Matteo Bosi, Luca Seravalli, Francesco Pattini, Maura Pavesi, Andrea Baraldi, Stefano Rampino, Anna Sacchi, Danilo Bersani

Raman spectroscopy, a versatile and nondestructive technique, was employed to develop a methodology for gallium oxide (Ga2O3) phase detection and identification. This methodology combines experimental results with a comprehensive literature survey. The established Raman approach offers a powerful tool for nondestructively assessing phase purity and detecting secondary phases in Ga2O3 thin films. X-ray diffraction was used for comparison, highlighting the complementary information that these techniques may provide for Ga2O3 characterization. Few case studies are included to demonstrate the usefulness of the proposed spectroscopic approach, namely the impact of deposition conditions such as metal-organic vapor-phase epitaxy and pulsed electron deposition (PED), and extrinsic elements provided during growth (Sn in the case of PED) on Ga2O3 polymorphism. In conclusion, it is shown that Raman spectroscopy offers a quick, reliable, and nondestructive high-resolution approach for Ga2O3 thin film characterization, especially concerning phase detection and crystalline quality.

拉曼光谱是一种多功能的无损技术,它被用来开发一种氧化镓(Ga2O3)相检测和识别方法。该方法结合了实验结果和全面的文献调查。成熟的拉曼方法为无损评估相纯度和检测 Ga2O3 薄膜中的次生相提供了强大的工具。X 射线衍射法用于比较,突出了这些技术可为 Ga2O3 表征提供的互补信息。研究还包括一些案例研究,以证明所建议的光谱方法的实用性,即金属有机气相外延和脉冲电子沉积(PED)等沉积条件以及生长过程中提供的外在元素(PED 中为 Sn)对 Ga2O3 多态性的影响。总之,拉曼光谱为 Ga2O3 薄膜表征提供了一种快速、可靠和无损的高分辨率方法,特别是在相检测和结晶质量方面。
{"title":"Raman Spectroscopy as an Effective Tool for Assessment of Structural Quality and Polymorphism of Gallium Oxide (Ga<sub>2</sub>O<sub>3</sub>) Thin Films.","authors":"Giulia Spaggiari, Roberto Fornari, Piero Mazzolini, Francesco Mezzadri, Antonella Parisini, Matteo Bosi, Luca Seravalli, Francesco Pattini, Maura Pavesi, Andrea Baraldi, Stefano Rampino, Anna Sacchi, Danilo Bersani","doi":"10.1177/00037028241267925","DOIUrl":"10.1177/00037028241267925","url":null,"abstract":"<p><p>Raman spectroscopy, a versatile and nondestructive technique, was employed to develop a methodology for gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) phase detection and identification. This methodology combines experimental results with a comprehensive literature survey. The established Raman approach offers a powerful tool for nondestructively assessing phase purity and detecting secondary phases in Ga<sub>2</sub>O<sub>3</sub> thin films. X-ray diffraction was used for comparison, highlighting the complementary information that these techniques may provide for Ga<sub>2</sub>O<sub>3</sub> characterization. Few case studies are included to demonstrate the usefulness of the proposed spectroscopic approach, namely the impact of deposition conditions such as metal-organic vapor-phase epitaxy and pulsed electron deposition (PED), and extrinsic elements provided during growth (Sn in the case of PED) on Ga<sub>2</sub>O<sub>3</sub> polymorphism. In conclusion, it is shown that Raman spectroscopy offers a quick, reliable, and nondestructive high-resolution approach for Ga<sub>2</sub>O<sub>3</sub> thin film characterization, especially concerning phase detection and crystalline quality.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1307-1315"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Mechanochemical Properties of Acrylonitrile Butadiene Styrene (ABS) Items in Cultural Heritage Through a Multimodal Spectroscopic Approach. 通过多模态光谱法评估文化遗产中丙烯腈-丁二烯-苯乙烯(ABS)物品的机械化学特性。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI: 10.1177/00037028241267325
Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi

