首页 > 最新文献

Asian Journal of Pharmaceutical Sciences最新文献

英文 中文
Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma 基于肝细胞癌的CRISPR/Cas9基因编辑技术的研究进展及应用
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-07-01 DOI: 10.1016/j.ajps.2023.100828
Shijing Yu , Ruirui Zhao , Bingchen Zhang , Chunmei Lai , Linyan Li , Jiangwen Shen , Xiarong Tan , Jingwei Shao

Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.

肝细胞癌(HCC)目前是癌症死亡的常见原因,在过去几年中患者存活率没有明显变化。尽管HCC患者的传统治疗方式主要包括手术、化疗和放疗,取得了令人钦佩的成就,但仍存在耐药性和毒性等挑战。作为传统治疗方法的一种替代方法,基于簇状规则间隔短回文重复序列/CRISPR相关核酸酶9-基(CRISPR/Cas9)的新兴基因治疗在根除耐药恶性肿瘤和调节靶基因编辑的多个关键事件方面引起了相当大的关注。最近,基于CRISPR/Cas9的抗癌药物的进展出现在化学、材料科学、肿瘤生物学和遗传学等科学的交叉领域。本文首先介绍了CRISPR/Cas9技术的原理和现状,以表明其可行性。此外,重点介绍了CRISPR/Cas9技术在HCC治疗中的应用。此外,综述了用于HCC治疗的基于CRISPR/Cas9的抗药物的非病毒递送系统,以描述其设计、作用机制和抗癌应用。最后,对目前研究的局限性和前景进行了展望,希望能为新药的设计提供全面的理论依据。
{"title":"Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma","authors":"Shijing Yu ,&nbsp;Ruirui Zhao ,&nbsp;Bingchen Zhang ,&nbsp;Chunmei Lai ,&nbsp;Linyan Li ,&nbsp;Jiangwen Shen ,&nbsp;Xiarong Tan ,&nbsp;Jingwei Shao","doi":"10.1016/j.ajps.2023.100828","DOIUrl":"10.1016/j.ajps.2023.100828","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 4","pages":"Article 100828"},"PeriodicalIF":10.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/c2/main.PMC10424087.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10012678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibiotic-based small molecular micelles combined with photodynamic therapy for bacterial infections 基于抗生素的小分子胶束结合光动力治疗细菌感染
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100810
Lijiao Yang , Shaomin Song , Meihui Yin , Min Yang, Daoping Yan, Xiaohui Wan, Jipeng Xiao, Yuchen Jiang, Yongchao Yao, Jianbin Luo

The appearance of multidrug-resistant bacteria and the formation of bacterial biofilms have necessitated the development of alternative antimicrobial therapeutics. Antibiotics conjugated with or embedded in nano-drug carriers show a great potential and advantage over free drugs, but the mass proportion of carriers generally exceeds 90% of the nano-drug, resulting in low drug loading and limited therapeutic output. Herein, we fabricated a nanocarrier using antibiotics as the building blocks, minimizing the use of carrier materials, significantly increasing the drug loading content and treatment effect. Firstly, we conjugated betaine carboxylate with ciprofloxacin (CIP) through an ester bond to form the amphiphilic conjugate (CIP-CB), which self-assembled into micelles (CIP-CBMs) in aqueous solutions, with a CIP loading content as high as 65.4% and pH-induced surface charge reversal properties. Secondly, a model photosensitizer (5, 10, 15, 20-tetraphenylporphyrin (TPP)) was encapsulated in CIP-CBMs, generating infection-targeted photodynamic/antibiotic combined nanomedicines (denoted as TPP@CIP-CBMs). Upon accumulation at infection sites or in deep bacterial biofilms, the ester bond between the betaine carboxylate and CIP is cleaved to release free TPP and CIP, leading to a synergetic antibacterial and antibiofilm activity in vitro and in vivo.

耐多药细菌的出现和细菌生物膜的形成使得开发替代的抗菌疗法成为必要。与纳米药物载体偶联或包埋在纳米药物载体中的抗生素比游离药物显示出巨大的潜力和优势,但载体的质量比例通常超过纳米药物的90%,导致药物载量低,治疗效果有限。在此,我们使用抗生素作为构建块制造了纳米载体,最大限度地减少了载体材料的使用,显著提高了载药量和治疗效果。首先,我们通过酯键将甜菜碱羧酸盐与环丙沙星(CIP)偶联,形成两亲性偶联物(CIP-CB),该偶联物在水溶液中自组装成胶束(CIP-CBM),具有高达65.4%的CIP负载量和pH诱导的表面电荷反转特性。其次,将模型光敏剂(5,10,15,20四苯基卟啉(TPP))封装在CIP CBM中,产生感染靶向的光动力/抗生素组合纳米药物(表示为TPP@CIP-CBMs)。在感染部位或深层细菌生物膜中积累后,甜菜碱羧酸盐和CIP之间的酯键被裂解,释放出游离的TPP和CIP,从而在体外和体内产生协同的抗菌和抗生物膜活性。
{"title":"Antibiotic-based small molecular micelles combined with photodynamic therapy for bacterial infections","authors":"Lijiao Yang ,&nbsp;Shaomin Song ,&nbsp;Meihui Yin ,&nbsp;Min Yang,&nbsp;Daoping Yan,&nbsp;Xiaohui Wan,&nbsp;Jipeng Xiao,&nbsp;Yuchen Jiang,&nbsp;Yongchao Yao,&nbsp;Jianbin Luo","doi":"10.1016/j.ajps.2023.100810","DOIUrl":"10.1016/j.ajps.2023.100810","url":null,"abstract":"<div><p>The appearance of multidrug-resistant bacteria and the formation of bacterial biofilms have necessitated the development of alternative antimicrobial therapeutics. Antibiotics conjugated with or embedded in nano-drug carriers show a great potential and advantage over free drugs, but the mass proportion of carriers generally exceeds 90% of the nano-drug, resulting in low drug loading and limited therapeutic output. Herein, we fabricated a nanocarrier using antibiotics as the building blocks, minimizing the use of carrier materials, significantly increasing the drug loading content and treatment effect. Firstly, we conjugated betaine carboxylate with ciprofloxacin (CIP) through an ester bond to form the amphiphilic conjugate (CIP-CB), which self-assembled into micelles (CIP-CBMs) in aqueous solutions, with a CIP loading content as high as 65.4% and pH-induced surface charge reversal properties. Secondly, a model photosensitizer (5, 10, 15, 20-tetraphenylporphyrin (TPP)) was encapsulated in CIP-CBMs, generating infection-targeted photodynamic/antibiotic combined nanomedicines (denoted as TPP@CIP-CBMs). Upon accumulation at infection sites or in deep bacterial biofilms, the ester bond between the betaine carboxylate and CIP is cleaved to release free TPP and CIP, leading to a synergetic antibacterial and antibiofilm activity <em>in vitro</em> and <em>in vivo</em>.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100810"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/55/73/main.PMC10236462.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Scavenger receptor A-mediated nanoparticles target M1 macrophages for acute liver injury 清道夫受体a介导的纳米颗粒靶向M1巨噬细胞治疗急性肝损伤
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100813
Rongping Zhang , Shiqing Luo , Ting Zhao , Mengying Wu , Lu Huang , Ling Zhang , Yuan Huang , Huile Gao , Xun Sun , Tao Gong , Zhirong Zhang

