Pub Date : 2024-06-22DOI: 10.1016/j.antiviral.2024.105945
Jane A. Potter , Angus Aitken , Lei Yang , Jennifer Hill , Antoni Tortajada , Julia L. Hurwitz , Bart G. Jones , Nadiawati Alias , Mingkui Zhou , Helen Connaris
Broad-acting antiviral strategies to prevent respiratory tract infections are urgently required. Emerging or re-emerging viral diseases caused by new or genetic variants of viruses such as influenza viruses (IFVs), respiratory syncytial viruses (RSVs), human rhinoviruses (HRVs), parainfluenza viruses (PIVs) or coronaviruses (CoVs), pose a severe threat to human health, particularly in the very young or old, or in those with pre-existing respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD). Although vaccines remain a key component in controlling and preventing viral infections, they are unable to provide broad-spectrum protection against recurring seasonal infections or newly emerging threats. HEX17 (aka Neumifil), is a first-in-class protein-based antiviral prophylactic for respiratory viral infections. HEX17 consists of a hexavalent carbohydrate-binding module (CBM) with high affinity to sialic acids, which are typically present on terminating branches of glycans on viral cellular receptors. This allows HEX17 to block virus engagement of host receptors and inhibit infection of a wide range of viral pathogens and their variants with reduced risk of antiviral resistance. As described herein, HEX17 has demonstrated broad-spectrum efficacy against respiratory viral pathogens including IFV, RSV, CoV and HRV in multiple in vivo and in vitro studies. In addition, HEX17 can be easily administered via an intranasal spray and is currently undergoing clinical trials.
{"title":"HEX17(Neumifil): An intranasal respiratory biotherapeutic with broad-acting antiviral activity","authors":"Jane A. Potter , Angus Aitken , Lei Yang , Jennifer Hill , Antoni Tortajada , Julia L. Hurwitz , Bart G. Jones , Nadiawati Alias , Mingkui Zhou , Helen Connaris","doi":"10.1016/j.antiviral.2024.105945","DOIUrl":"10.1016/j.antiviral.2024.105945","url":null,"abstract":"<div><p>Broad-acting antiviral strategies to prevent respiratory tract infections are urgently required. Emerging or re-emerging viral diseases caused by new or genetic variants of viruses such as influenza viruses (IFVs), respiratory syncytial viruses (RSVs), human rhinoviruses (HRVs), parainfluenza viruses (PIVs) or coronaviruses (CoVs), pose a severe threat to human health, particularly in the very young or old, or in those with pre-existing respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD). Although vaccines remain a key component in controlling and preventing viral infections, they are unable to provide broad-spectrum protection against recurring seasonal infections or newly emerging threats. HEX17 (aka Neumifil), is a first-in-class protein-based antiviral prophylactic for respiratory viral infections. HEX17 consists of a hexavalent carbohydrate-binding module (CBM) with high affinity to sialic acids, which are typically present on terminating branches of glycans on viral cellular receptors. This allows HEX17 to block virus engagement of host receptors and inhibit infection of a wide range of viral pathogens and their variants with reduced risk of antiviral resistance. As described herein, HEX17 has demonstrated broad-spectrum efficacy against respiratory viral pathogens including IFV, RSV, CoV and HRV in multiple <em>in vivo</em> and <em>in vitro</em> studies. In addition, HEX17 can be easily administered via an intranasal spray and is currently undergoing clinical trials.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105945"},"PeriodicalIF":4.5,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224001542/pdfft?md5=6d148cabe5e92b6b9cae336352881b12&pid=1-s2.0-S0166354224001542-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1016/j.antiviral.2024.105939
Eva Ogire , Laure Perrin-Cocon , Marianne Figl , Cindy Kundlacz , Clémence Jacquemin , Sophie Hubert , Anne Aublin-Gex , Johan Toesca , Christophe Ramière , Pierre-Olivier Vidalain , Cyrille Mathieu , Vincent Lotteau , Olivier Diaz
Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.