A multimodal spectroscopic approach is proposed to correlate the mechanical and chemical properties of plastic materials in art and design objects, at both surface and subsurface levels, to obtain information about their conservation state and to monitor their degradation. The approach was used to investigate the photo-oxidation of acrylonitrile butadiene styrene (ABS), a plastic commonly found in many artistic and design applications, using ABS-based LEGO bricks as model samples. The modifications of the chemical and viscoelastic properties of ABS during photoaging were monitored by correlative Brillouin and Raman microspectroscopy (BRaMS), combined with portable and noninvasive broad-range external reflection infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) relaxometry, directly applicable in museums. BRaMS enabled combined measurements of Brillouin light scattering and Raman spectroscopy in a microspectroscopic setup, providing for the coincident probe of the chemical and mechanical changes of ABS at the sample surface. NMR relaxometry allowed for noninvasive measurements of relaxation times and depth profiles which are directly related to the molecular mobility of the material. Complementary chemical information was acquired by external reflection IR spectroscopy. The simultaneous probe of the chemical and mechanical properties by this multimodal spectroscopic approach enabled us to define a decay model of ABS in terms of compositional changes and variation of stiffness and rigidity occurring with photodegradation. The knowledge acquired on LEGO samples has been used to rate the conservation state of ABS design objects noninvasively investigated by external reflection Fourier transform IR spectroscopy and NMR relaxometry offered by the MObile LABoratory (MOLAB) platform of the European Research Infrastructure of Heritage Science.

本文提出了一种多模态光谱方法,用于关联艺术和设计物品中塑料材料在表层和次表层的机械和化学特性,以获取有关其保存状态的信息并监测其降解情况。该方法被用于研究丙烯腈-丁二烯-苯乙烯(ABS)的光氧化过程,ABS 是一种常见于许多艺术和设计应用中的塑料,以 ABS 为基础的乐高砖块为模型样本。通过相关布里渊和拉曼显微光谱法(BRaMS),结合便携式、非侵入式宽范围外部反射红外(IR)光谱法和核磁共振(NMR)弛豫测定法,监测了 ABS 在光老化过程中的化学和粘弹性能变化,这些方法可直接应用于博物馆。BRaMS 能够在微光谱装置中结合测量布里渊光散射和拉曼光谱,对样品表面 ABS 的化学和机械变化进行同步探测。核磁共振弛豫测量法可对弛豫时间和深度剖面进行无损测量,这与材料的分子流动性直接相关。外反射红外光谱法获得了补充的化学信息。通过这种多模态光谱方法同时探测化学和机械特性,我们能够根据光降解过程中发生的成分变化以及刚度和硬度变化,确定 ABS 的衰变模型。我们利用在乐高样品上获得的知识,通过欧洲遗产科学研究基础设施 MObile LABoratory(MOLAB)平台提供的外部反射傅立叶变换红外光谱和核磁共振弛豫测定法,对 ABS 设计物品的保存状态进行了非侵入式研究。
{"title":"Assessing Mechanochemical Properties of Acrylonitrile Butadiene Styrene (ABS) Items in Cultural Heritage Through a Multimodal Spectroscopic Approach.","authors":"Irene Bargagli, Martina Alunni Cardinali, Valeria Di Tullio, Brenda Doherty, Marco Paolantoni, Daniele Fioretto, Noemi Proietti, Francesca Sabatini, Costanza Miliani, Elisa Storace, Sara Russo, Rafaela Trevisan, Alessandra Vannini, Laura Cartechini, Lucia Comez, Francesca Rosi","doi":"10.1177/00037028241267325","DOIUrl":"10.1177/00037028241267325","url":null,"abstract":"<p><p>A multimodal spectroscopic approach is proposed to correlate the mechanical and chemical properties of plastic materials in art and design objects, at both surface and subsurface levels, to obtain information about their conservation state and to monitor their degradation. The approach was used to investigate the photo-oxidation of acrylonitrile butadiene styrene (ABS), a plastic commonly found in many artistic and design applications, using ABS-based LEGO bricks as model samples. The modifications of the chemical and viscoelastic properties of ABS during photoaging were monitored by correlative Brillouin and Raman microspectroscopy (BRaMS), combined with portable and noninvasive broad-range external reflection infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) relaxometry, directly applicable in museums. BRaMS enabled combined measurements of Brillouin light scattering and Raman spectroscopy in a microspectroscopic setup, providing for the coincident probe of the chemical and mechanical changes of ABS at the sample surface. NMR relaxometry allowed for noninvasive measurements of relaxation times and depth profiles which are directly related to the molecular mobility of the material. Complementary chemical information was acquired by external reflection IR spectroscopy. The simultaneous probe of the chemical and mechanical properties by this multimodal spectroscopic approach enabled us to define a decay model of ABS in terms of compositional changes and variation of stiffness and rigidity occurring with photodegradation. The knowledge acquired on LEGO samples has been used to rate the conservation state of ABS design objects noninvasively investigated by external reflection Fourier transform IR spectroscopy and NMR relaxometry offered by the MObile LABoratory (MOLAB) platform of the European Research Infrastructure of Heritage Science.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1316-1328"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman Spectroscopy for Temporally Resolved Combustion Gas Diagnostics. 拉曼光谱技术用于时间分辨燃烧气体诊断。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-01 Epub Date: 2024-09-05 DOI: 10.1177/00037028241277575
Riccardo Dal Moro, Fabio Melison, Lorenzo Cocola, Luca Poletto