Acute liver injury (ALI) has an elevated fatality rate due to untimely and ineffective treatment. Although, schisandrin B (SchB) has been extensively used to treat diverse liver diseases, its therapeutic efficacy on ALI was limited due to its high hydrophobicity. Palmitic acid-modified serum albumin (PSA) is not only an effective carrier for hydrophobic drugs, but also has a superb targeting effect via scavenger receptor-A (SR-A) on the M1 macrophages, which are potential therapeutic targets for ALI. Compared with the common macrophage-targeted delivery systems, PSA enables site-specific drug delivery to reduce off-target toxicity. Herein, we prepared SchB-PSA nanoparticles and further assessed their therapeutic effect on ALI. In vitro, compared with human serum albumin encapsulated SchB nanoparticles (SchB-HSA NPs), the SchB-PSA NPs exhibited more potent cytotoxicity on lipopolysaccharide (LPS) stimulated Raw264.7 (LAR) cells, and LAR cells took up PSA NPs 8.79 times more than HSA NPs. As expected, the PSA NPs also accumulated more in the liver. Moreover, SchB-PSA NPs dramatically reduced the activation of NF-κB signaling, and significantly relieved inflammatory response and hepatic necrosis. Notably, the high dose of SchB-PSA NPs improved the survival rate in 72 h of ALI mice to 75%. Hence, SchB-PSA NPs are promising to treat ALI.

急性肝损伤(ALI)由于治疗不及时和无效而导致死亡率升高。尽管五味子乙素(SchB)已被广泛用于治疗各种肝脏疾病,但由于其疏水性高,其对ALI的治疗效果有限。棕榈酸修饰血清白蛋白(PSA)不仅是疏水性药物的有效载体,而且通过清除剂受体a(SR-a)对M1巨噬细胞具有极好的靶向作用,M1巨噬细胞是ALI的潜在治疗靶点。与常见的巨噬细胞靶向递送系统相比,PSA能够实现位点特异性药物递送,以减少脱靶毒性。在此,我们制备了SchB-PSA纳米颗粒,并进一步评估了其对ALI的治疗效果。在体外,与人血清白蛋白包封的SchB纳米颗粒(SchB-HSA-NPs)相比,SchB-PSA NPs对脂多糖(LPS)刺激的Raw264.7(LAR)细胞表现出更强的细胞毒性,LAR细胞吸收PSA NPs是HSA-NP的8.79倍。正如预期的那样,PSA NP在肝脏中也积累了更多。此外,SchB-PSA NPs显著降低NF-κB信号传导的激活,并显著缓解炎症反应和肝坏死。值得注意的是,高剂量的SchB-PSA NPs将ALI小鼠72小时的存活率提高到75%。因此,SchB-PSA NPs有望治疗ALI。
{"title":"Scavenger receptor A-mediated nanoparticles target M1 macrophages for acute liver injury","authors":"Rongping Zhang ,&nbsp;Shiqing Luo ,&nbsp;Ting Zhao ,&nbsp;Mengying Wu ,&nbsp;Lu Huang ,&nbsp;Ling Zhang ,&nbsp;Yuan Huang ,&nbsp;Huile Gao ,&nbsp;Xun Sun ,&nbsp;Tao Gong ,&nbsp;Zhirong Zhang","doi":"10.1016/j.ajps.2023.100813","DOIUrl":"10.1016/j.ajps.2023.100813","url":null,"abstract":"<div><p>Acute liver injury (ALI) has an elevated fatality rate due to untimely and ineffective treatment. Although, schisandrin B (SchB) has been extensively used to treat diverse liver diseases, its therapeutic efficacy on ALI was limited due to its high hydrophobicity. Palmitic acid-modified serum albumin (PSA) is not only an effective carrier for hydrophobic drugs, but also has a superb targeting effect via scavenger receptor-A (SR-A) on the M1 macrophages, which are potential therapeutic targets for ALI. Compared with the common macrophage-targeted delivery systems, PSA enables site-specific drug delivery to reduce off-target toxicity. Herein, we prepared SchB-PSA nanoparticles and further assessed their therapeutic effect on ALI. <em>In vitro</em>, compared with human serum albumin encapsulated SchB nanoparticles (SchB-HSA NPs), the SchB-PSA NPs exhibited more potent cytotoxicity on lipopolysaccharide (LPS) stimulated Raw264.7 (LAR) cells, and LAR cells took up PSA NPs 8.79 times more than HSA NPs. As expected, the PSA NPs also accumulated more in the liver. Moreover, SchB-PSA NPs dramatically reduced the activation of NF-κB signaling, and significantly relieved inflammatory response and hepatic necrosis. Notably, the high dose of SchB-PSA NPs improved the survival rate in 72 h of ALI mice to 75%. Hence, SchB-PSA NPs are promising to treat ALI.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100813"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/1a/main.PMC10238850.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Predicting liposome formulations by the integrated machine learning and molecular modeling approaches 通过集成机器学习和分子建模方法预测脂质体配方
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100811
Run Han , Zhuyifan Ye , Yunsen Zhang , Yaxin Cheng , Ying Zheng , Defang Ouyang