{"title":"Dengue Virus dependence on glucokinase activity and glycolysis Confers Sensitivity to NAD(H) biosynthesis inhibitors","authors":"Eva Ogire , Laure Perrin-Cocon , Marianne Figl , Cindy Kundlacz , Clémence Jacquemin , Sophie Hubert , Anne Aublin-Gex , Johan Toesca , Christophe Ramière , Pierre-Olivier Vidalain , Cyrille Mathieu , Vincent Lotteau , Olivier Diaz","doi":"10.1016/j.antiviral.2024.105939","DOIUrl":"10.1016/j.antiviral.2024.105939","url":null,"abstract":"<div><p>Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105939"},"PeriodicalIF":4.5,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224001487/pdfft?md5=390b2e6286ac84363ad809e5d790fae0&pid=1-s2.0-S0166354224001487-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1016/j.antiviral.2024.105936
Jiawei Pei , Ye Tian , Yamei Dang , Wei Ye , Xiaoqian Liu , Ningbo Zhao , Jiangfan Han , Yongheng Yang , Ziqing Zhou , Xudong Zhu , Hao Zhang , Arshad Ali , Yu Li , Fanglin Zhang , Yingfeng Lei , Airong Qian
Herpes simplex virus-1 (HSV-1) infection can cause various diseases and the current therapeutics have limited efficacy. Small interfering RNA (siRNA) therapeutics are a promising approach against infectious diseases by targeting the viral mRNAs directly. Recently, we employed a novel tRNA scaffold to produce recombinant siRNA agents with few natural posttranscriptional modifications. In this study, we aimed to develop a specific prodrug against HSV-1 infection based on siRNA therapeutics by bioengineering technology. We screened and found that UL8 of the HSV-1 genome was an ideal antiviral target based on RNAi. Next, we used a novel bio-engineering approach to manufacture recombinant UL8-siRNA (r/si-UL8) in Escherichia coli with high purity and activity. The r/si-UL8 was selectively processed to mature si-UL8 and significantly reduced the number of infectious virions in human cells. r/si-UL8 delivered by flexible nano-liposomes significantly decreased the viral load in the skin and improved the survival rate in the preventive mouse zosteriform model. Furthermore, r/si-UL8 also effectively inhibited HSV-1 infection in a 3D human epidermal skin model. Taken together, our results highlight that the novel siRNA bioengineering technology is a unique addition to the conventional approach for siRNA therapeutics and r/si-UL8 may be a promising prodrug for curing HSV-1 infection.
{"title":"Flexible nano-liposomes-encapsulated recombinant UL8-siRNA (r/si-UL8) based on bioengineering strategy inhibits herpes simplex virus-1 infection","authors":"Jiawei Pei , Ye Tian , Yamei Dang , Wei Ye , Xiaoqian Liu , Ningbo Zhao , Jiangfan Han , Yongheng Yang , Ziqing Zhou , Xudong Zhu , Hao Zhang , Arshad Ali , Yu Li , Fanglin Zhang , Yingfeng Lei , Airong Qian","doi":"10.1016/j.antiviral.2024.105936","DOIUrl":"10.1016/j.antiviral.2024.105936","url":null,"abstract":"<div><p>Herpes simplex virus-1 (HSV-1) infection can cause various diseases and the current therapeutics have limited efficacy. Small interfering RNA (siRNA) therapeutics are a promising approach against infectious diseases by targeting the viral mRNAs directly. Recently, we employed a novel tRNA scaffold to produce recombinant siRNA agents with few natural posttranscriptional modifications. In this study, we aimed to develop a specific prodrug against HSV-1 infection based on siRNA therapeutics by bioengineering technology. We screened and found that UL8 of the HSV-1 genome was an ideal antiviral target based on RNAi. Next, we used a novel bio-engineering approach to manufacture recombinant UL8-siRNA (r/si-UL8) in Escherichia coli with high purity and activity. The r/si-UL8 was selectively processed to mature si-UL8 and significantly reduced the number of infectious virions in human cells. r/si-UL8 delivered by flexible nano-liposomes significantly decreased the viral load in the skin and improved the survival rate in the preventive mouse zosteriform model. Furthermore, r/si-UL8 also effectively inhibited HSV-1 infection in a 3D human epidermal skin model. Taken together, our results highlight that the novel siRNA bioengineering technology is a unique addition to the conventional approach for siRNA therapeutics and r/si-UL8 may be a promising prodrug for curing HSV-1 infection.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105936"},"PeriodicalIF":4.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1016/j.antiviral.2024.105942
Jun Dai , Yiyi Feng , Ying Liao , Lei Tan , Yingjie Sun , Cuiping Song , Xusheng Qiu , Chan Ding
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
{"title":"Virus infection and sphingolipid metabolism","authors":"Jun Dai , Yiyi Feng , Ying Liao , Lei Tan , Yingjie Sun , Cuiping Song , Xusheng Qiu , Chan Ding","doi":"10.1016/j.antiviral.2024.105942","DOIUrl":"10.1016/j.antiviral.2024.105942","url":null,"abstract":"<div><p>Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105942"},"PeriodicalIF":4.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1016/j.antiviral.2024.105943
Yuan Wen , Shuyue Deng , Tianmin Wang , Mengtian Gao , Wenlong Nan , Fang Tang , Qinghong Xue , Yanmin Ju , Jianjun Dai , Yurong Wei , Feng Xue
Poxviruses gained international attention due to the sharp rise in monkeypox cases in recent years, highlighting the urgent need for the development of a secure and reliable vaccine. This study involved the development of an innovative combined subunit vaccine (CSV) targeting poxviruses, with lumpy skin disease virus (LSDV) serving as the model virus. To this end, the potential sites for poxvirus vaccines were fully evaluated to develop and purify four recombinant proteins. These proteins were then successfully delivered to the dermis in a mouse model by utilizing dissolvable microneedle patches (DMPs). This approach simplified the vaccination procedure and significantly mitigated the associated risk. CSV-loaded DMPs contained four recombinant proteins and a novel adjuvant, CpG, which allowed DMPs to elicit the same intensity of humoral and cellular immunity as subcutaneous injection. Following immunization with SC and DMP, the mice exhibited notable levels of neutralizing antibodies, albeit at a low concentration. It is noteworthy that the CSV loaded into DMPs remained stable for at least 4 months at room temperature, effectively addressing the storage and transportation challenges. Based on the study findings, CSV-loaded DMPs are expected to be utilized worldwide as an innovative technique for poxvirus inoculation, especially in underdeveloped regions. This novel strategy is crucial for the development of future poxvirus vaccines.
