Pub Date : 2020-12-02DOI: 10.1103/PHYSREVA.103.032426
J. Faba, V. Mart'in, L. Robledo
A simple expression to compute the quantum discord between two orbitals in fermion systems is derived using the parity superselection rule. As the correlation between orbitals depends on the basis chosen, we discuss a special orbital basis, the natural one. We show that quantum correlations between natural orbital pairs disappear when the pairing tensor is zero, i.e. the particle number symmetry is preserved. The Hartree-Fock orbitals within a Slater determinant state, a Hartree-Fock-Bogoliubov quasiparticle orbitals in a quasiparticle vacuum, or the ground state of a Hamiltonian with particle symmetry and their corresponding natural orbitals are some relevant examples of natural basis and their corresponding states. Since natural orbitals have that special property, we seek for the quantum discord in non-natural orbital basis. We analyze our findings in the context of the Lipkin-Meshkov-Glick and Agassi models.
{"title":"Two-orbital quantum discord in fermion systems","authors":"J. Faba, V. Mart'in, L. Robledo","doi":"10.1103/PHYSREVA.103.032426","DOIUrl":"https://doi.org/10.1103/PHYSREVA.103.032426","url":null,"abstract":"A simple expression to compute the quantum discord between two orbitals in fermion systems is derived using the parity superselection rule. As the correlation between orbitals depends on the basis chosen, we discuss a special orbital basis, the natural one. We show that quantum correlations between natural orbital pairs disappear when the pairing tensor is zero, i.e. the particle number symmetry is preserved. The Hartree-Fock orbitals within a Slater determinant state, a Hartree-Fock-Bogoliubov quasiparticle orbitals in a quasiparticle vacuum, or the ground state of a Hamiltonian with particle symmetry and their corresponding natural orbitals are some relevant examples of natural basis and their corresponding states. Since natural orbitals have that special property, we seek for the quantum discord in non-natural orbital basis. We analyze our findings in the context of the Lipkin-Meshkov-Glick and Agassi models.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88593916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1103/PhysRevA.103.053710
Yi-Chong Ren, S. Duan, W. Xie, Yongkang Shao, Z. Duan
Nonclassical light sources, such as correlated photon-pairs, play an important role in quantum optics and quantum information processing systems. This study proposes a process to generate antibunched photon-pairs in a nondegenerate optical parametric oscillator. It is found that when the parameters of the system satisfy certain conditions, the generated photons in subharmonic modes exhibit a strong antibunching behavior and are strongly correlated with one another. In particular, the average photon-pair number is resonantly enhanced. It is also observed that the conventional photon blockade contributes to this phenomenon. In addition, it is interesting to note that fundamental mode photons can blockade the subharmonic mode photons. We refer to this phenomenon as a heterogeneous photon blockade.
{"title":"Antibunched photon-pair source based on photon blockade in a nondegenerate optical parametric oscillator","authors":"Yi-Chong Ren, S. Duan, W. Xie, Yongkang Shao, Z. Duan","doi":"10.1103/PhysRevA.103.053710","DOIUrl":"https://doi.org/10.1103/PhysRevA.103.053710","url":null,"abstract":"Nonclassical light sources, such as correlated photon-pairs, play an important role in quantum optics and quantum information processing systems. This study proposes a process to generate antibunched photon-pairs in a nondegenerate optical parametric oscillator. It is found that when the parameters of the system satisfy certain conditions, the generated photons in subharmonic modes exhibit a strong antibunching behavior and are strongly correlated with one another. In particular, the average photon-pair number is resonantly enhanced. It is also observed that the conventional photon blockade contributes to this phenomenon. In addition, it is interesting to note that fundamental mode photons can blockade the subharmonic mode photons. We refer to this phenomenon as a heterogeneous photon blockade.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79236190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Petersson, Fortino Garcia, D. Appelo, S. Guenther, Y. Choi, Ryan H. Vogt
This report explains the basic theory and common terminology of quantum physics without assuming any knowledge of physics. It was written by a group of applied mathematicians while they were reading up on the subject. The intended audience consists of applied mathematicians, computer scientists, or anyone else who wants to improve their understanding of quantum physics. We assume that the reader is familiar with fundamental concepts of linear algebra, differential equations, and to some extent the theory of Hilbert spaces. Most of the material can be found in the book by Nielsen and Chuang and in the lecture notes on open quantum systems by Lidar. Another excellent online source of information is Wikipedia, even though most of its articles on quantum physics assume a solid understanding of physics.
