首页 > 最新文献

Applied Spectroscopy最新文献

英文 中文
Advertising and Front Matter.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 DOI: 10.1177/00037028251318118
{"title":"Advertising and Front Matter.","authors":"","doi":"10.1177/00037028251318118","DOIUrl":"https://doi.org/10.1177/00037028251318118","url":null,"abstract":"","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":"79 2","pages":"235-240"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Optical-Filter Sensor System for Discrimination of Infrared Chemical Signatures Against a Cold Sky Background. 仿生光学过滤器传感器系统,用于在寒冷天空背景下辨别红外化学特征。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 Epub Date: 2024-06-11 DOI: 10.1177/00037028241257267
Cobey L McGinnis, Jesse A Frantz, Jasbinder S Sanghera, Kenneth J Ewing

Passive infrared (IR) systems enable rapid detection of chemical vapors but are limited by size, weight, cost, and power. Previously, the authors reported a novel passive sensor that utilizes multiple IR filter/detector combinations to discriminate between different chemical vapors based on their unique IR absorption spectra in the same manner the human eye uses to generate colors. This approach enables a very small, compact, and low-power sensor system with the capability to discriminate between chemical vapors of interest and background chemicals. All previous work showed the capability of this sensor system in discriminating chemical vapors against a hot blackbody in a laboratory environment. Now the authors demonstrate the ability of this sensor system to discriminate between the chemical vapor agent simulant dimethyl methylphosphonate and ethanol against the cold sky in an outdoor environment.

被动红外(IR)系统能够快速检测化学蒸汽,但受到体积、重量、成本和功率的限制。此前,作者曾报道过一种新型无源传感器,它利用多个红外滤光片/探测器组合,根据不同化学蒸汽独特的红外吸收光谱,以人眼产生颜色的相同方式对其进行分辨。这种方法使传感器系统体积非常小,结构紧凑,功耗低,能够区分相关化学蒸汽和背景化学物质。之前的所有研究工作都表明,这种传感器系统能够在实验室环境中通过热黑体来分辨化学蒸汽。现在,作者展示了该传感器系统在室外环境中针对寒冷的天空分辨化学蒸汽剂模拟物甲基膦酸二甲酯和乙醇的能力。
{"title":"Biomimetic Optical-Filter Sensor System for Discrimination of Infrared Chemical Signatures Against a Cold Sky Background.","authors":"Cobey L McGinnis, Jesse A Frantz, Jasbinder S Sanghera, Kenneth J Ewing","doi":"10.1177/00037028241257267","DOIUrl":"10.1177/00037028241257267","url":null,"abstract":"<p><p>Passive infrared (IR) systems enable rapid detection of chemical vapors but are limited by size, weight, cost, and power. Previously, the authors reported a novel passive sensor that utilizes multiple IR filter/detector combinations to discriminate between different chemical vapors based on their unique IR absorption spectra in the same manner the human eye uses to generate colors. This approach enables a very small, compact, and low-power sensor system with the capability to discriminate between chemical vapors of interest and background chemicals. All previous work showed the capability of this sensor system in discriminating chemical vapors against a hot blackbody in a laboratory environment. Now the authors demonstrate the ability of this sensor system to discriminate between the chemical vapor agent simulant dimethyl methylphosphonate and ethanol against the cold sky in an outdoor environment.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"260-264"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Surface-Enhanced Raman Spectroscopy (SERS): A Novel Concept for Enhancing Signal Contrast in Complex Matrices Using External Perturbation. EXPRESS:主动表面增强拉曼光谱(SERS):利用外部扰动增强复杂基质中信号对比度的新概念。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 Epub Date: 2024-08-07 DOI: 10.1177/00037028241267898
Sara Mosca, Megha Mehta, William H Skinner, Benjamin Gardner, Francesca Palombo, Nicholas Stone, Pavel Matousek