A novel approach for cost-effective and temporally resolved in-line combustion gas diagnostics based on spontaneous Stokes Raman spectroscopy is presented in this paper. The proposed instrument uses a multipass configuration designed to increase the scattering generation, giving information about gas species concentrations, including H2 and N2 that are not commonly available from analysis with absorption spectroscopy techniques. The system performs calibrated analysis providing both qualitative and quantitative information about the gas composition. Depending on the application, the device can work with spectra integration time from 0.15 s up to 10 s, with a Raman spectrum ranging from the H2 rotational peak at Raman shift of 587 cm-1 up to the H2 vibrational peak at 4156 cm-1, covering all the Raman emissions of major combustion species. The device response was characterized by a working pressure from 0.7 to 7.5 bar. The instrument prototype has been made completely transportable, designed to operate using a gas sampling system, and ready to be operated in relevant industrial in-line environments.

本文介绍了一种基于自发斯托克斯拉曼光谱的、具有成本效益和时间分辨率的在线燃烧气体诊断新方法。所提议的仪器采用多通道配置,旨在增加散射生成,提供气体物种浓度信息,包括通常无法通过吸收光谱技术分析获得的 H2 和 N2。该系统可进行校准分析,提供有关气体成分的定性和定量信息。根据不同的应用,该设备的光谱积分时间从 0.15 秒到 10 秒不等,拉曼光谱范围从拉曼位移为 587 厘米-1 的 H2 旋转峰到 4156 厘米-1 的 H2 振动峰,涵盖了主要燃烧物的所有拉曼发射。设备响应的工作压力范围为 0.7 至 7.5 巴。仪器原型可完全运输,设计为使用气体采样系统运行,并可在相关的工业在线环境中运行。
{"title":"Raman Spectroscopy for Temporally Resolved Combustion Gas Diagnostics.","authors":"Riccardo Dal Moro, Fabio Melison, Lorenzo Cocola, Luca Poletto","doi":"10.1177/00037028241277575","DOIUrl":"10.1177/00037028241277575","url":null,"abstract":"<p><p>A novel approach for cost-effective and temporally resolved in-line combustion gas diagnostics based on spontaneous Stokes Raman spectroscopy is presented in this paper. The proposed instrument uses a multipass configuration designed to increase the scattering generation, giving information about gas species concentrations, including H<sub>2</sub> and N<sub>2</sub> that are not commonly available from analysis with absorption spectroscopy techniques. The system performs calibrated analysis providing both qualitative and quantitative information about the gas composition. Depending on the application, the device can work with spectra integration time from 0.15 s up to 10 s, with a Raman spectrum ranging from the H<sub>2</sub> rotational peak at Raman shift of 587 cm<sup>-1</sup> up to the H<sub>2</sub> vibrational peak at 4156 cm<sup>-1</sup>, covering all the Raman emissions of major combustion species. The device response was characterized by a working pressure from 0.7 to 7.5 bar. The instrument prototype has been made completely transportable, designed to operate using a gas sampling system, and ready to be operated in relevant industrial in-line environments.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1263-1269"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Multiple Spectroscopic Techniques to Reveal the Effects of Staphylococcus aureus Infection on Human Bone Tissues. 结合多种光谱技术揭示金黄色葡萄球菌感染对人体骨组织的影响
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-01 Epub Date: 2024-09-30 DOI: 10.1177/00037028241278903
Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi

Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. Staphylococcus aureus (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin-Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens' presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.

