首页 > 最新文献

Applied Spectroscopy最新文献

英文 中文
Integrated Optics Waveguides and Mesoporous Oxides for the Monitoring of Volatile Organic Compound Traces in the Mid-Infrared.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-18 DOI: 10.1177/00037028241300554
Felix Frank, Bettina Baumgartner, Mattias Verstuyft, Nuria Teigell Beneitez, Jeroen Missinne, Dries Van Thourhout, Gunther Roelkens, Bernhard Lendl

Volatile organic compounds (VOCs) are an ever-growing hazard for health and environment due to their increased emissions and accumulation in the air. Quantum cascade laser-based infrared (QCL-IR) sensors hold significant promise for gas monitoring, thanks to their compact, rugged design, high laser intensity, and high molecule-specific detection capabilities within the mid-infrared spectrum's fingerprint region. In this work, tunable external cavity QCLs were complemented by an innovative germanium-on-silicon integrated optics waveguide sensing platform with integrated microlenses for efficient backside optical interfacing for the tunable laser spectrometer. The waveguide chip was coated with a mesoporous silica coating, thereby increasing the signal by adsorptive enhancement of VOCs while at the same time limiting water vapor interferences. Different least square fitting methods were explored to deconvolute the resulting spectra, showing subparts-per-million by volume (sub-ppmv) limits of detection and enrichment factors of up to 22 000 while keeping the footprint of the setup small (29 × 23 × 11 cm³). Finally, a use-case simulation for the continuous detection of VOCs in a process analytical technology environment confirmed the high potential of the technique for the monitoring of contaminants. By successfully demonstrating the use of photonic waveguides for the monitoring of VOCs, this work offers a promising avenue for the further development of fully integrated sensors on a chip.

{"title":"Integrated Optics Waveguides and Mesoporous Oxides for the Monitoring of Volatile Organic Compound Traces in the Mid-Infrared.","authors":"Felix Frank, Bettina Baumgartner, Mattias Verstuyft, Nuria Teigell Beneitez, Jeroen Missinne, Dries Van Thourhout, Gunther Roelkens, Bernhard Lendl","doi":"10.1177/00037028241300554","DOIUrl":"https://doi.org/10.1177/00037028241300554","url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) are an ever-growing hazard for health and environment due to their increased emissions and accumulation in the air. Quantum cascade laser-based infrared (QCL-IR) sensors hold significant promise for gas monitoring, thanks to their compact, rugged design, high laser intensity, and high molecule-specific detection capabilities within the mid-infrared spectrum's fingerprint region. In this work, tunable external cavity QCLs were complemented by an innovative germanium-on-silicon integrated optics waveguide sensing platform with integrated microlenses for efficient backside optical interfacing for the tunable laser spectrometer. The waveguide chip was coated with a mesoporous silica coating, thereby increasing the signal by adsorptive enhancement of VOCs while at the same time limiting water vapor interferences. Different least square fitting methods were explored to deconvolute the resulting spectra, showing subparts-per-million by volume (sub-ppmv) limits of detection and enrichment factors of up to 22 000 while keeping the footprint of the setup small (29 × 23 × 11 cm³). Finally, a use-case simulation for the continuous detection of VOCs in a process analytical technology environment confirmed the high potential of the technique for the monitoring of contaminants. By successfully demonstrating the use of photonic waveguides for the monitoring of VOCs, this work offers a promising avenue for the further development of fully integrated sensors on a chip.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241300554"},"PeriodicalIF":2.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Polarization to Increase Contrast of Water OH Raman Scattering Relative to Fluorescence of Dissolved Organic Matter.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-16 DOI: 10.1177/00037028241303944
Callum E Twining, Paige K Williams, Whitney E Schuler, Caitlyn M English, Tammi L Richardson, Michael L Myrick

Environmental fluorescence measurements sometimes use water Raman scattering as an internal standard to compensate for path length, lensing effects, and turbidity. Fluorescent dissolved organic matter (FDOM) in water may interfere strongly with the measurement of this reference. However, fluorescence in fluid solution is largely unpolarized, while the OH stretching Raman band of water is always strongly polarized. Using an environmental sample from Lake Wateree in South Carolina, USA, we demonstrate that judicious use of this polarization allows for a significant level of improvement in the contrast or visibility of the water Raman band relative to FDOM.