Noninvasive detection of surface-enhanced Raman spectroscopy (SERS) signals from deep within tissue represents a common challenge in many biological and clinical applications including disease diagnosis and therapy monitoring. Such signals are typically weak and not readily discernible from often much larger Raman and fluorescence background signals (e.g., from surrounding tissue). Consequently, suboptimal sensitivity in the detection of SERS signals is often achieved in these situations. Similar issues can arise in SERS measurements in other diffusely scattering samples and complex matrices. Here, we propose a novel concept, active SERS, for the efficient retrieval of SERS signals from deep within complex matrices such as biological tissues that mitigates these issues. It relies on applying an external perturbation to the sample to alter the SERS signal from nanoparticles (NPs) deep inside the matrix. A measurement with and without, or before and after, such perturbation then can provide powerful contrasting data enabling an effective elimination of the matrix signals to reveal more clearly the desired SERS signal without the interfering background and associated artifacts. The concept is demonstrated using ultrasound (US) as an external source of perturbation and SERS NPs inserted deep within a heterogeneous tissue phantom mimicking a cluster of NPs accumulated within a small target lesion. The overall SERS signal intensity induced by the applied US perturbation decreased by ∼21% and the SERS signal contrast was considerably improved by eliminating subtraction artifacts present in a conventional measurement performed at a neighboring spatial location in a heterogeneous tissue sample. Although the technique was demonstrated with SERS gold NPs with a standard Raman label, it is envisaged that active SERS NPs (both the nanoscale metal geometry and Raman label) could be specifically designed to deliver an augmented response to the external stimulus to further enhance the achievable SERS signal contrast and yield even greater improvement in detection sensitivity. The method was demonstrated using transmission Raman spectroscopy; however, it is also applicable to other Raman implementations including spatially offset Raman spectroscopy and conventional Raman spectroscopy performed both at depth and at surfaces of complex matrices.

无创检测组织深层的表面增强拉曼光谱(SERS)信号是许多生物和临床应用(包括疾病诊断和治疗监测)中面临的共同挑战。这些信号通常很微弱,不易从通常大得多的拉曼和荧光背景信号(如来自周围组织的信号)中分辨出来。因此,在这些情况下,SERS 信号的检测灵敏度往往达不到最佳水平。在其他漫散射样品和复杂基质中进行 SERS 测量时也会出现类似问题。在这里,我们提出了一个新概念--主动 SERS,用于从生物组织等复杂基质深处有效地检索 SERS 信号,从而缓解这些问题。它依靠对样品施加外部扰动来改变来自基质深处纳米粒子(NPs)的 SERS 信号。在有这种扰动的情况下和没有这种扰动的情况下,或者在这种扰动之前和之后进行测量,可以提供强大的对比数据,从而有效地消除基质信号,更清晰地显示所需的 SERS 信号,而不受干扰背景和相关伪影的影响。我们使用超声波(US)作为外部扰动源,并将 SERS NPs 深入异质组织模型中,模拟在小目标病灶中积累的 NPs 簇,对这一概念进行了演示。通过消除在异质组织样本的邻近空间位置进行传统测量时出现的减法伪影,施加的 US 扰动引起的 SERS 信号强度总体下降了 21%,SERS 信号对比度也大大提高。虽然这项技术是用带有标准拉曼标签的 SERS 金 NPs 演示的,但我们设想可以专门设计有源 SERS NPs(包括纳米级金属几何形状和拉曼标签),使其对外部刺激产生增强响应,从而进一步增强可实现的 SERS 信号对比度,并进一步提高检测灵敏度。该方法使用透射拉曼光谱进行了演示;不过,它也适用于其他拉曼实现方法,包括空间偏移拉曼光谱和在复杂基质的深度和表面进行的传统拉曼光谱。
{"title":"Active Surface-Enhanced Raman Spectroscopy (SERS): A Novel Concept for Enhancing Signal Contrast in Complex Matrices Using External Perturbation.","authors":"Sara Mosca, Megha Mehta, William H Skinner, Benjamin Gardner, Francesca Palombo, Nicholas Stone, Pavel Matousek","doi":"10.1177/00037028241267898","DOIUrl":"10.1177/00037028241267898","url":null,"abstract":"<p><p>Noninvasive detection of surface-enhanced Raman spectroscopy (SERS) signals from deep within tissue represents a common challenge in many biological and clinical applications including disease diagnosis and therapy monitoring. Such signals are typically weak and not readily discernible from often much larger Raman and fluorescence background signals (e.g., from surrounding tissue). Consequently, suboptimal sensitivity in the detection of SERS signals is often achieved in these situations. Similar issues can arise in SERS measurements in other diffusely scattering samples and complex matrices. Here, we propose a novel concept, active SERS, for the efficient retrieval of SERS signals from deep within complex matrices such as biological tissues that mitigates these issues. It relies on applying an external perturbation to the sample to alter the SERS signal from nanoparticles (NPs) deep inside the matrix. A measurement with and without, or before and after, such perturbation then can provide powerful contrasting data enabling an effective elimination of the matrix signals to reveal more clearly the desired SERS signal without the interfering background and associated artifacts. The concept is demonstrated using ultrasound (US) as an external source of perturbation and SERS NPs inserted deep within a heterogeneous tissue phantom mimicking a cluster of NPs accumulated within a small target lesion. The overall SERS signal intensity induced by the applied US perturbation decreased by ∼21% and the SERS signal contrast was considerably improved by eliminating subtraction artifacts present in a conventional measurement performed at a neighboring spatial location in a heterogeneous tissue sample. Although the technique was demonstrated with SERS gold NPs with a standard Raman label, it is envisaged that active SERS NPs (both the nanoscale metal geometry and Raman label) could be specifically designed to deliver an augmented response to the external stimulus to further enhance the achievable SERS signal contrast and yield even greater improvement in detection sensitivity. The method was demonstrated using transmission Raman spectroscopy; however, it is also applicable to other Raman implementations including spatially offset Raman spectroscopy and conventional Raman spectroscopy performed both at depth and at surfaces of complex matrices.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"320-327"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of One-Dimensional Photonic Crystal on Raman Signal Enhancement: A Detailed Experimental Study. 一维光子晶体对拉曼信号增强的影响:详细实验研究
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 Epub Date: 2024-06-11 DOI: 10.1177/00037028241258101
Maria Krajačić, Nikola Baran, Ana Tolić, Lara Mikac, Mile Ivanda, Ozren Gamulin, Marko Škrabić

