The present ultrastructural investigation into osteocyte dendrogenesis represents a continuation of a previous study (Ferretti et al., Anat. Embryol., 2002; 206:21-29), in which we pointed out that, during intramembranous ossification, the well-known dynamic bone formation (DBF), performed by migrating osteoblast laminae, is preceded by static bone formation (SBF), in which cords of stationary osteoblasts transform into osteocytes in the same site where they differentiated. The research was carried out on the perichondral center of ossification surrounding the mid shaft level of various long bones of chick embryos and newborn rabbits. Transmission electron microscope observations showed that the formation of osteocyte dendrites is quite different in the two types of osteogenesis, mainly depending on whether or not osteoblast movement occurs. In DBF, osteoblasts transform into small ovoidal/ellipsoidal osteocytes and their dendrites form in an asynchronous and asymmetrical manner in concomitance with, and depending on, the advancing mineralizing surface and the receding osteogenic laminae. In SBF, stationary osteoblasts give rise to big globous osteocytes, located inside confluent lacunae, with short and symmetrical dendrites that can radiate simultaneously all around their cell body because they are completely surrounded by unmineralized matrix. Contacts and gap junctions were observed between all osteocytes (both SBF- and DBF-derived) and between osteocytes and osteoblasts. Finally, a continuous osteocyte network extends throughout the bone, regardless of its static or dynamic origin. This network has the characteristic of a functional syncytium, potentially capable of modulating, by wiring transmission, the cells of the osteogenic lineage covering the bone surfaces.
{"title":"Osteocyte dendrogenesis in static and dynamic bone formation: an ultrastructural study.","authors":"Carla Palumbo, Marzia Ferretti, Gastone Marotti","doi":"10.1002/ar.a.20032","DOIUrl":"https://doi.org/10.1002/ar.a.20032","url":null,"abstract":"<p><p>The present ultrastructural investigation into osteocyte dendrogenesis represents a continuation of a previous study (Ferretti et al., Anat. Embryol., 2002; 206:21-29), in which we pointed out that, during intramembranous ossification, the well-known dynamic bone formation (DBF), performed by migrating osteoblast laminae, is preceded by static bone formation (SBF), in which cords of stationary osteoblasts transform into osteocytes in the same site where they differentiated. The research was carried out on the perichondral center of ossification surrounding the mid shaft level of various long bones of chick embryos and newborn rabbits. Transmission electron microscope observations showed that the formation of osteocyte dendrites is quite different in the two types of osteogenesis, mainly depending on whether or not osteoblast movement occurs. In DBF, osteoblasts transform into small ovoidal/ellipsoidal osteocytes and their dendrites form in an asynchronous and asymmetrical manner in concomitance with, and depending on, the advancing mineralizing surface and the receding osteogenic laminae. In SBF, stationary osteoblasts give rise to big globous osteocytes, located inside confluent lacunae, with short and symmetrical dendrites that can radiate simultaneously all around their cell body because they are completely surrounded by unmineralized matrix. Contacts and gap junctions were observed between all osteocytes (both SBF- and DBF-derived) and between osteocytes and osteoblasts. Finally, a continuous osteocyte network extends throughout the bone, regardless of its static or dynamic origin. This network has the characteristic of a functional syncytium, potentially capable of modulating, by wiring transmission, the cells of the osteogenic lineage covering the bone surfaces.</p>","PeriodicalId":85633,"journal":{"name":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","volume":"278 1","pages":"474-80"},"PeriodicalIF":0.0,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ar.a.20032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24484544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The internal organs of vertebrates show specific anatomical left-right asymmetries. The embryonic heart is the first organ to develop such asymmetries during a process called dextro-looping. Thereby the initially straight heart tube curves toward its original ventral side and the resulting bend becomes displaced toward the right side of the embryo. Abnormal displacement of the heart loop toward the left is rare and is called levo-looping. Descriptive studies have shown that the lateralization of the heart loop is driven by rotation around its dorsal mesocardium. However, nothing was known on the modes of this process. To gain insight into this subject, different modes of rotation were tested in a simulation model for the looping chick embryo heart. The morphological phenotypes obtained in this model were compared with normal and mirror-imaged embryonic hearts. The following observations were made. One, rotation of the heart loop around its dorsal mesocardium has two consequences: first, lateral displacement of its bending portion either toward the right (D-loop) or left (L-loop) side of the embryo, and second, torsion of the cardiac bend into a helical structure that is wound either clockwise (right-handed helix) or counterclockwise (left-handed helix). The normal loop presents as a D-loop with left-handed helical winding and its mirror image presents as an L-loop with right-handed helical winding. This conflicts with the use to define D-loops as right- and L-loops as left-handed structures. Two, dextro-looping might be driven almost exclusively by rightward rotation of the arterial pole of the loop. It becomes complemented by leftward rotation of the venous pole during the subsequent phase of looping. An inverse mode of rotation might drive levo-looping. Three, the two different helical configurations of heart loops both can occur as right-sided, median, or left-sided positional variants. When viewed from the front, all right-sided variants appear as D-loops and all left-sided variants appear as L-loops at the end of dextro- or levo-looping. Their true asymmetric phenotypes become fully apparent only after simulation of the subsequent phase of looping. The terms D- and L-loop obviously do not fully define the chirality of heart loops. The chirality of their helical configuration should be defined, too. The implications of these data with respect to molecular and experimental data are discussed.