{"title":"Quantum Physics without the Physics","authors":"N. Petersson, Fortino Garcia, D. Appelo, S. Guenther, Y. Choi, Ryan H. Vogt","doi":"10.2172/1729745","DOIUrl":"https://doi.org/10.2172/1729745","url":null,"abstract":"This report explains the basic theory and common terminology of quantum physics without assuming any knowledge of physics. It was written by a group of applied mathematicians while they were reading up on the subject. The intended audience consists of applied mathematicians, computer scientists, or anyone else who wants to improve their understanding of quantum physics. We assume that the reader is familiar with fundamental concepts of linear algebra, differential equations, and to some extent the theory of Hilbert spaces. Most of the material can be found in the book by Nielsen and Chuang and in the lecture notes on open quantum systems by Lidar. Another excellent online source of information is Wikipedia, even though most of its articles on quantum physics assume a solid understanding of physics.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77251913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1007/978-3-030-87809-2_1
F. Ablayev, M. Ablayev, K. Khadiev, Nailya Salihova, Alexander Vasiliev
{"title":"Quantum Algorithms for String Processing.","authors":"F. Ablayev, M. Ablayev, K. Khadiev, Nailya Salihova, Alexander Vasiliev","doi":"10.1007/978-3-030-87809-2_1","DOIUrl":"https://doi.org/10.1007/978-3-030-87809-2_1","url":null,"abstract":"","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83759783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is challenging for observing superbunching effect with true chaotic light, here we propose and demonstrate a method to achieve superbunching effect of the degree of second-order coherence is 2.42 with broadband stationary chaotic light based on a cascaded Michelson interferometer (CMI), exceeding the theoretical upper limit of 2 for the two-photon bunching effect of chaotic light. The superbunching correlation peak is measured with an ultrafast two-photon absorption detector which the full width at half maximum reaches about 95 fs. Two-photon superbunching theory in a CMI is developed to interpret the effect and is in agreement with experimental results. The theory also predicts that the degree of second-order coherence can be much greater than $2$ if chaotic light propagates $N$ times in a CMI. Finally, a new type of weak signals detection setup which employs broadband chaotic light circulating in a CMI is proposed. Theoretically, it can increase the detection sensitivity of weak signals 79 times after the chaotic light circulating 100 times in the CMI.
{"title":"Two-photon superbunching effect of broadband chaotic light at the femtosecond timescale based on a cascaded Michelson interferometer","authors":"Sheng Luo, Yu Zhou, Huaibin Zheng, Jianbin Liu, Hui Chen, Yuchen He, Wanting Xu, Shuanghao Zhang, Fuli Li, Zhuo Xu","doi":"10.1103/PHYSREVA.103.013723","DOIUrl":"https://doi.org/10.1103/PHYSREVA.103.013723","url":null,"abstract":"It is challenging for observing superbunching effect with true chaotic light, here we propose and demonstrate a method to achieve superbunching effect of the degree of second-order coherence is 2.42 with broadband stationary chaotic light based on a cascaded Michelson interferometer (CMI), exceeding the theoretical upper limit of 2 for the two-photon bunching effect of chaotic light. The superbunching correlation peak is measured with an ultrafast two-photon absorption detector which the full width at half maximum reaches about 95 fs. Two-photon superbunching theory in a CMI is developed to interpret the effect and is in agreement with experimental results. The theory also predicts that the degree of second-order coherence can be much greater than $2$ if chaotic light propagates $N$ times in a CMI. Finally, a new type of weak signals detection setup which employs broadband chaotic light circulating in a CMI is proposed. Theoretically, it can increase the detection sensitivity of weak signals 79 times after the chaotic light circulating 100 times in the CMI.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80781178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-29DOI: 10.1103/PhysRevA.103.063304
R. Richberg, S. Szigeti, A. M. Martin
We theoretically investigate the optical focusing of a rubidium Bose-Einstein condensate onto a planar surface. Our analysis uses a Gaussian variational method that includes the effects of two-body atom-atom interactions and three-body recombination losses. The essential factors such as the width, peak density and atom loss rate of the focused BEC profile on the surface are investigated and compared to Gross-Pitaevskii numerical simulations. We find a reasonable agreement in the results between our analytical approach and the numerical simulations. Our analysis predicts that condensates of $10^5$ atoms could be focused down to $sim 10$nm widths, potentially allowing nanometer-scale atomic deposition with peak densities greater than $10^5$ atoms/$mu$m$^2$.