Liposome is one of the most widely used carriers for drug delivery because of the great biocompatibility and biodegradability. Due to the complex formulation components and preparation process, formulation screening mostly relies on trial-and-error process with low efficiency. Here liposome formulation prediction models have been built by machine learning (ML) approaches. The important parameters of liposomes, including size, polydispersity index (PDI), zeta potential and encapsulation, are predicted individually by optimal ML algorithm, while the formulation features are also ranked to provide important guidance for formulation design. The analysis of key parameter reveals that drug molecules with logS [-3, -6], molecular complexity [500, 1000] and XLogP3 (≥2) are priority for preparing liposome with higher encapsulation. In addition, naproxen (NAP) and palmatine HCl (PAL) represented the insoluble and water-soluble molecules are prepared as liposome formulations to validate prediction ability. The consistency between predicted and experimental value verifies the satisfied accuracy of ML models. As the drug properties are critical for liposome particles, the molecular interactions and dynamics of NAP and PAL liposome are further investigated by coarse-grained molecular dynamics simulations. The modeling structure reveals that NAP molecules could distribute into lipid layer, while most PAL molecules aggregate in the inner aqueous phase of liposome. The completely different physical state of NAP and PAL confirms the importance of drug properties for liposome formulations. In summary, the general prediction models are built to predict liposome formulations, and the impacts of key factors are analyzed by combing ML with molecular modeling. The availability and rationality of these intelligent prediction systems have been proved in this study, which could be applied for liposome formulation development in the future.

脂质体具有良好的生物相容性和生物降解性,是应用最广泛的药物载体之一。由于配方成分和制备过程复杂,配方筛选大多依赖于试错过程,效率较低。在这里,脂质体配方预测模型已经通过机器学习(ML)方法建立。通过最优ML算法分别预测脂质体的重要参数,包括大小、多分散指数(PDI)、ζ电位和包封率,同时对配方特征进行排序,为配方设计提供重要指导。关键参数分析表明,logS[-3,-6]、分子复杂度[5001000]和XLogP3(≥2)的药物分子是制备高包封度脂质体的优先选择。此外,以萘普生(NAP)和盐酸巴马汀(PAL)为代表的不溶性和水溶性分子被制备为脂质体制剂,以验证预测能力。预测值与实验值的一致性验证了ML模型令人满意的准确性。由于药物性质对脂质体颗粒至关重要,因此通过粗粒分子动力学模拟进一步研究了NAP和PAL脂质体的分子相互作用和动力学。模拟结构表明,NAP分子可以分布在脂质体的脂质层中,而PAL分子大多聚集在脂质体内部水相中。NAP和PAL完全不同的物理状态证实了药物性质对脂质体制剂的重要性。总之,建立了预测脂质体配方的通用预测模型,并将ML与分子模型相结合,分析了关键因素的影响。本研究证明了这些智能预测系统的有效性和合理性,可用于脂质体制剂的开发。
{"title":"Predicting liposome formulations by the integrated machine learning and molecular modeling approaches","authors":"Run Han ,&nbsp;Zhuyifan Ye ,&nbsp;Yunsen Zhang ,&nbsp;Yaxin Cheng ,&nbsp;Ying Zheng ,&nbsp;Defang Ouyang","doi":"10.1016/j.ajps.2023.100811","DOIUrl":"10.1016/j.ajps.2023.100811","url":null,"abstract":"<div><p>Liposome is one of the most widely used carriers for drug delivery because of the great biocompatibility and biodegradability. Due to the complex formulation components and preparation process, formulation screening mostly relies on trial-and-error process with low efficiency. Here liposome formulation prediction models have been built by machine learning (ML) approaches. The important parameters of liposomes, including size, polydispersity index (PDI), zeta potential and encapsulation, are predicted individually by optimal ML algorithm, while the formulation features are also ranked to provide important guidance for formulation design. The analysis of key parameter reveals that drug molecules with logS [-3, -6], molecular complexity [500, 1000] and XLogP3 (≥2) are priority for preparing liposome with higher encapsulation. In addition, naproxen (NAP) and palmatine HCl (PAL) represented the insoluble and water-soluble molecules are prepared as liposome formulations to validate prediction ability. The consistency between predicted and experimental value verifies the satisfied accuracy of ML models. As the drug properties are critical for liposome particles, the molecular interactions and dynamics of NAP and PAL liposome are further investigated by coarse-grained molecular dynamics simulations. The modeling structure reveals that NAP molecules could distribute into lipid layer, while most PAL molecules aggregate in the inner aqueous phase of liposome. The completely different physical state of NAP and PAL confirms the importance of drug properties for liposome formulations. In summary, the general prediction models are built to predict liposome formulations, and the impacts of key factors are analyzed by combing ML with molecular modeling. The availability and rationality of these intelligent prediction systems have been proved in this study, which could be applied for liposome formulation development in the future.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100811"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/bc/main.PMC10232664.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Treatment of colorectal cancer by anticancer and antibacterial effects of hemiprotonic phenanthroline-phenanthroline+ with nanomicelle delivery 抗癌抗菌治疗癌症 纳米胶束对半质子菲咯啉-菲咯啉+的影响
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100801
Yingying Zhang, Zizhen Zhao, Jingli Li, Qinghua Wang, Zhigang Fan, Zhibo Yuan, Yixiao Feng, Ailing Fu