由于预期寿命的延长,骨髓炎(OM)和假体周围关节感染(PJI)是西方国家主要的公共卫生问题。感染通常是由于细菌通过骨折、植入物或血液传播造成的。病原体会引发炎症反应,阻碍骨组织再生。治疗需要手术干预,包括精确切除感染组织、清洗伤口以及局部和全身使用抗生素。金黄色葡萄球菌(SA)是引起感染性 OM 和 PJI 的最常见病原体之一。它能形成抗菌生物膜,经常出现在医疗机构中。在这一概念验证中,我们提出了一种基于多种光谱技术的方法,旨在研究 SA 感染对骨组织的影响,并确定有助于检测组织表面早期细菌定植的特定标记。将培养结果为阴性的人类股骨干骺端横截面分为三部分,并将皮质区和骨小梁区分开。每种骨组织类型的两部分分别用 SA 感染 1 天和 7 天。采用多种技术研究感染对骨组织的影响,并利用布里渊-拉曼显微光谱学和衰减全反射傅立叶变换红外光谱学进行评估,开发出一种针对宿主骨骼检测 SA 的新型无创诊断方法。结果表明,感染 SA 后,骨骼结构会发生显著变化,尤其是骨小梁类型的骨骼,甚至仅在一天后就会发生变化。此外,研究还发现了组织损伤的拉曼光谱标记,这表明该技术可以检测骨活检中病原体存在的影响,并且由于其非破坏性和非接触性,为在手术中的潜在应用铺平了道路。
{"title":"Combining Multiple Spectroscopic Techniques to Reveal the Effects of <i>Staphylococcus aureus</i> Infection on Human Bone Tissues.","authors":"Martina Alunni Cardinali, Marco Govoni, Sara Stefani, Alessandra Maso, Elisa Storni, Francesca Valenti, Melania Maglio, Assunta Morresi, Daniele Fioretto, Dante Dallari, Paola Sassi","doi":"10.1177/00037028241278903","DOIUrl":"10.1177/00037028241278903","url":null,"abstract":"<p><p>Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. <i>Staphylococcus aureus</i> (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin-Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens' presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1295-1306"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman Spectroscopy Applied to Early Detection of Clostridium Infection in Milk. 拉曼光谱应用于牛奶中梭菌感染的早期检测。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-01 Epub Date: 2024-05-09 DOI: 10.1177/00037028241252693
Daniele Barbiero, Fabio Melison, Lorenzo Cocola, Massimo Fedel, Cristian Andrighetto, Paola De Dea, Luca Poletto

Detecting Clostridium in milk presents a significant challenge for the dairy industry given that traditional methods are time-consuming and not specific for these bacteria. Microbiological techniques are expensive and require qualified personnel. Clostridium, in the form of spores, can withstand pasteurization and revert to its vegetative form during cheese aging. These gas-producing bacteria are known for their production of carbon dioxide and hydrogen, causing the formation of slits, cracks, and irregular eyes in hard and semi-hard cheeses. However, gas analysis in the vial headspace of appropriate culture can be exploited to specifically detect Clostridium presence, since the closest competing bacterial Bacilli produces only carbon dioxide. The aim of this paper is to present a Raman-spectroscopy-based instrument for a rapid, inexpensive identification of Clostridium in milk with a limit of detection of 29 spores/L. The proposed measurement procedure is analog to that routinely used, based on the most probable number method. The Raman-based instrument speeds up the detection of a vial's positivity. A test conducted with Clostridium spores demonstrated its effectiveness in almost halving the time needed for the measurement campaign compared to the traditional method.