环境荧光测量有时使用水拉曼散射作为内标,以补偿路径长度、透镜效应和浊度。水中的荧光溶解有机物(FDOM)可能会对这一标准的测量产生强烈干扰。然而,流体溶液中的荧光基本上是不偏振的,而水的羟基拉曼伸展波段总是强偏振的。通过使用来自美国南卡罗来纳州瓦特里湖的环境样本,我们证明了明智地使用这种极化可以显著提高水拉曼波段相对于 FDOM 的对比度或可见度。
{"title":"Using Polarization to Increase Contrast of Water OH Raman Scattering Relative to Fluorescence of Dissolved Organic Matter.","authors":"Callum E Twining, Paige K Williams, Whitney E Schuler, Caitlyn M English, Tammi L Richardson, Michael L Myrick","doi":"10.1177/00037028241303944","DOIUrl":"https://doi.org/10.1177/00037028241303944","url":null,"abstract":"<p><p>Environmental fluorescence measurements sometimes use water Raman scattering as an internal standard to compensate for path length, lensing effects, and turbidity. Fluorescent dissolved organic matter (FDOM) in water may interfere strongly with the measurement of this reference. However, fluorescence in fluid solution is largely unpolarized, while the OH stretching Raman band of water is always strongly polarized. Using an environmental sample from Lake Wateree in South Carolina, USA, we demonstrate that judicious use of this polarization allows for a significant level of improvement in the contrast or visibility of the water Raman band relative to FDOM.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241303944"},"PeriodicalIF":2.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Path Supercontinuum Near- to Mid-Infrared Correlation Spectroscopy of Aqueous Samples.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-16 DOI: 10.1177/00037028241302352
Doyinsola S Sonoiki, Kyei Kwarkye, Klavs M Sørensen, Søren B Engelsen, Ole Bang, Christian R Petersen

Combining near-infrared (NIR) and mid-infrared (MIR) spectroscopy to cover both the fundamental and overtone combination molecular vibrational resonances allows more robust analytical methods to be used, such as two-dimensional correlation spectroscopy. However, due to the strong differences in molar absorption coefficients and transparency of the optical material, it is inherently difficult to perform NIR and MIR spectroscopy on aqueous samples using a single instrument. Combining spectra from different instruments and sample presentations can result in unwanted spectral variations, which can influence the prediction models and mitigate the advantages of the combination approaches. In this work, a more consistent instrument response is achieved by combining a single supercontinuum (SC) laser spanning from 1000 to 4000 nm as the light source, with an attenuated total reflection crystal and a transmission cuvette in a single-path configuration. Using this approach, NIR-MIR correlation spectroscopy is demonstrated using a set of 22 aqueous samples with varying concentrations of ethanol, sucrose, and ʟ-proline.

将近红外线(NIR)和中红外线(MIR)光谱相结合,涵盖基频和泛音组合分子振动共振,可以使用更强大的分析方法,如二维相关光谱。然而,由于光学材料的摩尔吸收系数和透明度存在很大差异,因此使用一台仪器对水性样品进行近红外和中红外光谱分析本身就很困难。将来自不同仪器和样品的光谱组合在一起可能会导致不必要的光谱变化,从而影响预测模型,削弱组合方法的优势。在这项工作中,通过将波长从 1000 纳米到 4000 纳米的单个超连续(SC)激光器作为光源、衰减全反射晶体和透射比色皿以单路径配置相结合,实现了更加一致的仪器响应。利用这种方法,使用一组含有不同浓度乙醇、蔗糖和ʟ-脯氨酸的 22 种水溶液样品演示了近红外-近红外相关光谱。
{"title":"Single-Path Supercontinuum Near- to Mid-Infrared Correlation Spectroscopy of Aqueous Samples.","authors":"Doyinsola S Sonoiki, Kyei Kwarkye, Klavs M Sørensen, Søren B Engelsen, Ole Bang, Christian R Petersen","doi":"10.1177/00037028241302352","DOIUrl":"https://doi.org/10.1177/00037028241302352","url":null,"abstract":"<p><p>Combining near-infrared (NIR) and mid-infrared (MIR) spectroscopy to cover both the fundamental and overtone combination molecular vibrational resonances allows more robust analytical methods to be used, such as two-dimensional correlation spectroscopy. However, due to the strong differences in molar absorption coefficients and transparency of the optical material, it is inherently difficult to perform NIR and MIR spectroscopy on aqueous samples using a single instrument. Combining spectra from different instruments and sample presentations can result in unwanted spectral variations, which can influence the prediction models and mitigate the advantages of the combination approaches. In this work, a more consistent instrument response is achieved by combining a single supercontinuum (SC) laser spanning from 1000 to 4000 nm as the light source, with an attenuated total reflection crystal and a transmission cuvette in a single-path configuration. Using this approach, NIR-MIR correlation spectroscopy is demonstrated using a set of 22 aqueous samples with varying concentrations of ethanol, sucrose, and ʟ-proline.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241302352"},"PeriodicalIF":2.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-Enhanced Raman Spectroscopy (SERS) Substrates Based on Photonic Crystal Embedded Bi-Metallic Nanoparticles for Leptospiral DNA Detection.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-16 DOI: 10.1177/00037028241303780
Anis Athirah Abdul Razak, Liyana Shatar, Aima Ramli, Syara Kassim, Mohd Sabri Mohd Ghazali, Hui Yee Chee, Rozalina Zakaria, Mohd Adzir Mahdi, Fariza Hanim Suhailin