The enhancement of Raman signals using photonic crystal structures has been the subject of numerous experimental and theoretical studies, leading to a variety of issues and inconsistencies. This paper presents a comprehensive experimental investigation into the impact of alignment between the laser excitation wavelength and the specific position of the photonic band gap on signal enhancement in Raman spectroscopy. By employing one-dimensional (1D) porous silicon photonic crystals, a systematic analysis across a large number of spectra was conducted. The study focused on examining the signal enhancement of both the Raman ∼520 cm-1 silicon band, representing the constituent material of photonic crystal, and the most prominent Raman bands of crystal violet, used as a probe molecule. The probe molecules were both infiltrated into and adsorbed on top of the photonic crystal structure. The obtained experimental results for the contribution of 1D photonic crystals to Raman signal enhancement are much smaller compared to most predictions. The Raman signal of silicon and the signal from the probe molecule are enhanced ≤2.5 times when the laser excitation aligns with the edge of the photonic band gap, strictly defined as the position at the very bottom of the reflectance peak. The results have been discussed within the context of theoretical explanations.

利用光子晶体结构增强拉曼信号一直是众多实验和理论研究的主题,导致了各种问题和矛盾。本文对激光激发波长与光子带隙特定位置之间的排列对拉曼光谱信号增强的影响进行了全面的实验研究。通过采用一维(1D)多孔硅光子晶体,对大量光谱进行了系统分析。研究重点考察了代表光子晶体组成材料的硅∼520 cm-1 拉曼光谱带和作为探针分子的水晶紫最突出的拉曼光谱带的信号增强情况。探针分子既渗入到光子晶体结构中,也吸附在光子晶体结构的顶部。实验结果表明,一维光子晶体对拉曼信号增强的贡献比大多数预测要小得多。当激光激发对准光子带隙边缘(严格定义为反射峰最底部的位置)时,硅的拉曼信号和探针分子的信号增强≤2.5 倍。这些结果已根据理论解释进行了讨论。
{"title":"Influence of One-Dimensional Photonic Crystal on Raman Signal Enhancement: A Detailed Experimental Study.","authors":"Maria Krajačić, Nikola Baran, Ana Tolić, Lara Mikac, Mile Ivanda, Ozren Gamulin, Marko Škrabić","doi":"10.1177/00037028241258101","DOIUrl":"10.1177/00037028241258101","url":null,"abstract":"<p><p>The enhancement of Raman signals using photonic crystal structures has been the subject of numerous experimental and theoretical studies, leading to a variety of issues and inconsistencies. This paper presents a comprehensive experimental investigation into the impact of alignment between the laser excitation wavelength and the specific position of the photonic band gap on signal enhancement in Raman spectroscopy. By employing one-dimensional (1D) porous silicon photonic crystals, a systematic analysis across a large number of spectra was conducted. The study focused on examining the signal enhancement of both the Raman ∼520 cm<sup>-1</sup> silicon band, representing the constituent material of photonic crystal, and the most prominent Raman bands of crystal violet, used as a probe molecule. The probe molecules were both infiltrated into and adsorbed on top of the photonic crystal structure. The obtained experimental results for the contribution of 1D photonic crystals to Raman signal enhancement are much smaller compared to most predictions. The Raman signal of silicon and the signal from the probe molecule are enhanced ≤2.5 times when the laser excitation aligns with the edge of the photonic band gap, strictly defined as the position at the very bottom of the reflectance peak. The results have been discussed within the context of theoretical explanations.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"265-280"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nondispersive Ultraviolet Visible Gas Analyzer for Monitoring Molybdenum Chloride and Oxychloride Precursors During Vapor Deposition Processes. EXPRESS:用于在气相沉积过程中监测氯化钼和氧氯化钼前体的非分散紫外-可见气体分析仪。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 Epub Date: 2024-08-12 DOI: 10.1177/00037028241268260
James E Maslar, Berc Kalanyan