{"title":"On rotation, torsion, lateralization, and handedness of the embryonic heart loop: new insights from a simulation model for the heart loop of chick embryos.","authors":"Jörg Männer","doi":"10.1002/ar.a.20036","DOIUrl":"https://doi.org/10.1002/ar.a.20036","url":null,"abstract":"<p><p>The internal organs of vertebrates show specific anatomical left-right asymmetries. The embryonic heart is the first organ to develop such asymmetries during a process called dextro-looping. Thereby the initially straight heart tube curves toward its original ventral side and the resulting bend becomes displaced toward the right side of the embryo. Abnormal displacement of the heart loop toward the left is rare and is called levo-looping. Descriptive studies have shown that the lateralization of the heart loop is driven by rotation around its dorsal mesocardium. However, nothing was known on the modes of this process. To gain insight into this subject, different modes of rotation were tested in a simulation model for the looping chick embryo heart. The morphological phenotypes obtained in this model were compared with normal and mirror-imaged embryonic hearts. The following observations were made. One, rotation of the heart loop around its dorsal mesocardium has two consequences: first, lateral displacement of its bending portion either toward the right (D-loop) or left (L-loop) side of the embryo, and second, torsion of the cardiac bend into a helical structure that is wound either clockwise (right-handed helix) or counterclockwise (left-handed helix). The normal loop presents as a D-loop with left-handed helical winding and its mirror image presents as an L-loop with right-handed helical winding. This conflicts with the use to define D-loops as right- and L-loops as left-handed structures. Two, dextro-looping might be driven almost exclusively by rightward rotation of the arterial pole of the loop. It becomes complemented by leftward rotation of the venous pole during the subsequent phase of looping. An inverse mode of rotation might drive levo-looping. Three, the two different helical configurations of heart loops both can occur as right-sided, median, or left-sided positional variants. When viewed from the front, all right-sided variants appear as D-loops and all left-sided variants appear as L-loops at the end of dextro- or levo-looping. Their true asymmetric phenotypes become fully apparent only after simulation of the subsequent phase of looping. The terms D- and L-loop obviously do not fully define the chirality of heart loops. The chirality of their helical configuration should be defined, too. The implications of these data with respect to molecular and experimental data are discussed.</p>","PeriodicalId":85633,"journal":{"name":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","volume":"278 1","pages":"481-92"},"PeriodicalIF":0.0,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ar.a.20036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24484545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The goals of this study were to build the 3D reconstructed model of lateral skull base and to explore the spatial relationships of the important structures for providing the morphological basis for lateral skull base surgery and clinical image diagnosis. Blocks with edges of about 80 mm containing the lateral skull base region and adjacent structures were sawn out from both sides of the heads and sectioned on transverse plane at a thickness of 700 microm using a plastination technique. On an SGI workstation, a Contours-Marching cubes algorithm was selected to reconstruct the 3D model of the lateral skull base. Accurate alignment of the structures in the serial macroscopic sections was obtained by the employment of the plastination technique. The quality of the reconstructed images was distinct and perfect, specifically, the spatial positions and complicated adjacent relationships of various structures of the lateral skull base can be shown in direct viewing when they are displayed in background of the cranial bony substance. The time spent in displaying or rotating one image including 50 sections was 1.5 sec; all reconstructed structures can be represented individually or jointly and rotated in any plane. The plastination technique and computer-aided 3D reconstruction have an obvious advantage in the study of the complex anatomy of the lateral skull base. Plastination technique provides cross-section images of a higher resolution than those obtained from CT scanning. The computerized 3D reconstruction is important in studying the spatial anatomy of the lateral skull base and can serve as a standard for models created with other techniques.