Leptospirosis is an acute bacterial febrile disease affecting humans and animals in many tropical and subtropical countries. This work presents an optimization of surface-enhanced Raman spectroscopy (SERS) substrates to probe vibrational spectroscopic detail from Leptospira deoxyribonucleic acid (DNA). The pathogenic gene of LipL32 was used as a biomarker. The SERS substrates were based on a photonic crystal (PC) structure embedded with bi-metallic gold and silver nanoparticles (PC@AuAg NPs). The localized plasmonic resonance of AuAg NPs was coupled to the Raman modes of the target through SERS interaction. Prior to detection, the AuAg NPs were functionalized with chemical linkers to facilitate specific conjugation between metallic surfaces and DNA biomolecules. The immobilization and hybridization of probe DNA to their complementary target DNA (cDNA) created duplex formation for detection. The configuration was also tested with non-complementary DNA to verify detection specificity. Prominent SERS peaks were recorded, and the characteristic intensity decreased after cDNA hybridization due to less base interaction after complementary pairing. Distinct SERS behavior from the negative control test was also observed in non-complementary interaction. The configuration is highly attractive and can be potentially extended for sensitive and label-free detection of leptospiral DNA, paving the way for alternative diagnosis of leptospirosis.

{"title":"Surface-Enhanced Raman Spectroscopy (SERS) Substrates Based on Photonic Crystal Embedded Bi-Metallic Nanoparticles for Leptospiral DNA Detection.","authors":"Anis Athirah Abdul Razak, Liyana Shatar, Aima Ramli, Syara Kassim, Mohd Sabri Mohd Ghazali, Hui Yee Chee, Rozalina Zakaria, Mohd Adzir Mahdi, Fariza Hanim Suhailin","doi":"10.1177/00037028241303780","DOIUrl":"https://doi.org/10.1177/00037028241303780","url":null,"abstract":"<p><p>Leptospirosis is an acute bacterial febrile disease affecting humans and animals in many tropical and subtropical countries. This work presents an optimization of surface-enhanced Raman spectroscopy (SERS) substrates to probe vibrational spectroscopic detail from <i>Leptospira</i> deoxyribonucleic acid (DNA). The pathogenic gene of LipL32 was used as a biomarker. The SERS substrates were based on a photonic crystal (PC) structure embedded with bi-metallic gold and silver nanoparticles (PC@AuAg NPs). The localized plasmonic resonance of AuAg NPs was coupled to the Raman modes of the target through SERS interaction. Prior to detection, the AuAg NPs were functionalized with chemical linkers to facilitate specific conjugation between metallic surfaces and DNA biomolecules. The immobilization and hybridization of probe DNA to their complementary target DNA (cDNA) created duplex formation for detection. The configuration was also tested with non-complementary DNA to verify detection specificity. Prominent SERS peaks were recorded, and the characteristic intensity decreased after cDNA hybridization due to less base interaction after complementary pairing. Distinct SERS behavior from the negative control test was also observed in non-complementary interaction. The configuration is highly attractive and can be potentially extended for sensitive and label-free detection of leptospiral DNA, paving the way for alternative diagnosis of leptospirosis.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241303780"},"PeriodicalIF":2.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric Non-Monochromatic Light as Reference in Fourier Transform Spectrometers.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-15 DOI: 10.1177/00037028241305415
Muqian Wen

Fourier transform spectrometers typically use a presumed monochromatic reference source to track and correct errors in optical path difference changes. This paper will conduct a theoretical analysis to show that non-monochromatic light sources with symmetric spectral profiles can also be used as reference sources without adding errors. An experiment was carried out using a symmetric broadband superluminescent diode (SLED) as reference light to measure the spectrum of some other SLED light sources to experimentally demonstrate this finding.