Nondispersive ultraviolet visible gas analyzer designs were evaluated for monitoring molybdenum-containing chloride and oxychloride precursor delivery during microelectronics vapor deposition processes. The performances of three analyzer designs, which differed only in the bandpass filter employed for wavelength selection, were compared for measuring the partial pressure of molybdenum pentachloride, molybdenum oxytetrachloride (MoOCl4), and molybdenum dioxydichloride (MoO2Cl2). The analyzer's optical response with a 369 nm center wavelength filter for molybdenum pentachloride was determined by measuring the molybdenum pentachloride absorbance as a function of vapor molar density. The calibrated analyzer was transferred to a process line on a deposition chamber and used to measure the molybdenum pentachloride partial pressure during delivery in a flowing carrier gas. The molybdenum pentachloride minimum detectable density was determined to be 1 × 10-4 mol m-3 (0.35 Pa for a cell temperature of 145 °C), for data collected at 1 kHz and referenced to a 0.2 s duration background. The analyzer optical response for molybdenum pentachloride with the two other filters and the response for MoOCl4 and MoO2Cl2 with all three filters were simulated with a simple model. These data were used to evaluate the sensitivity and selectivity of analyzers incorporating the different filters to some likely combinations of analytes and interferents.

对用于监测微电子气相沉积过程中含钼氯化物和氧氯化钼前驱体输送情况的非色散紫外可见光(UV-Vis)气体分析仪设计进行了评估。在测量五氯化钼、四氯化钼和二氯化二钼的分压时,比较了三种分析仪设计的性能,它们的不同之处仅在于波长选择所采用的带通滤波器。通过测量五氯化钼吸光度与蒸汽摩尔密度的函数关系,确定了分析仪对五氯化钼 369 纳米中心波长滤光片的光学响应。校准后的分析仪被转移到沉积室的工艺线上,用于测量流动载气中输送过程中的五氯化钼分压。根据在 1 kHz 频率下采集的数据和 0.2 秒持续时间背景,确定五氯化钼的最小可检测密度为 1 × 10-4 mol m-3(电池温度为 145 ℃ 时为 0.35 Pa)。用一个简单的模型模拟了五氯化钼与其他两个滤光器的分析仪光学响应,以及钼氧四氯化碳和钼二氧二氯化碳与所有三个滤光器的响应。这些数据用于评估采用不同过滤器的分析仪对某些可能的分析物和干扰物组合的灵敏度和选择性。
{"title":"Nondispersive Ultraviolet Visible Gas Analyzer for Monitoring Molybdenum Chloride and Oxychloride Precursors During Vapor Deposition Processes.","authors":"James E Maslar, Berc Kalanyan","doi":"10.1177/00037028241268260","DOIUrl":"10.1177/00037028241268260","url":null,"abstract":"<p><p>Nondispersive ultraviolet visible gas analyzer designs were evaluated for monitoring molybdenum-containing chloride and oxychloride precursor delivery during microelectronics vapor deposition processes. The performances of three analyzer designs, which differed only in the bandpass filter employed for wavelength selection, were compared for measuring the partial pressure of molybdenum pentachloride, molybdenum oxytetrachloride (MoOCl<sub>4</sub>), and molybdenum dioxydichloride (MoO<sub>2</sub>Cl<sub>2</sub>). The analyzer's optical response with a 369 nm center wavelength filter for molybdenum pentachloride was determined by measuring the molybdenum pentachloride absorbance as a function of vapor molar density. The calibrated analyzer was transferred to a process line on a deposition chamber and used to measure the molybdenum pentachloride partial pressure during delivery in a flowing carrier gas. The molybdenum pentachloride minimum detectable density was determined to be 1 × 10<sup>-4</sup> mol m<sup>-3</sup> (0.35 Pa for a cell temperature of 145 °C), for data collected at 1 kHz and referenced to a 0.2 s duration background. The analyzer optical response for molybdenum pentachloride with the two other filters and the response for MoOCl<sub>4</sub> and MoO<sub>2</sub>Cl<sub>2</sub> with all three filters were simulated with a simple model. These data were used to evaluate the sensitivity and selectivity of analyzers incorporating the different filters to some likely combinations of analytes and interferents.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"289-297"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperspectral Imaging Database of Human Facial Skin. 人类面部皮肤高光谱成像数据库。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 Epub Date: 2024-09-24 DOI: 10.1177/00037028241279323
Andreia E Gomes, Sérgio M C Nascimento, João M M Linhares