我们从理论上研究了铷玻色-爱因斯坦凝聚体在平面上的光学聚焦。我们的分析使用高斯变分方法,包括两体原子-原子相互作用和三体重组损失的影响。研究了表面聚焦BEC分布的宽度、峰密度和原子损耗率等关键因素,并与Gross-Pitaevskii数值模拟结果进行了比较。结果表明,本文的分析方法与数值模拟结果有较好的一致性。我们的分析预测$10^5$原子的凝聚物可以聚焦到$sim 10$ nm的宽度,潜在地允许纳米级原子沉积,其峰值密度大于$10^5$原子/ $mu$ m $^2$。
{"title":"Optical focusing of Bose-Einstein condensates","authors":"R. Richberg, S. Szigeti, A. M. Martin","doi":"10.1103/PhysRevA.103.063304","DOIUrl":"https://doi.org/10.1103/PhysRevA.103.063304","url":null,"abstract":"We theoretically investigate the optical focusing of a rubidium Bose-Einstein condensate onto a planar surface. Our analysis uses a Gaussian variational method that includes the effects of two-body atom-atom interactions and three-body recombination losses. The essential factors such as the width, peak density and atom loss rate of the focused BEC profile on the surface are investigated and compared to Gross-Pitaevskii numerical simulations. We find a reasonable agreement in the results between our analytical approach and the numerical simulations. Our analysis predicts that condensates of $10^5$ atoms could be focused down to $sim 10$nm widths, potentially allowing nanometer-scale atomic deposition with peak densities greater than $10^5$ atoms/$mu$m$^2$.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78518904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-29DOI: 10.1103/PHYSREVB.103.035127
Xingli Li, Jiasen Jin
We investigate the steady-state phase diagram of the dissipative spin-1/2 XYZ model on a two-dimensional triangular lattice, in which each site is coupled to a local environment. By means of cluster mean-field approximation, we find that the steady-state phases of the system is rather rich, in particular there exists various types of nonuniform antiferromagnetic phases due to the geometrical frustration. As the short-ranges correlations included in the analysis, we rule out the oscillatory phase and confirm the existence of triantiferromagnetic and biantiferromagnetic phases in the thermodynamic limit. Moreover, the existence of spin-density-wave phase, which is missed by the single-site mean-field analysis, is also revealed by spin-structure factor.
{"title":"Nonuniform phases in the geometrically frustrated dissipative XYZ model","authors":"Xingli Li, Jiasen Jin","doi":"10.1103/PHYSREVB.103.035127","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.035127","url":null,"abstract":"We investigate the steady-state phase diagram of the dissipative spin-1/2 XYZ model on a two-dimensional triangular lattice, in which each site is coupled to a local environment. By means of cluster mean-field approximation, we find that the steady-state phases of the system is rather rich, in particular there exists various types of nonuniform antiferromagnetic phases due to the geometrical frustration. As the short-ranges correlations included in the analysis, we rule out the oscillatory phase and confirm the existence of triantiferromagnetic and biantiferromagnetic phases in the thermodynamic limit. Moreover, the existence of spin-density-wave phase, which is missed by the single-site mean-field analysis, is also revealed by spin-structure factor.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83405973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-28DOI: 10.1103/PHYSREVA.103.043318
Javier Argüello-Luengo, T. Shi, A. Gonz'alez-Tudela
Using quantum systems to efficiently solve quantum chemistry problems is one of the long-sought applications of near-future quantum technologies. In a recent work, ultra-cold fermionic atoms have been proposed for these purposes by showing how to simulate in an analog way the quantum chemistry Hamiltonian projected in a lattice basis set. Here, we continue exploring this path and go beyond these first results in several ways. First, we numerically benchmark the working conditions of the analog simulator, and find less demanding experimental setups where chemistry-like behaviour in three-dimensions can still be observed. We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects and provide a way to mitigate them. Finally, we benchmark the simulator characterizing the behaviour of two-electron atoms (He) and molecules (HeH$^+$) beyond the example considered in the original work.