Colorectal cancer (CRC) is a common digestive tract tumor worldwide. Specific microorganisms, including Fusobacterium nucleatum (F. nucleatum) and Escherichia coli (E. coli), are abundant in colonic mucosa and can promote the cancer progression and malignancy. Therefore, a therapeutic strategy is proposed to deliver effective drugs to colorectum for both anticancer and antibacteria. Here we used thin-film dispersion method to encapsulate hemiprotonic phenanthroline-phenanthroline+ (ph-ph+) into nanomicelle. The results showed that the drug-loading nanomicelle had good dispersion, and the particle size was about 28 nm. In vitro assay indicated that the nanomicelle was active against CRC-related obligate and facultative anaerobes. In human CRC cells, the nanomicelle could effectively inhibit cell proliferation and induce apoptosis. In vivo distribution showed that the nanomicelle could release ph-ph+ mainly in the colorectum. In CRC model mice, the nanomicelle significantly reduced tumor number and volume, and decreased the bacteria load and colorectal inflammation. Together, the study identifies that the ph-ph+nanomicelle has the potential to apply in treating CRC, and also suggests that anticancer combined with antimicrobial therapy would be a feasible way for CRC therapy.

癌症是世界范围内常见的消化道肿瘤。有核梭杆菌(Fusobacterium nucleanum)和大肠杆菌(Escherichia coli)等特定微生物在结肠粘膜中含量丰富,可促进癌症的发展和恶性程度。因此,提出了一种治疗策略,为结直肠癌提供抗癌和抗菌的有效药物。本文采用薄膜分散法将半质子菲咯啉-菲咯啉+(ph-ph+)包裹在纳米胶束中。结果表明,载药纳米胶束具有良好的分散性,粒径约为28nm。体外试验表明,纳米胶束对CRC相关的专性和兼性厌氧菌具有活性。在人CRC细胞中,纳米胶束可以有效抑制细胞增殖并诱导细胞凋亡。体内分布表明,纳米胶束主要在大肠杆菌中释放ph-ph+。在CRC模型小鼠中,纳米胶束显著减少了肿瘤的数量和体积,并降低了细菌负荷和结直肠炎症。总之,该研究确定了ph-ph+纳米胶束在治疗CRC方面具有应用潜力,并表明抗癌与抗菌治疗相结合将是CRC治疗的可行方法。
{"title":"Treatment of colorectal cancer by anticancer and antibacterial effects of hemiprotonic phenanthroline-phenanthroline+ with nanomicelle delivery","authors":"Yingying Zhang,&nbsp;Zizhen Zhao,&nbsp;Jingli Li,&nbsp;Qinghua Wang,&nbsp;Zhigang Fan,&nbsp;Zhibo Yuan,&nbsp;Yixiao Feng,&nbsp;Ailing Fu","doi":"10.1016/j.ajps.2023.100801","DOIUrl":"https://doi.org/10.1016/j.ajps.2023.100801","url":null,"abstract":"<div><p>Colorectal cancer (CRC) is a common digestive tract tumor worldwide. Specific microorganisms, including <em>Fusobacterium nucleatum</em> (<em>F. nucleatum</em>) and <em>Escherichia coli</em> (<em>E. coli</em>), are abundant in colonic mucosa and can promote the cancer progression and malignancy. Therefore, a therapeutic strategy is proposed to deliver effective drugs to colorectum for both anticancer and antibacteria. Here we used thin-film dispersion method to encapsulate hemiprotonic phenanthroline-phenanthroline<sup>+</sup> (ph-ph<sup>+</sup>) into nanomicelle. The results showed that the drug-loading nanomicelle had good dispersion, and the particle size was about 28 nm. <em>In vitro</em> assay indicated that the nanomicelle was active against CRC-related obligate and facultative anaerobes. In human CRC cells, the nanomicelle could effectively inhibit cell proliferation and induce apoptosis. <em>In vivo</em> distribution showed that the nanomicelle could release ph-ph<sup>+</sup> mainly in the colorectum. In CRC model mice, the nanomicelle significantly reduced tumor number and volume, and decreased the bacteria load and colorectal inflammation. Together, the study identifies that the ph-ph<sup>+</sup>nanomicelle has the potential to apply in treating CRC, and also suggests that anticancer combined with antimicrobial therapy would be a feasible way for CRC therapy.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100801"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49812596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrugated surface microparticles with chitosan and levofloxacin for improved aerodynamic performance 壳聚糖和左氧氟沙星用于改善空气动力学性能的波纹表面微粒
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100815
Chang-Soo Han , Ji-Hyun Kang , Eun hye Park , Hyo-Jung Lee , So-Jeong Jeong , Dong-Wook Kim , Chun-Woong Park

Corrugated surface microparticles comprising levofloxacin (LEV), chitosan and organic acid were prepared using the 3-combo spray drying method. The amount and the boiling point of the organic acid affected the degree of roughness. In this study, we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler. HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution. The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles. The FPF value of HMP175 L20 was 41.3% ± 3.9% compared with 25.6% ± 7.7% of HMF175 L20. Corrugated microparticles also showed better aerosolization, decreased x-axial velocity, and variable angle. Rapid dissolution of drug formulations was observed in vivo. Low doses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally. Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.