傅立叶变换光谱仪通常使用假定的单色参考光源来跟踪和纠正光路差变化的误差。本文将进行理论分析,说明具有对称光谱轮廓的非单色光源也可用作参考源,而不会增加误差。为了在实验中证明这一发现,我们进行了一项实验,使用对称宽带超发光二极管(SLED)作为参考光,测量其他一些 SLED 光源的光谱。
{"title":"Symmetric Non-Monochromatic Light as Reference in Fourier Transform Spectrometers.","authors":"Muqian Wen","doi":"10.1177/00037028241305415","DOIUrl":"https://doi.org/10.1177/00037028241305415","url":null,"abstract":"<p><p>Fourier transform spectrometers typically use a presumed monochromatic reference source to track and correct errors in optical path difference changes. This paper will conduct a theoretical analysis to show that non-monochromatic light sources with symmetric spectral profiles can also be used as reference sources without adding errors. An experiment was carried out using a symmetric broadband superluminescent diode (SLED) as reference light to measure the spectrum of some other SLED light sources to experimentally demonstrate this finding.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241305415"},"PeriodicalIF":2.2,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Calculation and Simulation of Peak Distortion of Absorption Spectra of Complex Mixtures.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-10 DOI: 10.1177/00037028241297179
Rui Cheng, Thomas G Mayerhöfer, Johannes Kiefer

Attenuated total reflection (ATR) spectroscopy in infrared is a standard tool used in most analytical labs, as it allows a rapid chemical analysis with virtually no sample preparation. However, when the sample contains materials with a high refractive index, special care must be taken as the resulting data may be severely biased. This article reports a theoretical approach to correcting distorted ATR spectra. Starting from Snell's law, Lorenz model and Fresnel's equations are combined to obtain the complex relationship between optical constants. With calculating the real and imaginary parts, that is, n(ν) and k(ν), respectively, of the complex refractive index from the absorption spectrum, a model for mixtures comprising of a liquid and a solid is established. The effects of distortion and potential misinterpretation of the data are discussed. Proof-of-concept experiments with mixtures of carbonaceous materials and toluene confirm the theoretically predicted observations.

{"title":"Theoretical Calculation and Simulation of Peak Distortion of Absorption Spectra of Complex Mixtures.","authors":"Rui Cheng, Thomas G Mayerhöfer, Johannes Kiefer","doi":"10.1177/00037028241297179","DOIUrl":"https://doi.org/10.1177/00037028241297179","url":null,"abstract":"<p><p>Attenuated total reflection (ATR) spectroscopy in infrared is a standard tool used in most analytical labs, as it allows a rapid chemical analysis with virtually no sample preparation. However, when the sample contains materials with a high refractive index, special care must be taken as the resulting data may be severely biased. This article reports a theoretical approach to correcting distorted ATR spectra. Starting from Snell's law, Lorenz model and Fresnel's equations are combined to obtain the complex relationship between optical constants. With calculating the real and imaginary parts, that is, <math><mi>n</mi><mo>(</mo><mi>ν</mi><mo>)</mo></math> and <math><mi>k</mi><mo>(</mo><mi>ν</mi><mo>)</mo></math>, respectively, of the complex refractive index from the absorption spectrum, a model for mixtures comprising of a liquid and a solid is established. The effects of distortion and potential misinterpretation of the data are discussed. Proof-of-concept experiments with mixtures of carbonaceous materials and toluene confirm the theoretically predicted observations.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241297179"},"PeriodicalIF":2.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triplet Network for One-Shot Raman Spectrum Recognition.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-09 DOI: 10.1177/00037028241297180
Bo Wang, Pu Zhang, Wei Zhao, Wenzhen Ren, Xiangping Zhu, Ying Jiao, Qi Liao, Zhen Yao