{"title":"Engineering analog quantum chemistry Hamiltonians using cold atoms in optical lattices","authors":"Javier Argüello-Luengo, T. Shi, A. Gonz'alez-Tudela","doi":"10.1103/PHYSREVA.103.043318","DOIUrl":"https://doi.org/10.1103/PHYSREVA.103.043318","url":null,"abstract":"Using quantum systems to efficiently solve quantum chemistry problems is one of the long-sought applications of near-future quantum technologies. In a recent work, ultra-cold fermionic atoms have been proposed for these purposes by showing how to simulate in an analog way the quantum chemistry Hamiltonian projected in a lattice basis set. Here, we continue exploring this path and go beyond these first results in several ways. First, we numerically benchmark the working conditions of the analog simulator, and find less demanding experimental setups where chemistry-like behaviour in three-dimensions can still be observed. We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects and provide a way to mitigate them. Finally, we benchmark the simulator characterizing the behaviour of two-electron atoms (He) and molecules (HeH$^+$) beyond the example considered in the original work.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89756712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-26DOI: 10.1103/PhysRevA.103.062601
Michael Kreshchuk, Shaoyang Jia, William M. Kirby, G. Goldstein, J. Vary, P. Love
The analogy between quantum chemistry and light-front quantum field theory, first noted by Kenneth G. Wilson, serves as motivation to develop light-front quantum simulation of quantum field theory. We demonstrate how calculations of hadron structure can be performed on Noisy Intermediate-Scale Quantum devices within the Basis Light-Front Quantization framework. We calculate the light-front wave functions of pions using an effective light-front Hamiltonian in a basis representation on a current quantum processor. We use the Variational Quantum Eigensolver to find the ground state energy and wave function, which is subsequently used to calculate pion mass radius, decay constant, elastic form factor, and charge radius.
量子化学和光前沿量子场论之间的类比,首先由Kenneth G. Wilson注意到,作为发展量子场论的光前沿量子模拟的动机。我们演示了强子结构的计算如何在基光前量化框架内的噪声中尺度量子器件上进行。我们在当前量子处理器上使用基表示的有效光前哈密顿量来计算介子的光前波函数。我们使用变分量子特征解算器求出基态能量和波函数,然后用它们计算出介子质量半径、衰变常数、弹性形状因子和电荷半径。
{"title":"Simulating hadronic physics on noisy intermediate-scale quantum devices using basis light-front quantization","authors":"Michael Kreshchuk, Shaoyang Jia, William M. Kirby, G. Goldstein, J. Vary, P. Love","doi":"10.1103/PhysRevA.103.062601","DOIUrl":"https://doi.org/10.1103/PhysRevA.103.062601","url":null,"abstract":"The analogy between quantum chemistry and light-front quantum field theory, first noted by Kenneth G. Wilson, serves as motivation to develop light-front quantum simulation of quantum field theory. We demonstrate how calculations of hadron structure can be performed on Noisy Intermediate-Scale Quantum devices within the Basis Light-Front Quantization framework. We calculate the light-front wave functions of pions using an effective light-front Hamiltonian in a basis representation on a current quantum processor. We use the Variational Quantum Eigensolver to find the ground state energy and wave function, which is subsequently used to calculate pion mass radius, decay constant, elastic form factor, and charge radius.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78433924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-26DOI: 10.1103/PHYSREVA.103.042609
A. Russo, William M. Kirby, K. Rudinger, A. Baczewski, S. Kimmel
We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.
{"title":"Consistency testing for robust phase estimation","authors":"A. Russo, William M. Kirby, K. Rudinger, A. Baczewski, S. Kimmel","doi":"10.1103/PHYSREVA.103.042609","DOIUrl":"https://doi.org/10.1103/PHYSREVA.103.042609","url":null,"abstract":"We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78548135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}