The perceived color of human skin is the result of the interaction of environmental lighting with the skin. Only by resorting to human skin spectral reflectance, it is possible to obtain physical outcomes of this interaction. The purpose of this work was to provide a cured and validated database of hyperspectral images of human faces, useful for several applications, such as psychophysics-based research, object recognition, and material modeling. The hyperspectral imaging data from 29 human faces with different skin tones and sexes, under constant lighting and controlled movements, were described and characterized. Each hyperspectral image, which comprised spectral reflectance of the whole face from 400 to 720 nm in 10 nm steps at each pixel, was analyzed between and within nine facial positions located at different areas of the face. Simultaneously, spectral measurements at the same nine facial positions using conventional local point and/or contact devices were used to ascertain the data. It was found that the spectral reflectance profile changed between skin tones, subjects, and facial locations. Important local variations of the spectral reflectance profile showed that extra care is needed when considering average values from conventional devices at the same area of measurement.

人类皮肤的感知颜色是环境光线与皮肤相互作用的结果。只有利用人体皮肤的光谱反射率,才有可能获得这种相互作用的物理结果。这项工作的目的是提供一个经过固化和验证的人脸高光谱图像数据库,该数据库可用于多种应用,如基于心理物理学的研究、物体识别和材料建模。在恒定照明和受控运动条件下,对 29 张不同肤色和性别的人脸的高光谱成像数据进行了描述和特征描述。每幅高光谱图像包括整个脸部从 400 纳米到 720 纳米的光谱反射率,每个像素以 10 纳米为单位。同时,还使用传统的局部点和/或接触式设备在同样的九个面部位置进行光谱测量,以确定数据。结果发现,不同肤色、受试者和面部位置之间的光谱反射曲线会发生变化。光谱反射曲线的重要局部变化表明,在考虑同一测量区域传统设备的平均值时需要格外小心。
{"title":"Hyperspectral Imaging Database of Human Facial Skin.","authors":"Andreia E Gomes, Sérgio M C Nascimento, João M M Linhares","doi":"10.1177/00037028241279323","DOIUrl":"10.1177/00037028241279323","url":null,"abstract":"<p><p>The perceived color of human skin is the result of the interaction of environmental lighting with the skin. Only by resorting to human skin spectral reflectance, it is possible to obtain physical outcomes of this interaction. The purpose of this work was to provide a cured and validated database of hyperspectral images of human faces, useful for several applications, such as psychophysics-based research, object recognition, and material modeling. The hyperspectral imaging data from 29 human faces with different skin tones and sexes, under constant lighting and controlled movements, were described and characterized. Each hyperspectral image, which comprised spectral reflectance of the whole face from 400 to 720 nm in 10 nm steps at each pixel, was analyzed between and within nine facial positions located at different areas of the face. Simultaneously, spectral measurements at the same nine facial positions using conventional local point and/or contact devices were used to ascertain the data. It was found that the spectral reflectance profile changed between skin tones, subjects, and facial locations. Important local variations of the spectral reflectance profile showed that extra care is needed when considering average values from conventional devices at the same area of measurement.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"328-344"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Advanced Attenuated Total Reflection Correction: The Low Absorbance Assumption. EXPRESS:了解高级衰减全反射校正:低吸收率假设。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 Epub Date: 2024-08-11 DOI: 10.1177/00037028241268024
Thomas G Mayerhöfer, Jürgen Popp

We present an attenuated total reflection (ATR) correction scheme capable of rectifying ATR spectra while considering the polarization state for arbitrary angles of incidence, provided that this angle exceeds the critical angle for the entire ATR spectrum. Due to its reliance on the weak absorption approximation, it cannot achieve perfect correction of the ATR spectra. However, comprehending its functionality may offer valuable insights into the concept behind the weak absorption approximation. Depending on the specific polarization state of an instrument accessory combination, this correction scheme may outperform the proprietary advanced ATR correction authored by ThermoFisher while being as user-friendly, but in contrast to the latter completely transparent with regard to its functionality.