{"title":"Novel strategy for Poxviridae prevention: Thermostable combined subunit vaccine patch with intense immune response","authors":"Yuan Wen , Shuyue Deng , Tianmin Wang , Mengtian Gao , Wenlong Nan , Fang Tang , Qinghong Xue , Yanmin Ju , Jianjun Dai , Yurong Wei , Feng Xue","doi":"10.1016/j.antiviral.2024.105943","DOIUrl":"10.1016/j.antiviral.2024.105943","url":null,"abstract":"<div><p>Poxviruses gained international attention due to the sharp rise in monkeypox cases in recent years, highlighting the urgent need for the development of a secure and reliable vaccine. This study involved the development of an innovative combined subunit vaccine (CSV) targeting poxviruses, with lumpy skin disease virus (LSDV) serving as the model virus. To this end, the potential sites for poxvirus vaccines were fully evaluated to develop and purify four recombinant proteins. These proteins were then successfully delivered to the dermis in a mouse model by utilizing dissolvable microneedle patches (DMPs). This approach simplified the vaccination procedure and significantly mitigated the associated risk. CSV-loaded DMPs contained four recombinant proteins and a novel adjuvant, CpG, which allowed DMPs to elicit the same intensity of humoral and cellular immunity as subcutaneous injection. Following immunization with SC and DMP, the mice exhibited notable levels of neutralizing antibodies, albeit at a low concentration. It is noteworthy that the CSV loaded into DMPs remained stable for at least 4 months at room temperature, effectively addressing the storage and transportation challenges. Based on the study findings, CSV-loaded DMPs are expected to be utilized worldwide as an innovative technique for poxvirus inoculation, especially in underdeveloped regions. This novel strategy is crucial for the development of future poxvirus vaccines.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105943"},"PeriodicalIF":4.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1016/j.antiviral.2024.105941
Marta Zimna , Gabriela Brzuska , Jiří Salát , Daniel Růžek , Ewelina Krol
Tick-borne encephalitis virus (TBEV) is a tick-borne flavivirus that induces severe central nervous system disorders. It has recently raised concerns due to an expanding geographical range and increasing infection rates. Existing vaccines, though effective, face low coverage rates in numerous TBEV endemic regions. Our previous work demonstrated the immunogenicity and full protection afforded by a TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells in immunization studies in a mouse model. In the present study, we explored the impact of adjuvants (AddaS03™, Alhydrogel®+MPLA) and administration routes (subcutaneous, intramuscular) on the immune response. Adjuvanted groups exhibited significantly enhanced antibody responses, higher avidity, and more balanced Th1/Th2 response. IFN-γ responses depended on the adjuvant type, while antibody levels were influenced by both adjuvant and administration routes. The combination of Leishmania-derived TBEV VLPs with Alhydrogel® and MPLA via intramuscular administration emerged as a highly promising prophylactic vaccine candidate, eliciting a robust, balanced immune response with substantial neutralization potential.