采用三元喷雾干燥法制备了含有左氧氟沙星、壳聚糖和有机酸的波纹表面微粒。有机酸的量和沸点影响粗糙度。在本研究中,我们试图通过波纹表面微粒改善空气动力学性能,并增加雾化作用,以提高干粉吸入器的肺部药物输送效率。用175毫摩尔丙酸溶液制备的HMP175 L20比用175毫毫摩尔甲酸溶液制得的HMF175 L20波纹更大。ACI和PIV结果显示波纹微粒的空气动力学性能显著提高。HMP175 L20的FPF值为41.3%±3.9%,而HMF175 L20为25.6%±7.7%。波纹状微粒也表现出更好的雾化、降低的x轴速度和可变角度。在体内观察到药物制剂的快速溶解。给予肺部的低剂量比口服给予的高剂量在肺液中获得更高的LEV浓度。聚合物基制剂的表面改性是通过控制DPI的蒸发速率和提高吸入效率来实现的。
{"title":"Corrugated surface microparticles with chitosan and levofloxacin for improved aerodynamic performance","authors":"Chang-Soo Han ,&nbsp;Ji-Hyun Kang ,&nbsp;Eun hye Park ,&nbsp;Hyo-Jung Lee ,&nbsp;So-Jeong Jeong ,&nbsp;Dong-Wook Kim ,&nbsp;Chun-Woong Park","doi":"10.1016/j.ajps.2023.100815","DOIUrl":"10.1016/j.ajps.2023.100815","url":null,"abstract":"<div><p>Corrugated surface microparticles comprising levofloxacin (LEV), chitosan and organic acid were prepared using the 3-combo spray drying method. The amount and the boiling point of the organic acid affected the degree of roughness. In this study, we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler. HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution. The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles. The FPF value of HMP175 L20 was 41.3% ± 3.9% compared with 25.6% ± 7.7% of HMF175 L20. Corrugated microparticles also showed better aerosolization, decreased x-axial velocity, and variable angle. Rapid dissolution of drug formulations was observed <em>in vivo</em>. Low doses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally. Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100815"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/5f/main.PMC10248792.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9623254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor microenvironment-responsive artesunate loaded Z-scheme heterostructures for synergistic photo-chemodynamic therapy of hypoxic tumor 肿瘤微环境响应型青蒿琥酯负载z型异质结构对缺氧肿瘤的协同光化学动力学治疗
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100798
Jie Lv , Xiaoyu Wang , Xue Zhang , Runpei Xu , Shuyang Hu , Shuangling Wang , Meng Li

Tumor microenvironment (TME) with the particular features of severe hypoxia, insufficient endogenous H2O2, and overexpression of glutathione (GSH) markedly reduced the antitumor efficacy of monotherapy. Herein, a TME-responsive multifunctional nanoplatform (Bi2S3@Bi@PDA-HA/Art NRs) was presented for synergistic photothermal therapy (PTT), chemodynamic therapy (CDT), and photodynamic therapy (PDT) to achieve better therapeutic outcomes. The Z-scheme heterostructured bismuth sulfide@bismuth nanorods (Bi2S3@Bi NRs) guaranteed excellent photothermal performance of the nanoplatform. Moreover, its ability to produce O2 and reactive oxygen species (ROS) synchronously could relieve tumor hypoxia and improve PDT outcomes. The densely coated polydopamine/ammonium bicarbonate (PDA/ABC) and hyaluronic acid (HA) layers on the surface of the nanoplatform enhanced the cancer-targeting capacity and induced the acidic TME-triggered in situ “bomb-like” release of Art. The CDT treatment was achieved by activating the released Art through intracellular Fe2+ ions in an H2O2-independent manner. Furthermore, decreasing the glutathione peroxidase 4 (GPX4) levels by Art could also increase the PDT efficiency of Bi2S3@Bi NRs. Owing to the synergistic effect, this nanoplatform displayed improved antitumor efficacy with minimal toxicity both in vitro and in vivo. Our design sheds light on the application of phototherapy combined with the traditional Chinese medicine monomer-artesunate in treating the hypoxic tumor.