我们提出了一种衰减全反射(ATR)校正方案,该方案能够在考虑任意入射角的偏振态的同时校正 ATR 光谱,前提是该角度必须超过整个 ATR 光谱的临界角。由于它依赖于弱吸收近似,因此无法实现对 ATR 光谱的完美校正。不过,了解它的功能可以为理解弱吸收近似背后的概念提供有价值的启示。根据仪器附件组合的具体偏振状态,该校正方案可能会优于 ThermoFisher 专有的高级 ATR 校正方案,同时还具有用户友好性,但与后者相比,其功能完全透明。
{"title":"Understanding Advanced Attenuated Total Reflection Correction: The Low Absorbance Assumption.","authors":"Thomas G Mayerhöfer, Jürgen Popp","doi":"10.1177/00037028241268024","DOIUrl":"10.1177/00037028241268024","url":null,"abstract":"<p><p>We present an attenuated total reflection (ATR) correction scheme capable of rectifying ATR spectra while considering the polarization state for arbitrary angles of incidence, provided that this angle exceeds the critical angle for the entire ATR spectrum. Due to its reliance on the weak absorption approximation, it cannot achieve perfect correction of the ATR spectra. However, comprehending its functionality may offer valuable insights into the concept behind the weak absorption approximation. Depending on the specific polarization state of an instrument accessory combination, this correction scheme may outperform the proprietary advanced ATR correction authored by ThermoFisher while being as user-friendly, but in contrast to the latter completely transparent with regard to its functionality.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"298-305"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-Induced Breakdown Spectroscopy as an Accurate Forensic Tool for Bone Classification and Individual Reassignment. 激光诱导击穿光谱法作为骨骼分类和个体重新分配的精确法医工具。
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-02-01 Epub Date: 2024-10-03 DOI: 10.1177/00037028241277897
Jafet Cárdenas-Escudero, David Galán-Madruga, Jorge O Cáceres

This article provides a detailed discussion of the evidence available to date on the application of laser-induced breakdown spectroscopy (LIBS) and supervised classification methods for the individual reassignment of commingled bone remains. Specialized bone chemistry studies have demonstrated the suitability of bone elemental composition as a distinct individual identifier. Given the widely documented ability of the LIBS technique to provide elemental emission spectra that are considered elemental fingerprints of the samples analyzed, the analytical potential of this technique has been assessed for the investigation of the contexts of commingled bone remains for their individual reassignment. The LIBS bone analysis consists of the direct ablation of micrometric portions of bone samples, either on their surface or within their internal structure. To produce reliable, accurate, and robust bone classifications, however, the available evidence suggests that LIBS spectral information must be processed by appropriate methods. When comparing the performance of seven different supervised classification methods using spectrochemical LIBS data for individual reassociation, those employing artificial intelligence-based algorithms produce analytically conclusive results, concretely individual reassociations with 100% accuracy, sensitivity, and robustness. Compared to LIBS, other techniques used for the purpose of interest exhibit limited performance in terms of robustness, sensitivity, and accuracy, as well as variations in these results depending on the type of bones used in the classification. The available literature supports the suitability of the LIBS technique for reliable individual reassociation of bone remains in a fast, simple, and cost-effective manner without the need for complicated sample processing.