{"title":"Influence of adjuvant type and route of administration on the immunogenicity of Leishmania-derived tick-borne encephalitis virus-like particles – A recombinant vaccine candidate","authors":"Marta Zimna , Gabriela Brzuska , Jiří Salát , Daniel Růžek , Ewelina Krol","doi":"10.1016/j.antiviral.2024.105941","DOIUrl":"10.1016/j.antiviral.2024.105941","url":null,"abstract":"<div><p>Tick-borne encephalitis virus (TBEV) is a tick-borne flavivirus that induces severe central nervous system disorders. It has recently raised concerns due to an expanding geographical range and increasing infection rates. Existing vaccines, though effective, face low coverage rates in numerous TBEV endemic regions. Our previous work demonstrated the immunogenicity and full protection afforded by a TBEV vaccine based on virus-like particles (VLPs) produced in <em>Leishmania tarentolae</em> cells in immunization studies in a mouse model. In the present study, we explored the impact of adjuvants (AddaS03™, Alhydrogel®+MPLA) and administration routes (subcutaneous, intramuscular) on the immune response. Adjuvanted groups exhibited significantly enhanced antibody responses, higher avidity, and more balanced Th1/Th2 response. IFN-γ responses depended on the adjuvant type, while antibody levels were influenced by both adjuvant and administration routes. The combination of <em>Leishmania</em>-derived TBEV VLPs with Alhydrogel® and MPLA via intramuscular administration emerged as a highly promising prophylactic vaccine candidate, eliciting a robust, balanced immune response with substantial neutralization potential.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105941"},"PeriodicalIF":4.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224001505/pdfft?md5=2e660cd5571a7ac73329f5615ef0d145&pid=1-s2.0-S0166354224001505-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.antiviral.2024.105937
Thayne H. Dickey , Nichole D. Salinas , Palak Patel , Sachy Orr-Gonzalez , Tarik Ouahes , Holly McAleese , Brandi L. Richardson , Myesha Singleton , Michael Murphy , Brett Eaton , Jennifer L. Kwan , Michael R. Holbrook , Lynn E. Lambert , Niraj H. Tolia
Most COVID-19 vaccines contain the SARS-CoV-2 spike protein as an antigen, but they lose efficacy as neutralizing antibody titers wane and escape variants emerge. Modifying the spike antigen to increase neutralizing antibody titers would help counteract this decrease in titer. We previously used a structure-based computational design method to identify nine amino acid changes in the receptor-binding domain (RBD) of spike that stabilize the RBD and increase the neutralizing antibody titers elicited by vaccination. Here, we introduce those enhancing amino acid changes into a full-length spike (FL-S-2P) ectodomain representative of most approved vaccine antigens. These amino acid changes can be incorporated into the FL-S-2P protein without negatively effecting expression or stability. Furthermore, the amino acid changes improved functional antibody titers in both mice and monkeys following vaccination. These amino acid changes could increase the duration of protection conferred by most COVID-19 vaccines.
{"title":"RBD design increases the functional antibody titers elicited by SARS-CoV-2 spike vaccination","authors":"Thayne H. Dickey , Nichole D. Salinas , Palak Patel , Sachy Orr-Gonzalez , Tarik Ouahes , Holly McAleese , Brandi L. Richardson , Myesha Singleton , Michael Murphy , Brett Eaton , Jennifer L. Kwan , Michael R. Holbrook , Lynn E. Lambert , Niraj H. Tolia","doi":"10.1016/j.antiviral.2024.105937","DOIUrl":"10.1016/j.antiviral.2024.105937","url":null,"abstract":"<div><p>Most COVID-19 vaccines contain the SARS-CoV-2 spike protein as an antigen, but they lose efficacy as neutralizing antibody titers wane and escape variants emerge. Modifying the spike antigen to increase neutralizing antibody titers would help counteract this decrease in titer. We previously used a structure-based computational design method to identify nine amino acid changes in the receptor-binding domain (RBD) of spike that stabilize the RBD and increase the neutralizing antibody titers elicited by vaccination. Here, we introduce those enhancing amino acid changes into a full-length spike (FL-S-2P) ectodomain representative of most approved vaccine antigens. These amino acid changes can be incorporated into the FL-S-2P protein without negatively effecting expression or stability. Furthermore, the amino acid changes improved functional antibody titers in both mice and monkeys following vaccination. These amino acid changes could increase the duration of protection conferred by most COVID-19 vaccines.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105937"},"PeriodicalIF":4.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.antiviral.2024.105940
Kerstin K. Schwickert , Mirco Glitscher , Daniela Bender , Nuka Ivalu Benz , Robin Murra , Kevin Schwickert , Steffen Pfalzgraf , Tanja Schirmeister , Ute A. Hellmich , Eberhard Hildt
The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound’s negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.