Raman spectroscopy is widely used for material detection due to its specificity, but its application to spectral recognition often faces limitations due to insufficient training data, unlike fields such as image recognition. Traditional machine learning or basic neural networks are commonly used, but they have limited ability to achieve high precision. We have proposed a novel approach that combines the Triplet network (TN) and K-nearest neighbor (KNN) techniques to address this issue. TN maps the Raman spectral sequences to a 128-dimensional Euclidean space to extract features, enabling the features in the new space to more accurately represent the similarities or differences between spectra, and then utilizes the KNN algorithm to perform classification tasks in this feature space. Our method exhibits superior performance in recognizing unknown Raman spectra with minimal training samples per class. We employed a handheld Raman spectrometer with an excitation wavelength of 785 nm to collect the Raman spectra of 36 samples, including 28 safe materials and eight hazardous materials. Using only one spectrum as a support set for each category, the hazardous samples were successfully distinguished from the safe samples with an accuracy of 99.6%. Additionally, our model offers adaptability without requiring exhaustive retraining when adding new prediction classes. In situations with high background fluorescence, the TN performs better in measuring the distance between spectra of the same class than traditional distance measurement methods.

{"title":"Triplet Network for One-Shot Raman Spectrum Recognition.","authors":"Bo Wang, Pu Zhang, Wei Zhao, Wenzhen Ren, Xiangping Zhu, Ying Jiao, Qi Liao, Zhen Yao","doi":"10.1177/00037028241297180","DOIUrl":"https://doi.org/10.1177/00037028241297180","url":null,"abstract":"<p><p>Raman spectroscopy is widely used for material detection due to its specificity, but its application to spectral recognition often faces limitations due to insufficient training data, unlike fields such as image recognition. Traditional machine learning or basic neural networks are commonly used, but they have limited ability to achieve high precision. We have proposed a novel approach that combines the Triplet network (TN) and K-nearest neighbor (KNN) techniques to address this issue. TN maps the Raman spectral sequences to a 128-dimensional Euclidean space to extract features, enabling the features in the new space to more accurately represent the similarities or differences between spectra, and then utilizes the KNN algorithm to perform classification tasks in this feature space. Our method exhibits superior performance in recognizing unknown Raman spectra with minimal training samples per class. We employed a handheld Raman spectrometer with an excitation wavelength of 785 nm to collect the Raman spectra of 36 samples, including 28 safe materials and eight hazardous materials. Using only one spectrum as a support set for each category, the hazardous samples were successfully distinguished from the safe samples with an accuracy of 99.6%. Additionally, our model offers adaptability without requiring exhaustive retraining when adding new prediction classes. In situations with high background fluorescence, the TN performs better in measuring the distance between spectra of the same class than traditional distance measurement methods.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241297180"},"PeriodicalIF":2.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principal Component Analysis and Near-Infrared Spectroscopy as Noninvasive Blood Glucose Assay Methods.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-08 DOI: 10.1177/00037028241300535
Hadi Barati, Arian Mousavi Madani, Sorena Shadzinavaz, Mehdi Fardmanesh

In this paper, a new model is presented for estimation of the blood glucose level from the measured near-infrared absorbance. The model has been developed in such a way that the regression coefficients of this linear relation have been approximated by considering only the molar absorptivity of the glucose and the obtained coefficients have been utilized to estimate the blood glucose levels from the measured absorbances. The estimation of the blood glucose concentrations by this blind approach exhibited an acceptable accuracy in comparison to the more accurate principal components regression method. The blood sample absorbances have been measured using a Fourier transform infrared device while the blood glucose levels have been determined by a commercial finger-prick glucometer device.

{"title":"Principal Component Analysis and Near-Infrared Spectroscopy as Noninvasive Blood Glucose Assay Methods.","authors":"Hadi Barati, Arian Mousavi Madani, Sorena Shadzinavaz, Mehdi Fardmanesh","doi":"10.1177/00037028241300535","DOIUrl":"https://doi.org/10.1177/00037028241300535","url":null,"abstract":"<p><p>In this paper, a new model is presented for estimation of the blood glucose level from the measured near-infrared absorbance. The model has been developed in such a way that the regression coefficients of this linear relation have been approximated by considering only the molar absorptivity of the glucose and the obtained coefficients have been utilized to estimate the blood glucose levels from the measured absorbances. The estimation of the blood glucose concentrations by this blind approach exhibited an acceptable accuracy in comparison to the more accurate principal components regression method. The blood sample absorbances have been measured using a Fourier transform infrared device while the blood glucose levels have been determined by a commercial finger-prick glucometer device.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241300535"},"PeriodicalIF":2.2,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying Finite Mixture Models to Quantify Respirable Dust Mass in Coal and Metal-Nonmetal Mines Using Fourier Transform Infrared Spectroscopy.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-05 DOI: 10.1177/00037028241296158
Andrew T Weakley, David A Parks, Arthur L Miller