肿瘤微环境(TME)具有严重缺氧、内源性H2O2不足和谷胱甘肽(GSH)过表达的特殊特征,显著降低了单药治疗的抗肿瘤疗效。在此,TME响应的多功能纳米平台(Bi2S3@Bi@PDA-HA/Art NRs)用于协同光热治疗(PTT)、化学动力学治疗(CDT)和光动力治疗(PDT),以获得更好的治疗结果。Z方案异质结构铋sulfide@bismuth纳米棒(Bi2S3@BiNRs)保证了纳米平台优异的光热性能。此外,其同步产生O2和活性氧(ROS)的能力可以缓解肿瘤缺氧并改善PDT结果。纳米平台表面密集包覆的聚多巴胺/碳酸氢铵(PDA/ABC)和透明质酸(HA)层增强了癌症靶向能力,并诱导了酸性TME触发的Art原位“炸弹样”释放。CDT治疗是通过以依赖于H2O2的方式通过细胞内Fe2+离子激活释放的Art来实现的。此外,通过Art降低谷胱甘肽过氧化物酶4(GPX4)水平也可以提高Bi2S3@BiNRs。由于协同作用,该纳米平台在体外和体内均显示出提高的抗肿瘤功效和最小的毒性。我们的设计为光疗结合中药单体青蒿琥酯治疗缺氧性肿瘤提供了依据。
{"title":"Tumor microenvironment-responsive artesunate loaded Z-scheme heterostructures for synergistic photo-chemodynamic therapy of hypoxic tumor","authors":"Jie Lv ,&nbsp;Xiaoyu Wang ,&nbsp;Xue Zhang ,&nbsp;Runpei Xu ,&nbsp;Shuyang Hu ,&nbsp;Shuangling Wang ,&nbsp;Meng Li","doi":"10.1016/j.ajps.2023.100798","DOIUrl":"10.1016/j.ajps.2023.100798","url":null,"abstract":"<div><p>Tumor microenvironment (TME) with the particular features of severe hypoxia, insufficient endogenous H<sub>2</sub>O<sub>2</sub>, and overexpression of glutathione (GSH) markedly reduced the antitumor efficacy of monotherapy. Herein, a TME-responsive multifunctional nanoplatform (Bi<sub>2</sub>S<sub>3</sub>@Bi@PDA-HA/Art NRs) was presented for synergistic photothermal therapy (PTT), chemodynamic therapy (CDT), and photodynamic therapy (PDT) to achieve better therapeutic outcomes. The Z-scheme heterostructured bismuth sulfide@bismuth nanorods (Bi<sub>2</sub>S<sub>3</sub>@Bi NRs) guaranteed excellent photothermal performance of the nanoplatform. Moreover, its ability to produce O<sub>2</sub> and reactive oxygen species (ROS) synchronously could relieve tumor hypoxia and improve PDT outcomes. The densely coated polydopamine/ammonium bicarbonate (PDA/ABC) and hyaluronic acid (HA) layers on the surface of the nanoplatform enhanced the cancer-targeting capacity and induced the acidic TME-triggered <em>in situ</em> “bomb-like” release of Art. The CDT treatment was achieved by activating the released Art through intracellular Fe<sup>2+</sup> ions in an H<sub>2</sub>O<sub>2</sub>-independent manner. Furthermore, decreasing the glutathione peroxidase 4 (GPX4) levels by Art could also increase the PDT efficiency of Bi<sub>2</sub>S<sub>3</sub>@Bi NRs. Owing to the synergistic effect, this nanoplatform displayed improved antitumor efficacy with minimal toxicity both <em>in vitro</em> and <em>in vivo</em>. Our design sheds light on the application of phototherapy combined with the traditional Chinese medicine monomer-artesunate in treating the hypoxic tumor.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100798"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1a/90/main.PMC10209134.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9539759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KCNJ15 deficiency promotes drug resistance via affecting the function of lysosomes KCNJ15缺乏通过影响溶酶体功能促进耐药
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100814
Xinbo Qiao , Yixiao Zhang , Zhan Zhang , Nan Niu , Haonan Li , Lisha Sun , Qingtian Ma , Jiawen Bu , Jinchi Liu , Guanglei Chen , Jinqi Xue , Yongliang Yang , Caigang Liu

The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients. V-ATPase, an ATP-driven proton pump positioned at lysosomal surfaces, is responsible for maintaining the stability of lysosome. Herein, we reported that the potassium voltage-gated channel subfamily J member 15 (KCNJ15) protein, which may bind to V-ATPase, can regulate the function of lysosome. The deficiency of KCNJ15 protein in breast cancer cells led to drug aggregation as well as reduction of drug efficacy. The application of the V-ATPase inhibitor could inhibit the binding between KCNJ15 and V-ATPase, contributing to the amelioration of drug resistance. Clinical data analysis revealed that KCNJ15 deficiency was associated with higher histological grading, advanced stages, more metastases of lymph nodes, and shorter disease free survival of patients with breast cancer. KCNJ15 expression level is positively correlated with a high response rate after receiving neoadjuvant chemotherapy. Moreover, we revealed that the small molecule drug CMA/BAF can reverse drug resistance by disrupting the interaction between KCNJ15 and lysosomes. In conclusion, KCNJ15 could be identified as an underlying indicator for drug resistance and survival of breast cancer, which might guide the choice of therapeutic strategies.

改变的溶酶体功能可诱导药物再分配,从而导致癌症患者的耐药性和不良预后。V-ATP酶是一种位于溶酶体表面的ATP驱动的质子泵,负责维持溶酶体的稳定性。在此,我们报道了可能与V-ATP酶结合的钾电压门控通道亚家族J成员15(KCNJ15)蛋白可以调节溶酶体的功能。乳腺癌症细胞KCNJ15蛋白缺乏导致药物聚集,降低疗效。应用V-ATP酶抑制剂可以抑制KCNJ15与V-ATP酶的结合,有助于改善耐药性。临床数据分析显示,KCNJ15缺乏与癌症患者的组织学分级更高、晚期、淋巴结转移更多和无病生存期更短有关。KCNJ15的表达水平与接受新辅助化疗后的高应答率呈正相关。此外,我们发现小分子药物CMA/BAF可以通过破坏KCNJ15和溶酶体之间的相互作用来逆转耐药性。总之,KCNJ15可以被确定为癌症耐药性和生存率的潜在指标,这可能指导治疗策略的选择。
{"title":"KCNJ15 deficiency promotes drug resistance via affecting the function of lysosomes","authors":"Xinbo Qiao ,&nbsp;Yixiao Zhang ,&nbsp;Zhan Zhang ,&nbsp;Nan Niu ,&nbsp;Haonan Li ,&nbsp;Lisha Sun ,&nbsp;Qingtian Ma ,&nbsp;Jiawen Bu ,&nbsp;Jinchi Liu ,&nbsp;Guanglei Chen ,&nbsp;Jinqi Xue ,&nbsp;Yongliang Yang ,&nbsp;Caigang Liu","doi":"10.1016/j.ajps.2023.100814","DOIUrl":"10.1016/j.ajps.2023.100814","url":null,"abstract":"<div><p>The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients. V-ATPase, an ATP-driven proton pump positioned at lysosomal surfaces, is responsible for maintaining the stability of lysosome. Herein, we reported that the potassium voltage-gated channel subfamily J member 15 (KCNJ15) protein, which may bind to V-ATPase, can regulate the function of lysosome. The deficiency of KCNJ15 protein in breast cancer cells led to drug aggregation as well as reduction of drug efficacy. The application of the V-ATPase inhibitor could inhibit the binding between KCNJ15 and V-ATPase, contributing to the amelioration of drug resistance. Clinical data analysis revealed that KCNJ15 deficiency was associated with higher histological grading, advanced stages, more metastases of lymph nodes, and shorter disease free survival of patients with breast cancer. KCNJ15 expression level is positively correlated with a high response rate after receiving neoadjuvant chemotherapy. Moreover, we revealed that the small molecule drug CMA/BAF can reverse drug resistance by disrupting the interaction between KCNJ15 and lysosomes. In conclusion, KCNJ15 could be identified as an underlying indicator for drug resistance and survival of breast cancer, which might guide the choice of therapeutic strategies.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100814"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/27/main.PMC10238847.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone mesenchymal stem cell-derived exosomes involved co-delivery and synergism effect with icariin via mussel-inspired multifunctional hydrogel for cartilage protection 骨间充质干细胞衍生的外泌体通过贻贝激发的多功能水凝胶与淫羊藿苷共同递送和协同作用,以保护软骨
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100799
Jia Zeng , Peng Sun , Yuanqian Zhao , Xinning Fang , Zhenghong Wu , Xiaole Qi