本文详细讨论了迄今为止关于应用激光诱导击穿光谱法(LIBS)和监督分类法对混合骨骸进行个体重新定位的证据。专门的骨化学研究表明,骨元素成分适合作为独特的个体识别标志。鉴于有广泛的文献记载,LIBS 技术能够提供元素发射光谱,被认为是所分析样本的元素指纹,因此我们对该技术的分析潜力进行了评估,以调查混合骨骸的环境,对其进行个体重新归类。LIBS 骨分析包括直接烧蚀骨样本表面或内部结构的微米部分。不过,现有的证据表明,要进行可靠、准确和稳健的骨骼分类,必须采用适当的方法处理 LIBS 光谱信息。在比较使用光谱化学 LIBS 数据进行个体再关联的七种不同监督分类方法的性能时,那些采用基于人工智能算法的方法产生了分析上确凿的结果,具体而言,个体再关联的准确率、灵敏度和稳健性都达到了 100%。与 LIBS 相比,用于相关目的的其他技术在稳健性、灵敏度和准确性方面表现出有限的性能,而且这些结果因分类中使用的骨骼类型而异。现有文献证明,LIBS 技术适用于以快速、简单和具有成本效益的方式对遗骨进行可靠的个体再关联,而无需对样本进行复杂的处理。
{"title":"Laser-Induced Breakdown Spectroscopy as an Accurate Forensic Tool for Bone Classification and Individual Reassignment.","authors":"Jafet Cárdenas-Escudero, David Galán-Madruga, Jorge O Cáceres","doi":"10.1177/00037028241277897","DOIUrl":"10.1177/00037028241277897","url":null,"abstract":"<p><p>This article provides a detailed discussion of the evidence available to date on the application of laser-induced breakdown spectroscopy (LIBS) and supervised classification methods for the individual reassignment of commingled bone remains. Specialized bone chemistry studies have demonstrated the suitability of bone elemental composition as a distinct individual identifier. Given the widely documented ability of the LIBS technique to provide elemental emission spectra that are considered elemental fingerprints of the samples analyzed, the analytical potential of this technique has been assessed for the investigation of the contexts of commingled bone remains for their individual reassignment. The LIBS bone analysis consists of the direct ablation of micrometric portions of bone samples, either on their surface or within their internal structure. To produce reliable, accurate, and robust bone classifications, however, the available evidence suggests that LIBS spectral information must be processed by appropriate methods. When comparing the performance of seven different supervised classification methods using spectrochemical LIBS data for individual reassociation, those employing artificial intelligence-based algorithms produce analytically conclusive results, concretely individual reassociations with 100% accuracy, sensitivity, and robustness. Compared to LIBS, other techniques used for the purpose of interest exhibit limited performance in terms of robustness, sensitivity, and accuracy, as well as variations in these results depending on the type of bones used in the classification. The available literature supports the suitability of the LIBS technique for reliable individual reassociation of bone remains in a fast, simple, and cost-effective manner without the need for complicated sample processing.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"241-259"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid-Scan Fourier Transform Infrared Difference Spectroscopy with Two-Dimensional Correlation Analysis to Show the Build-Up of Light-Adapted States in Bacterial Photosynthetic Reaction Centers.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-01-24 DOI: 10.1177/00037028241304806
Alberto Mezzetti, Marco Malferrari, Giovanni Venturoli, Francesco Francia, Winfried Leibl, Isao Noda

Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state P+QA- to the neutral state PQA, the use of a 20.5 s continuous light from a lamp made it possible to follow both the build-up of a steady-state P+QA- population and its decay to PQA. Comparison between P+QA-/PQA FT-IR difference spectra obtained under (or 650 ms after) continuous illumination and obtained after one laser flash show small but meaningful differences, reflecting structural changes in the light-adapted state produced by the 20.5 s period of illumination. These differences are strikingly similar to those observed when comparing FT-IR difference spectra reflecting charge separation in photosystem II in light-adapted states and non-light-adapted states (c.f. Sipka et al., "Light-Adapted Charge-Separated State of Photosystem II: Structural and Functional Dynamics of the Closed Reaction Center". Plant Cell. 2021. 33(4): 1286-1302). Two-dimensional correlation spectroscopy analysis revealed that in all the observed series of time-resolved FT-IR difference spectra (under illumination, after illumination, and after a laser flash), marker bands at 1749, 1716, and 1668 cm-1 all evolve synchronously, demonstrating that electron transfer reactions and protein backbone response (at least the one reflected by the 1668 cm-1 band) are strongly correlated. Conversely, for spectra under and after continuous illumination, many asynchronicities are observed for (still unassigned) bands throughout the whole 1740-1200 cm-1 region, reflecting a more complicated molecular scenario in the RC upon build-up of the light-adapted state and during its relaxation to the resting neutral state.