Respirable dust mass is a prevalent occupational health hazard to the mining workforce. Mineral matrices observed in the mine environment are complex, time varying, and heterogeneous. This poses a challenge to assessing dust exposure using Fourier transform infrared (FT-IR) spectrometry as calibrations for constituent dust species (e.g., crystalline silica) have historically been trained using homogeneous standards or simple mixtures therein. Investigations have considered direct-on-filter analysis, which collects FT-IR spectra directly from sampling filters for calibration, as an alternative. Direct-on-filter analysis using a partial least squares (PLS) method has gained particular interest recently due to the potential to rapidly quantify multiple species from a single filter at the mine site. By design, heterogeneity, and its presumed impact on method accuracy, cannot be addressed in the laboratory when using a direct-on-filter approach motivating the need for more advanced calibration approaches. When heterogeneity is present, mixture of experts (MoE) finite mixture models offer a promising and novel alternative to PLS direct-on-filter analysis as MoE incorporates cluster discovery, regression, and outlier identification into model fitting. Three MoE models of increasing complexity were tasked with determining respirable dust mass in 243 field samples from thirteen active coal, limestone, sandstone, and silver mines. All MoE models, including those using only "expert" spectroscopic predictors or a combination of expert and categorical "gate" variables (e.g., mine type), significantly outperform PLS in terms of accuracy (α = 0.05). Decomposing bias by mine type shows that accuracy generally improves across all types considered when MoE models are not overfitted. The MoE method's effectiveness was linked to its ability to endogenously classify outliers as well as possibly to the use of an additional cluster model for mass predictions. Overall, MoE methods appear as a capable and novel tool to addressing problems of heterogeneity for direct-on-filter quantitative analysis.

{"title":"Applying Finite Mixture Models to Quantify Respirable Dust Mass in Coal and Metal-Nonmetal Mines Using Fourier Transform Infrared Spectroscopy.","authors":"Andrew T Weakley, David A Parks, Arthur L Miller","doi":"10.1177/00037028241296158","DOIUrl":"https://doi.org/10.1177/00037028241296158","url":null,"abstract":"<p><p>Respirable dust mass is a prevalent occupational health hazard to the mining workforce. Mineral matrices observed in the mine environment are complex, time varying, and heterogeneous. This poses a challenge to assessing dust exposure using Fourier transform infrared (FT-IR) spectrometry as calibrations for constituent dust species (e.g., crystalline silica) have historically been trained using homogeneous standards or simple mixtures therein. Investigations have considered direct-on-filter analysis, which collects FT-IR spectra directly from sampling filters for calibration, as an alternative. Direct-on-filter analysis using a partial least squares (PLS) method has gained particular interest recently due to the potential to rapidly quantify multiple species from a single filter at the mine site. By design, heterogeneity, and its presumed impact on method accuracy, cannot be addressed in the laboratory when using a direct-on-filter approach motivating the need for more advanced calibration approaches. When heterogeneity is present, mixture of experts (MoE) finite mixture models offer a promising and novel alternative to PLS direct-on-filter analysis as MoE incorporates cluster discovery, regression, and outlier identification into model fitting. Three MoE models of increasing complexity were tasked with determining respirable dust mass in 243 field samples from thirteen active coal, limestone, sandstone, and silver mines. All MoE models, including those using only \"expert\" spectroscopic predictors or a combination of expert and categorical \"gate\" variables (e.g., mine type), significantly outperform PLS in terms of accuracy (α = 0.05). Decomposing bias by mine type shows that accuracy generally improves across all types considered when MoE models are not overfitted. The MoE method's effectiveness was linked to its ability to endogenously classify outliers as well as possibly to the use of an additional cluster model for mass predictions. Overall, MoE methods appear as a capable and novel tool to addressing problems of heterogeneity for direct-on-filter quantitative analysis.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241296158"},"PeriodicalIF":2.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Breast Cancer Gene Type 1 (BRCA1) Protein Levels in Cancer Tissue Using Surface-Enhanced Raman Spectroscopy.
IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-12-05 DOI: 10.1177/00037028241297716
Ece Miser-Salihoğlu, Hasan İlhan, Uğur Tamer, Sevgi Akaydin