检测牛奶中的梭状芽孢杆菌是乳制品行业面临的一项重大挑战,因为传统方法不仅耗时,而且对这些细菌没有特异性。微生物技术成本高昂,而且需要合格的人员。以孢子形式存在的梭状芽孢杆菌可以耐受巴氏杀菌法,并在奶酪老化过程中恢复为植物形态。这些产气细菌以产生二氧化碳和氢气而闻名,会导致硬质和半硬质奶酪形成裂缝、裂纹和不规则眼。然而,由于最接近的竞争细菌芽孢杆菌只产生二氧化碳,因此可以利用适当培养瓶顶空的气体分析来专门检测梭状芽孢杆菌的存在。本文旨在介绍一种基于拉曼光谱的仪器,用于快速、廉价地鉴定牛奶中的梭状芽孢杆菌,检测限为 29 个孢子/升。所建议的测量程序与常规使用的测量程序类似,基于最可能数法。基于拉曼技术的仪器加快了检测样品瓶阳性率的速度。用梭状芽孢杆菌进行的一项测试表明,与传统方法相比,拉曼仪器能有效地将测量所需的时间缩短近一半。
{"title":"Raman Spectroscopy Applied to Early Detection of <i>Clostridium</i> Infection in Milk.","authors":"Daniele Barbiero, Fabio Melison, Lorenzo Cocola, Massimo Fedel, Cristian Andrighetto, Paola De Dea, Luca Poletto","doi":"10.1177/00037028241252693","DOIUrl":"10.1177/00037028241252693","url":null,"abstract":"<p><p>Detecting <i>Clostridium</i> in milk presents a significant challenge for the dairy industry given that traditional methods are time-consuming and not specific for these bacteria. Microbiological techniques are expensive and require qualified personnel. <i>Clostridium</i>, in the form of spores, can withstand pasteurization and revert to its vegetative form during cheese aging. These gas-producing bacteria are known for their production of carbon dioxide and hydrogen, causing the formation of slits, cracks, and irregular eyes in hard and semi-hard cheeses. However, gas analysis in the vial headspace of appropriate culture can be exploited to specifically detect <i>Clostridium</i> presence, since the closest competing bacterial <i>Bacilli</i> produces only carbon dioxide. The aim of this paper is to present a Raman-spectroscopy-based instrument for a rapid, inexpensive identification of <i>Clostridium</i> in milk with a limit of detection of 29 spores/L. The proposed measurement procedure is analog to that routinely used, based on the most probable number method. The Raman-based instrument speeds up the detection of a vial's positivity. A test conducted with <i>Clostridium</i> spores demonstrated its effectiveness in almost halving the time needed for the measurement campaign compared to the traditional method.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1256-1262"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conducting Electrospun Poly(3-hexylthiophene-2,5-diyl) Nanofibers: New Strategies for Effective Chemical Doping and its Assessment Using Infrared Spectroscopy. 导电电纺聚(3-己基噻吩-2,5-二基)纳米纤维:有效化学掺杂的新策略及其红外光谱评估。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-01 Epub Date: 2024-07-26 DOI: 10.1177/00037028241265140
Alessia Arrigoni, Luigi Brambilla, Chiara Bertarelli, Carlo Saporiti, Chiara Castiglioni

Vibrational spectroscopy allows the investigation of structural properties of pristine and doped poly(3-hexylthiophene-2,5-diyl) (P3HT) in highly anisotropic materials, such as electrospun micro- and nanofibers. Here, we compare several approaches for doping P3HT fibers. We have selected two different electron acceptor molecules as dopants, namely iodine and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). In the case of iodine, we have explored the doping of the fibers according to several different procedures, i.e., by sequential doping both in vapors and in solution, and with a novel promising one-step method, which exploits the mixing of the dopant to the electrospinning feed solution. Polarized infrared (IR) spectroscopy experiments prove the orientation of P3HT chains, with the polymer backbone mainly running parallel to the fiber axis. After doping, P3HT fibers show very strong and polarized doping-induced IR active vibrations (IRAVs), which are the spectroscopic signature of the structure relaxation induced by the charged defects (polarons), thus providing an unambiguous proof of the effective doping. Raman spectroscopy complements the IR evidence: The Raman spectrum shows a clearly recognizable shift of the main band, the so-called effective conjugation coordinate band, in the doped samples. A simple protocol, which quantifies the evolution of the IRAV bands with time, allows monitoring of the doping stability over time and confirms that F4TCNQ is by far superior to iodine.