{"title":"Three-dimensional computational reconstruction of lateral skull base with plastinated slices.","authors":"Ming-Guo Qiu, Shao-Xiang Zhang, Zheng-Jin Liu, Li-Wen Tan, Yu-Su Wang, Jun-Hui Deng, Ze-Sheng Tang","doi":"10.1002/ar.a.20023","DOIUrl":"https://doi.org/10.1002/ar.a.20023","url":null,"abstract":"<p><p>The goals of this study were to build the 3D reconstructed model of lateral skull base and to explore the spatial relationships of the important structures for providing the morphological basis for lateral skull base surgery and clinical image diagnosis. Blocks with edges of about 80 mm containing the lateral skull base region and adjacent structures were sawn out from both sides of the heads and sectioned on transverse plane at a thickness of 700 microm using a plastination technique. On an SGI workstation, a Contours-Marching cubes algorithm was selected to reconstruct the 3D model of the lateral skull base. Accurate alignment of the structures in the serial macroscopic sections was obtained by the employment of the plastination technique. The quality of the reconstructed images was distinct and perfect, specifically, the spatial positions and complicated adjacent relationships of various structures of the lateral skull base can be shown in direct viewing when they are displayed in background of the cranial bony substance. The time spent in displaying or rotating one image including 50 sections was 1.5 sec; all reconstructed structures can be represented individually or jointly and rotated in any plane. The plastination technique and computer-aided 3D reconstruction have an obvious advantage in the study of the complex anatomy of the lateral skull base. Plastination technique provides cross-section images of a higher resolution than those obtained from CT scanning. The computerized 3D reconstruction is important in studying the spatial anatomy of the lateral skull base and can serve as a standard for models created with other techniques.</p>","PeriodicalId":85633,"journal":{"name":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","volume":"278 1","pages":"437-42"},"PeriodicalIF":0.0,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ar.a.20023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24484539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone regenerates following amputation through the level of the nail, but bone is capped following amputation through more proximal levels. Because osteogenesis requires an ample blood supply, we postulated that a restricted vascular supply might be correlated with restricted regenerative ability at proximal levels. More than 40 rats and mice were injected with ink or resin to visualize vascular supplies of intact, regenerating, and nonregenerating rat and mouse digits. Ink-injected specimens were viewed as histological sections or cleared whole mounts. Partially digested resin casts were viewed using scanning electron microscopy. Contrary to our hypothesis, prior to amputation, proximal sites are more vascular than distal sites. At both proximal and distal levels, endosteal and periosteal vascular systems are evident. However, in proximal phalanges, additional subcutaneous and dermal layers encircle the bone. Beneath the distal nail, these layers are absent, and a single layer of vessels provides both periosteal and cutaneous supplies. After amputation at both levels, new vessels sprout profusely in osteogenic areas of both endosteum and periosteum. However, at proximal levels, the additional hypodermal and dermal vessels contribute to a vascular plexus that, paradoxically, may impair bone regrowth by contributing to the formation of dermal scar rather than bone.
{"title":"Vascular supplies differ in regenerating and nonregenerating amputated rodent digits.","authors":"Suleman Said, Wesley Parke, Daniel A Neufeld","doi":"10.1002/ar.a.20034","DOIUrl":"https://doi.org/10.1002/ar.a.20034","url":null,"abstract":"<p><p>Bone regenerates following amputation through the level of the nail, but bone is capped following amputation through more proximal levels. Because osteogenesis requires an ample blood supply, we postulated that a restricted vascular supply might be correlated with restricted regenerative ability at proximal levels. More than 40 rats and mice were injected with ink or resin to visualize vascular supplies of intact, regenerating, and nonregenerating rat and mouse digits. Ink-injected specimens were viewed as histological sections or cleared whole mounts. Partially digested resin casts were viewed using scanning electron microscopy. Contrary to our hypothesis, prior to amputation, proximal sites are more vascular than distal sites. At both proximal and distal levels, endosteal and periosteal vascular systems are evident. However, in proximal phalanges, additional subcutaneous and dermal layers encircle the bone. Beneath the distal nail, these layers are absent, and a single layer of vessels provides both periosteal and cutaneous supplies. After amputation at both levels, new vessels sprout profusely in osteogenic areas of both endosteum and periosteum. However, at proximal levels, the additional hypodermal and dermal vessels contribute to a vascular plexus that, paradoxically, may impair bone regrowth by contributing to the formation of dermal scar rather than bone.</p>","PeriodicalId":85633,"journal":{"name":"The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology","volume":"278 1","pages":"443-9"},"PeriodicalIF":0.0,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ar.a.20034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24484540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}