{"title":"Zika virus replication is impaired by a selective agonist of the TRPML2 ion channel","authors":"Kerstin K. Schwickert , Mirco Glitscher , Daniela Bender , Nuka Ivalu Benz , Robin Murra , Kevin Schwickert , Steffen Pfalzgraf , Tanja Schirmeister , Ute A. Hellmich , Eberhard Hildt","doi":"10.1016/j.antiviral.2024.105940","DOIUrl":"10.1016/j.antiviral.2024.105940","url":null,"abstract":"<div><p>The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound’s negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections <em>in vitro</em>, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105940"},"PeriodicalIF":4.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224001499/pdfft?md5=0af301cdf5a9a54e7b26c27c591db7b3&pid=1-s2.0-S0166354224001499-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012–2013 and 2019–2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, P < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.
{"title":"Duration of fever in children infected with influenza A(H1N1)pdm09, A(H3N2) or B virus and treated with baloxavir marboxil, oseltamivir, laninamivir, or zanamivir in Japan during the 2012–2013 and 2019–2020 influenza seasons","authors":"Yuyang Sun , Keita Wagatsuma , Reiko Saito , Isamu Sato , Takashi Kawashima , Tadashi Saito , Yashushi Shimada , Yasuhiko Ono , Fujio Kakuya , Michiyoshi Minato , Naoki Kodo , Eitaro Suzuki , Akito Kitano , Irina Chon , Wint Wint Phyu , Jiaming Li , Hisami Watanabe","doi":"10.1016/j.antiviral.2024.105938","DOIUrl":"10.1016/j.antiviral.2024.105938","url":null,"abstract":"<div><p>We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012<strong>–</strong>2013 and 2019<strong>–</strong>2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, <em>P</em> < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105938"},"PeriodicalIF":4.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224001475/pdfft?md5=bf66e065ccdb38cfa2acc37e6d8037fc&pid=1-s2.0-S0166354224001475-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1016/j.antiviral.2024.105934
Shih-Heng Chen , Joanne C. Damborsky , Belinda C. Wilson , Rick D. Fannin , James M. Ward , Kevin E. Gerrish , Bo He , Negin P. Martin , Jerrel L. Yakel
Herpes simplex virus type 1 (HSV-1), a neurotropic DNA virus, establishes latency in neural tissues, with reactivation causing severe consequences like encephalitis. Emerging evidence links HSV-1 infection to chronic neuroinflammation and neurodegenerative diseases. Microglia, the central nervous system's (CNS) immune sentinels, express diverse receptors, including α7 nicotinic acetylcholine receptors (α7 nAChRs), critical for immune regulation. Recent studies suggest α7 nAChR activation protects against viral infections. Here, we show that α7 nAChR agonists, choline and PNU-282987, significantly inhibit HSV-1 replication in microglial BV2 cells. Notably, this inhibition is independent of the traditional ionotropic nAChR signaling pathway. mRNA profiling revealed that choline stimulates the expression of antiviral factors, IL-1β and Nos2, and down-regulates the apoptosis genes and type A Lamins in BV2 cells. These findings suggest a novel mechanism by which microglial α7 nAChRs restrict viral infections by regulating innate immune responses.
{"title":"α7 nicotinic receptor activation mitigates herpes simplex virus type 1 infection in microglia cells","authors":"Shih-Heng Chen , Joanne C. Damborsky , Belinda C. Wilson , Rick D. Fannin , James M. Ward , Kevin E. Gerrish , Bo He , Negin P. Martin , Jerrel L. Yakel","doi":"10.1016/j.antiviral.2024.105934","DOIUrl":"https://doi.org/10.1016/j.antiviral.2024.105934","url":null,"abstract":"<div><p>Herpes simplex virus type 1 (HSV-1), a neurotropic DNA virus, establishes latency in neural tissues, with reactivation causing severe consequences like encephalitis. Emerging evidence links HSV-1 infection to chronic neuroinflammation and neurodegenerative diseases. Microglia, the central nervous system's (CNS) immune sentinels, express diverse receptors, including α7 nicotinic acetylcholine receptors (α7 nAChRs), critical for immune regulation. Recent studies suggest α7 nAChR activation protects against viral infections. Here, we show that α7 nAChR agonists, choline and PNU-282987, significantly inhibit HSV-1 replication in microglial BV2 cells. Notably, this inhibition is independent of the traditional ionotropic nAChR signaling pathway. mRNA profiling revealed that choline stimulates the expression of antiviral factors, IL-1β and Nos2, and down-regulates the apoptosis genes and type A Lamins in BV2 cells. These findings suggest a novel mechanism by which microglial α7 nAChRs restrict viral infections by regulating innate immune responses.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105934"},"PeriodicalIF":7.6,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}