通过振动光谱法,可以研究高各向异性材料(如电纺微纤维和纳米纤维)中原始和掺杂聚(3-己基噻吩-2,5-二基)(P3HT)的结构特性。在此,我们比较了几种掺杂 P3HT 纤维的方法。我们选择了两种不同的电子受体分子作为掺杂剂,即碘和 2,3,5,6-四氟-7,7,8,8-四氰基二甲烷(F4TCNQ)。对于碘,我们探索了几种不同的纤维掺杂方法,即在蒸汽和溶液中连续掺杂,以及利用掺杂剂与电纺丝给料溶液混合的新型一步法。偏振红外(IR)光谱实验证明了 P3HT 链的取向,聚合物骨架主要平行于纤维轴线。掺杂后,P3HT 纤维显示出非常强且极化的掺杂诱导红外活跃振动(IRAVs),这是带电缺陷(极子)诱导结构弛豫的光谱特征,从而提供了有效掺杂的明确证据。拉曼光谱补充了红外光谱的证据:拉曼光谱显示,在掺杂样品中,主带(即所谓的有效共轭坐标带)发生了明显的移动。通过对 IRAV 波段随时间的变化进行量化的简单方案,可以监测掺杂随时间变化的稳定性,并证实 F4TCNQ 远远优于碘。
{"title":"Conducting Electrospun Poly(3-hexylthiophene-2,5-diyl) Nanofibers: New Strategies for Effective Chemical Doping and its Assessment Using Infrared Spectroscopy.","authors":"Alessia Arrigoni, Luigi Brambilla, Chiara Bertarelli, Carlo Saporiti, Chiara Castiglioni","doi":"10.1177/00037028241265140","DOIUrl":"10.1177/00037028241265140","url":null,"abstract":"<p><p>Vibrational spectroscopy allows the investigation of structural properties of pristine and doped poly(3-hexylthiophene-2,5-diyl) (P3HT) in highly anisotropic materials, such as electrospun micro- and nanofibers. Here, we compare several approaches for doping P3HT fibers. We have selected two different electron acceptor molecules as dopants, namely iodine and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). In the case of iodine, we have explored the doping of the fibers according to several different procedures, i.e., by sequential doping both in vapors and in solution, and with a novel promising one-step method, which exploits the mixing of the dopant to the electrospinning feed solution. Polarized infrared (IR) spectroscopy experiments prove the orientation of P3HT chains, with the polymer backbone mainly running parallel to the fiber axis. After doping, P3HT fibers show very strong and polarized doping-induced IR active vibrations (IRAVs), which are the spectroscopic signature of the structure relaxation induced by the charged defects (polarons), thus providing an unambiguous proof of the effective doping. Raman spectroscopy complements the IR evidence: The Raman spectrum shows a clearly recognizable shift of the main band, the so-called effective conjugation coordinate band, in the doped samples. A simple protocol, which quantifies the evolution of the IRAV bands with time, allows monitoring of the doping stability over time and confirms that F4TCNQ is by far superior to iodine.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1279-1294"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platform for Aldehyde and Ketone Quantitation Using Surface-Enhanced Raman Spectroscopy. 利用表面增强拉曼光谱进行醛和酮定量的平台。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-11-26 DOI: 10.1177/00037028241296845
Merwan Benhabib, Mark C Peterman

Colorimetric methods for aldehyde and ketone analyses are plagued by interferences. Each aldehyde or ketone generates a blue color, but with a different reaction coefficient. It is, therefore, not possible to differentiate these compounds from a single test. By using surface-enhanced Raman spectroscopy, we demonstrate unique fingerprints for each reaction product, enabling aldehyde and ketone speciation. With the further addition of an isotopologue internal standard, we demonstrate aldehyde and ketone quantification at levels lower than those possible with colorimetric techniques. This method paves the way for a powerful and practical tool for analyzing these crucial chemical building blocks.

用于醛和酮分析的比色法受到干扰的困扰。每种醛或酮都会产生蓝色,但反应系数不同。因此,无法通过一次检测来区分这些化合物。通过使用表面增强拉曼光谱,我们展示了每种反应产物的独特指纹,从而实现了醛和酮的分类。通过进一步添加同位素内标,我们证明醛和酮的定量水平低于比色法。这种方法为分析这些关键化学构件提供了强大而实用的工具。
{"title":"Platform for Aldehyde and Ketone Quantitation Using Surface-Enhanced Raman Spectroscopy.","authors":"Merwan Benhabib, Mark C Peterman","doi":"10.1177/00037028241296845","DOIUrl":"https://doi.org/10.1177/00037028241296845","url":null,"abstract":"<p><p>Colorimetric methods for aldehyde and ketone analyses are plagued by interferences. Each aldehyde or ketone generates a blue color, but with a different reaction coefficient. It is, therefore, not possible to differentiate these compounds from a single test. By using surface-enhanced Raman spectroscopy, we demonstrate unique fingerprints for each reaction product, enabling aldehyde and ketone speciation. With the further addition of an isotopologue internal standard, we demonstrate aldehyde and ketone quantification at levels lower than those possible with colorimetric techniques. This method paves the way for a powerful and practical tool for analyzing these crucial chemical building blocks.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241296845"},"PeriodicalIF":2.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Spectroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1