Raman spectroscopy is a chemical process that utilizes the interaction between light and matter to get significant insights into the structure or characteristics of matter. Raman spectroscopy techniques, such as quantitative evaluation, early diagnostic capabilities, and elucidation of the spectral properties of tissues, are excellent candidates for use in research. In cancer, changes in genes and proteins expressed by related genes are associated with a poor prognosis and aggressive tumor characteristics. Due to modifications and regulatory steps in protein translation, the results of the messenger RNA (mRNA) expression of genes may not correctly reflect the results of protein expression. For this reason, the mRNA and protein expressions of genes are studied in parallel in molecular studies on cancer. In our study, the breast cancer gene type 1 (BRCA1) gene, which is frequently studied in breast cancer and is relatively more difficult to measure by traditional methods due to its high molecular weight, was selected, and protein quantification was performed in tissue samples by Raman spectroscopy. With Raman spectroscopy, it is possible to obtain rapid and precise quantitative results even with a small amount of sample, so it is quite advantageous compared to traditional methods. In our study, we performed surface-enhanced Raman spectroscopy (SERS) to analyze the quantitative protein amount. SERS is a highly sensitive method for detecting compounds at low concentrations. For this purpose, magnetic nanoparticles modified with protein antibodies were used, and the target protein was withdrawn from the complex environment and transferred to an appropriate buffer environment. The calibration curve for BRCA1, which plots Raman intensity against concentration, was derived by calculating the average response reading from duplicate assays conducted under identical conditions. The BRCA1 protein levels of cells were determined from the regression curve of the BRCA1 protein. The relation between the concentration of BRCA1 protein and SERS spectrum intensity was determined to be logarithmic in the range of 300 µg·mL-1 to 292 ng·mL-1 (R2 = 0.9928, limit of detection = 10.41 µg·mL-1, and limit of quantitation = 31.24 µg·mL-1).

{"title":"Evaluation of Breast Cancer Gene Type 1 (BRCA1) Protein Levels in Cancer Tissue Using Surface-Enhanced Raman Spectroscopy.","authors":"Ece Miser-Salihoğlu, Hasan İlhan, Uğur Tamer, Sevgi Akaydin","doi":"10.1177/00037028241297716","DOIUrl":"https://doi.org/10.1177/00037028241297716","url":null,"abstract":"<p><p>Raman spectroscopy is a chemical process that utilizes the interaction between light and matter to get significant insights into the structure or characteristics of matter. Raman spectroscopy techniques, such as quantitative evaluation, early diagnostic capabilities, and elucidation of the spectral properties of tissues, are excellent candidates for use in research. In cancer, changes in genes and proteins expressed by related genes are associated with a poor prognosis and aggressive tumor characteristics. Due to modifications and regulatory steps in protein translation, the results of the messenger RNA (mRNA) expression of genes may not correctly reflect the results of protein expression. For this reason, the mRNA and protein expressions of genes are studied in parallel in molecular studies on cancer. In our study, the breast cancer gene type 1 (BRCA1) gene, which is frequently studied in breast cancer and is relatively more difficult to measure by traditional methods due to its high molecular weight, was selected, and protein quantification was performed in tissue samples by Raman spectroscopy. With Raman spectroscopy, it is possible to obtain rapid and precise quantitative results even with a small amount of sample, so it is quite advantageous compared to traditional methods. In our study, we performed surface-enhanced Raman spectroscopy (SERS) to analyze the quantitative protein amount. SERS is a highly sensitive method for detecting compounds at low concentrations. For this purpose, magnetic nanoparticles modified with protein antibodies were used, and the target protein was withdrawn from the complex environment and transferred to an appropriate buffer environment. The calibration curve for BRCA1, which plots Raman intensity against concentration, was derived by calculating the average response reading from duplicate assays conducted under identical conditions. The BRCA1 protein levels of cells were determined from the regression curve of the BRCA1 protein. The relation between the concentration of BRCA1 protein and SERS spectrum intensity was determined to be logarithmic in the range of 300 µg·mL<sup>-1</sup> to 292 ng·mL<sup>-1</sup> (<i>R</i><sup>2</sup> = 0.9928, limit of detection = 10.41 µg·mL<sup>-1</sup>, and limit of quantitation = 31.24 µg·mL<sup>-1</sup>).</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241297716"},"PeriodicalIF":2.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Spectroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1