Mesenchymal stem cells (MSC) are particularly effective in promoting cartilage regeneration due to their immunomodulatory, anti-inflammatory and regenerative repair functions of tissues and organs. Meanwhile, the intra-articular delivery and synergy with other therapeutic drugs have been the key issues driving their further application. We report a mussel-inspired multifunctional hydrogel system, which could achieve co-delivery and synergism effect of MSC-derived exosomes (Exos) with icariin (ICA). The ICA and Exos co-delivered articular cavity injection system are expected to retain in the joint cavity and promote cartilage regeneration, due to the thermosensitive, self-healing and adhesion properties of the mussel-inspired multifunctional hydrogel. The experimental results proved that Exos enhanced the cellular uptake of ICA by more than 2-fold evenly, and the synergism of Exos and ICA efficiently improve the cell proliferation and migration. After synergic treatment, the content of matrix metalloproteinase 13 in the supernatant and intracellular decreased by 47% and 59%, respectively. In vivo study, ICA-loaded Exos exhibited prolonged retention behavior by multifunctional hydrogel delivery, thus displayed an increased cartilage protection. In the model of osteoarthritis, co-delivery hydrogel system relieved the cartilage recession, ensuring appropriate cartilage thickness.

间充质干细胞(MSC)由于其对组织和器官的免疫调节、抗炎和再生修复功能,在促进软骨再生方面特别有效。同时,关节内给药以及与其他治疗药物的协同作用是推动其进一步应用的关键问题。我们报道了一种受贻贝启发的多功能水凝胶系统,该系统可以实现MSC衍生的外泌体(Exos)与icariin(ICA)的共递送和协同作用。ICA和Exos联合递送的关节腔注射系统有望保留在关节腔中,并促进软骨再生,这是由于受贻贝启发的多功能水凝胶具有热敏、自修复和粘附特性。实验结果表明,Exos使细胞对ICA的吸收均匀增加2倍以上,Exos与ICA的协同作用有效地促进了细胞的增殖和迁移。协同处理后,上清液和细胞内基质金属蛋白酶13的含量分别下降47%和59%。在体内研究中,ICA负载的Exos通过多功能水凝胶递送表现出延长的保留行为,从而表现出增强的软骨保护。在骨关节炎模型中,共递送水凝胶系统缓解了软骨衰退,确保了适当的软骨厚度。
{"title":"Bone mesenchymal stem cell-derived exosomes involved co-delivery and synergism effect with icariin via mussel-inspired multifunctional hydrogel for cartilage protection","authors":"Jia Zeng ,&nbsp;Peng Sun ,&nbsp;Yuanqian Zhao ,&nbsp;Xinning Fang ,&nbsp;Zhenghong Wu ,&nbsp;Xiaole Qi","doi":"10.1016/j.ajps.2023.100799","DOIUrl":"10.1016/j.ajps.2023.100799","url":null,"abstract":"<div><p>Mesenchymal stem cells (MSC) are particularly effective in promoting cartilage regeneration due to their immunomodulatory, anti-inflammatory and regenerative repair functions of tissues and organs. Meanwhile, the intra-articular delivery and synergy with other therapeutic drugs have been the key issues driving their further application. We report a mussel-inspired multifunctional hydrogel system, which could achieve co-delivery and synergism effect of MSC-derived exosomes (Exos) with icariin (ICA). The ICA and Exos co-delivered articular cavity injection system are expected to retain in the joint cavity and promote cartilage regeneration, due to the thermosensitive, self-healing and adhesion properties of the mussel-inspired multifunctional hydrogel. The experimental results proved that Exos enhanced the cellular uptake of ICA by more than 2-fold evenly, and the synergism of Exos and ICA efficiently improve the cell proliferation and migration. After synergic treatment, the content of matrix metalloproteinase 13 in the supernatant and intracellular decreased by 47% and 59%, respectively. <em>In vivo</em> study, ICA-loaded Exos exhibited prolonged retention behavior by multifunctional hydrogel delivery, thus displayed an increased cartilage protection. In the model of osteoarthritis, co-delivery hydrogel system relieved the cartilage recession, ensuring appropriate cartilage thickness.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100799"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/33/main.PMC10238841.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis 水凝胶-脂质体纳米平台通过诱导铁下垂抑制胶质母细胞瘤复发
IF 10.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2023-05-01 DOI: 10.1016/j.ajps.2023.100800
Zixiao Wang , Zihao Liu , Shan Wang , Xin Bing , Xiaoshuai Ji , Dong He , Min Han , Yanbang Wei , Chanyue Wang , Qian Xia , Jianqiao Yang , Jiajia Gao , Xianyong Yin , Zhihai Wang , Zehan Shang , Jiacan Xu , Tao Xin , Qian Liu

Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults. However, the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment. Ferroptosis is a recently discovered form of iron-dependent cell death that may have excellent prospect as chemosensitizer. The utilization of ferropotosis inducer Erastin could significantly mediate chemotherapy sensitization of Temozolomide and exert anti-tumor effects in glioblastoma. In this study, a combination of hydrogel-liposome nanoplatform encapsulated with Temozolomide and ferroptosis inducer Erastin was constructed. The αvβ3 integrin-binding peptide cyclic RGD was utilized to modify codelivery system to achieve glioblastoma targeting strategy. As biocompatible drug reservoirs, cross-linked GelMA (gelatin methacrylamide) hydrogel and cRGD-coated liposome realized the sustained release of internal contents. In the modified intracranial tumor resection model, GelMA-liposome system achieved slow release of Temozolomide and Erastin in situ for more than 14 d. The results indicated that nanoplatform (T+E@LPs-cRGD+GelMA) improved glioblastoma sensitivity to chemotherapeutic temozolomide and exerted satisfactory anti-tumor effects. It was demonstrated that the induction of ferroptosis could be utilized as a therapeutic strategy to overcome drug resistance. Furthermore, transcriptome sequencing was conducted to reveal the underlying mechanism that the nanoplatform (T+E@LPs-cRGD+GelMA) implicated in. It is suggested that GelMA-liposome system participated in the immune response and immunomodulation of glioblastoma via interferon/PD-L1 pathway. Collectively, this study proposed a potential combinatory therapeutic strategy for glioblastoma treatment.

胶质母细胞瘤是公认的成人最具侵袭性的脑肿瘤。然而,目前标准治疗的疗效受到耐药性和抑制性免疫微环境的严重破坏。脱铁症是最近发现的一种铁依赖性细胞死亡形式,可能具有作为化学增敏剂的良好前景。利用铁蛋白病诱导剂Erastin可以显著介导替莫唑胺的化疗增敏,并在胶质母细胞瘤中发挥抗肿瘤作用。在本研究中,构建了一种由替莫唑胺和脱铁诱导剂Erastin包裹的水凝胶脂质体纳米平台。利用αvβ3整合素结合肽环RGD修饰共递送系统,实现胶质母细胞瘤靶向策略。交联GelMA(明胶-甲基丙烯酰胺)水凝胶和cRGD包被脂质体作为生物相容性药物库,实现了内部内容物的持续释放。在改良的颅内肿瘤切除模型中,GelMA脂质体系统实现了替莫唑胺和Erastin的原位缓释14d以上。结果表明,纳米平台(T+E@LPs-cRGD+GelMA)提高了胶质母细胞瘤对化疗药物替莫唑酰胺的敏感性,并发挥了令人满意的抗肿瘤效果。研究表明,诱导脱铁性贫血可以作为克服耐药性的治疗策略。此外,通过转录组测序揭示了纳米平台(T+E@LPs-cRGD+GelMA)参与胶质母细胞瘤免疫反应和免疫调节的潜在机制。总之,本研究为胶质母细胞瘤的治疗提出了一种潜在的组合治疗策略。
{"title":"Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis","authors":"Zixiao Wang ,&nbsp;Zihao Liu ,&nbsp;Shan Wang ,&nbsp;Xin Bing ,&nbsp;Xiaoshuai Ji ,&nbsp;Dong He ,&nbsp;Min Han ,&nbsp;Yanbang Wei ,&nbsp;Chanyue Wang ,&nbsp;Qian Xia ,&nbsp;Jianqiao Yang ,&nbsp;Jiajia Gao ,&nbsp;Xianyong Yin ,&nbsp;Zhihai Wang ,&nbsp;Zehan Shang ,&nbsp;Jiacan Xu ,&nbsp;Tao Xin ,&nbsp;Qian Liu","doi":"10.1016/j.ajps.2023.100800","DOIUrl":"10.1016/j.ajps.2023.100800","url":null,"abstract":"<div><p>Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults. However, the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment. Ferroptosis is a recently discovered form of iron-dependent cell death that may have excellent prospect as chemosensitizer. The utilization of ferropotosis inducer Erastin could significantly mediate chemotherapy sensitization of Temozolomide and exert anti-tumor effects in glioblastoma. In this study, a combination of hydrogel-liposome nanoplatform encapsulated with Temozolomide and ferroptosis inducer Erastin was constructed. The αvβ3 integrin-binding peptide cyclic RGD was utilized to modify codelivery system to achieve glioblastoma targeting strategy. As biocompatible drug reservoirs, cross-linked GelMA (gelatin methacrylamide) hydrogel and cRGD-coated liposome realized the sustained release of internal contents. In the modified intracranial tumor resection model, GelMA-liposome system achieved slow release of Temozolomide and Erastin <em>in situ</em> for more than 14 d. The results indicated that nanoplatform (<em>T</em>+<em>E</em>@LPs-cRGD+GelMA) improved glioblastoma sensitivity to chemotherapeutic temozolomide and exerted satisfactory anti-tumor effects. It was demonstrated that the induction of ferroptosis could be utilized as a therapeutic strategy to overcome drug resistance. Furthermore, transcriptome sequencing was conducted to reveal the underlying mechanism that the nanoplatform (T+E@LPs-cRGD+GelMA) implicated in. It is suggested that GelMA-liposome system participated in the immune response and immunomodulation of glioblastoma via interferon/PD-L1 pathway. Collectively, this study proposed a potential combinatory therapeutic strategy for glioblastoma treatment.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100800"},"PeriodicalIF":10.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/22/1d/main.PMC10232663.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Asian Journal of Pharmaceutical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1