{"title":"Rapid-Scan Fourier Transform Infrared Difference Spectroscopy with Two-Dimensional Correlation Analysis to Show the Build-Up of Light-Adapted States in Bacterial Photosynthetic Reaction Centers.","authors":"Alberto Mezzetti, Marco Malferrari, Giovanni Venturoli, Francesco Francia, Winfried Leibl, Isao Noda","doi":"10.1177/00037028241304806","DOIUrl":"https://doi.org/10.1177/00037028241304806","url":null,"abstract":"<p><p>Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from <i>Rhodobacter sphaeroides</i> under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state P<sup>+</sup>Q<sub>A</sub><sup>-</sup> to the neutral state PQ<sub>A</sub>, the use of a 20.5 s continuous light from a lamp made it possible to follow both the build-up of a steady-state P<sup>+</sup>Q<sub>A</sub><sup>-</sup> population and its decay to PQ<sub>A</sub>. Comparison between P<sup>+</sup>Q<sub>A</sub><sup>-</sup>/PQ<sub>A</sub> FT-IR difference spectra obtained under (or 650 ms after) continuous illumination and obtained after one laser flash show small but meaningful differences, reflecting structural changes in the light-adapted state produced by the 20.5 s period of illumination. These differences are strikingly similar to those observed when comparing FT-IR difference spectra reflecting charge separation in photosystem II in light-adapted states and non-light-adapted states (c.f. Sipka et al., \"Light-Adapted Charge-Separated State of Photosystem II: Structural and Functional Dynamics of the Closed Reaction Center\". Plant Cell. 2021. 33(4): 1286-1302). Two-dimensional correlation spectroscopy analysis revealed that in all the observed series of time-resolved FT-IR difference spectra (under illumination, after illumination, and after a laser flash), marker bands at 1749, 1716, and 1668 cm<sup>-1</sup> all evolve synchronously, demonstrating that electron transfer reactions and protein backbone response (at least the one reflected by the 1668 cm<sup>-1</sup> band) are strongly correlated. Conversely, for spectra under and after continuous illumination, many asynchronicities are observed for (still unassigned) bands throughout the whole 1740-1200 cm<sup>-1</sup> region, reflecting a more complicated molecular scenario in the RC upon build-up of the light-adapted state and during its relaxation to the resting neutral state.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241304806"},"PeriodicalIF":2.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Adaptive Fusion Regression (LAFR) for Local Linear Multivariate Calibration: Application to Large Datasets.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2025-01-23 DOI: 10.1177/00037028241308538
Robert Spiers, John H Kalivas

Impeding linear calibration models from accurately predicting target sample analyte amounts are the target sample-wise deviations in measurement profiles (e.g., spectra) relative to calibration samples. Target sample measurement shifts are due to uncontrollable factors, compositely termed matrix effects, such as temperature, instrument drift, and sample composition divergences relative to analyte and other species amounts altering inter and intramolecular interactions. One approach to circumvent the matrix effect matching problem is to use local modeling where a library with thousands of samples and respective reference analyte values is mined for unique calibration sets matched to each target sample, including analyte amounts between calibration and target samples. Current local modeling methods suffer because it is wrongly assumed similar measurements between calibration and target samples translate to a complete locally matched calibration set. Measurements can be similar, but the underlying matrix effects (and analyte amount) can be drastically different. The presented procedure named local adaptive fusion regression (LAFR) solves this matrix effect matching problem with crucial local modeling paradigm shifts. Expertise with LAFR is unnecessary because input hyperparameters are self-optimized. The capabilities of LAFR to form highly dense localized linear calibration sets matched to target samples spectrally and analyte amounts are verified using a well-studied nonlinear benchmark near-infrared (NIR) meat dataset, a NIR sugarcane dataset covering four major process steps with multiple subgroups within, and a NIR soil database of 98 910 samples spanning the contiguous USA. While LAFR is tested on NIR datasets, it is applicable to other measurement systems affected by matrix effects in a broad sense.

{"title":"Local Adaptive Fusion Regression (LAFR) for Local Linear Multivariate Calibration: Application to Large Datasets.","authors":"Robert Spiers, John H Kalivas","doi":"10.1177/00037028241308538","DOIUrl":"https://doi.org/10.1177/00037028241308538","url":null,"abstract":"<p><p>Impeding linear calibration models from accurately predicting target sample analyte amounts are the target sample-wise deviations in measurement profiles (e.g., spectra) relative to calibration samples. Target sample measurement shifts are due to uncontrollable factors, compositely termed matrix effects, such as temperature, instrument drift, and sample composition divergences relative to analyte and other species amounts altering inter and intramolecular interactions. One approach to circumvent the matrix effect matching problem is to use local modeling where a library with thousands of samples and respective reference analyte values is mined for unique calibration sets matched to each target sample, including analyte amounts between calibration and target samples. Current local modeling methods suffer because it is wrongly assumed similar measurements between calibration and target samples translate to a complete locally matched calibration set. Measurements can be similar, but the underlying matrix effects (and analyte amount) can be drastically different. The presented procedure named local adaptive fusion regression (LAFR) solves this matrix effect matching problem with crucial local modeling paradigm shifts. Expertise with LAFR is unnecessary because input hyperparameters are self-optimized. The capabilities of LAFR to form highly dense localized linear calibration sets matched to target samples spectrally and analyte amounts are verified using a well-studied nonlinear benchmark near-infrared (NIR) meat dataset, a NIR sugarcane dataset covering four major process steps with multiple subgroups within, and a NIR soil database of 98 910 samples spanning the contiguous USA. While LAFR is tested on NIR datasets, it is applicable to other measurement systems affected by matrix effects in a broad sense.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241308538"},"PeriodicalIF":2.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Spectroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1