In this article, effects of the strong long-range interaction of Rydberg atoms on the Autler–Townes splitting spectrum are investigated. Preliminary results are obtained for various excitation times and Rydberg atom densities. The 2S1/2 and 2P1/2 levels of lithium-7 are coupled with strong laser field and probed by another laser via excitation into a 70S Rydberg level. Interactions between Rydberg atoms excited by the probe beam lead to the broadening of the Autler–Townes spectra. At high concentrations of Rydberg atoms, a suppression of the excitation of the Autler–Townes peak at red detuning is observed.
{"title":"Rydberg Interaction-Induced Distortion of the Autler–Townes Spectra in Cold Lithium Atoms","authors":"S. Saakyan, N. Morozov, V. Sautenkov, B. Zelener","doi":"10.3390/atoms11040073","DOIUrl":"https://doi.org/10.3390/atoms11040073","url":null,"abstract":"In this article, effects of the strong long-range interaction of Rydberg atoms on the Autler–Townes splitting spectrum are investigated. Preliminary results are obtained for various excitation times and Rydberg atom densities. The 2S1/2 and 2P1/2 levels of lithium-7 are coupled with strong laser field and probed by another laser via excitation into a 70S Rydberg level. Interactions between Rydberg atoms excited by the probe beam lead to the broadening of the Autler–Townes spectra. At high concentrations of Rydberg atoms, a suppression of the excitation of the Autler–Townes peak at red detuning is observed.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41927970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Baral, R. Easwaran, J. José, Aarthi Ganesan, P. Deshmukh
An atom confined in an optical dipole trap is a promising candidate for a qubit. Analyzing the temporal response of such trapped atoms enables us to estimate the speed at which quantum computers operate. The present work models an atom in an optical dipole trap formed using crossed laser beams and further examines the photoionization time delay from such confined atoms. We study noble gas atoms, such as Ne (Z = 10), Ar (Z = 18), Kr (Z = 36), and Xe (Z = 54). The atoms are considered to be confined in an optical dipole trap using X-ray Free Electron Lasers (XFEL). The present work shows that the photoionization time delay of the trapped atoms is different compared with that of the free atoms. This analysis alerts us that while talking about the speed of quantum computing, the temporal response of the atoms in the trapped environment must also be accounted for.
一个被限制在光学偶极子阱中的原子是一个很有希望成为量子比特的候选者。分析这些被困原子的时间响应,使我们能够估计量子计算机的运行速度。本文模拟了在交叉激光束形成的光学偶极子阱中的原子,并进一步研究了这种受限原子的光电离时间延迟。我们研究稀有气体原子,如Ne (Z = 10)、Ar (Z = 18)、Kr (Z = 36)和Xe (Z = 54)。利用x射线自由电子激光器(XFEL)认为原子被限制在光学偶极子阱中。本文的工作表明,被困原子的光离延迟与自由原子的光离延迟是不同的。这一分析提醒我们,在讨论量子计算的速度时,也必须考虑到被困环境中原子的时间响应。
{"title":"Temporal Response of Atoms Trapped in an Optical Dipole Trap: A Primer on Quantum Computing Speed","authors":"S. Baral, R. Easwaran, J. José, Aarthi Ganesan, P. Deshmukh","doi":"10.3390/atoms11040072","DOIUrl":"https://doi.org/10.3390/atoms11040072","url":null,"abstract":"An atom confined in an optical dipole trap is a promising candidate for a qubit. Analyzing the temporal response of such trapped atoms enables us to estimate the speed at which quantum computers operate. The present work models an atom in an optical dipole trap formed using crossed laser beams and further examines the photoionization time delay from such confined atoms. We study noble gas atoms, such as Ne (Z = 10), Ar (Z = 18), Kr (Z = 36), and Xe (Z = 54). The atoms are considered to be confined in an optical dipole trap using X-ray Free Electron Lasers (XFEL). The present work shows that the photoionization time delay of the trapped atoms is different compared with that of the free atoms. This analysis alerts us that while talking about the speed of quantum computing, the temporal response of the atoms in the trapped environment must also be accounted for.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46276957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Time and frequency (T&F) measurement with unprecedented accuracy is the backbone for several sophisticated technologies, commensurate with the evolution of human civilisation in the 20th century in terms of communication, positioning, navigation, and precision timing. This necessity drove researchers in the early 1950s to build atomic clocks that have now evolved to a state-of-the-art level, operating at optical wavelengths as optical atomic clocks, which use cold and trapped samples of atomic/ionic species and various other sophisticated diagnostic test techniques. Such ultrahigh-precision accurate clocks have made it possible to probe fundamental aspects of science through incredibly sensitive measurements. On the other hand, they meet the T&F synchronisation standards for classical and emerging quantum technologies at the desired level of accuracy. Considering the impact of optical atomic clocks in the second quantum revolution (quantum 2.0), they have been identified as an indispensable critical technology in worldwide quantum missions, including in India. This article reviews the present international scenario regarding optical atomic clocks and their related technologies and draws a roadmap for their indigenisation over the next decade.
{"title":"Indigenisation of the Quantum Clock: An Indispensable Tool for Modern Technologies","authors":"S. De, Arijit Sharma","doi":"10.3390/atoms11040071","DOIUrl":"https://doi.org/10.3390/atoms11040071","url":null,"abstract":"Time and frequency (T&F) measurement with unprecedented accuracy is the backbone for several sophisticated technologies, commensurate with the evolution of human civilisation in the 20th century in terms of communication, positioning, navigation, and precision timing. This necessity drove researchers in the early 1950s to build atomic clocks that have now evolved to a state-of-the-art level, operating at optical wavelengths as optical atomic clocks, which use cold and trapped samples of atomic/ionic species and various other sophisticated diagnostic test techniques. Such ultrahigh-precision accurate clocks have made it possible to probe fundamental aspects of science through incredibly sensitive measurements. On the other hand, they meet the T&F synchronisation standards for classical and emerging quantum technologies at the desired level of accuracy. Considering the impact of optical atomic clocks in the second quantum revolution (quantum 2.0), they have been identified as an indispensable critical technology in worldwide quantum missions, including in India. This article reviews the present international scenario regarding optical atomic clocks and their related technologies and draws a roadmap for their indigenisation over the next decade.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46672806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanting Li, G. Gaigalas, Wenxian Li, Chongyang Chen, P. Jönsson
Ab initio calculations sometimes do not reproduce the experimentally observed energy separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks to ensure that calculated energy separations of the states that mix are in agreement with experiment. The process gives more accurate measures of the mixing than can be obtained in ab initio calculations. Fine-tuning requires the Hamiltonian matrix to be diagonally dominant, which is generally not the case for calculations based on jj-coupled configuration state functions. We show that this problem can be circumvented by a method that transforms the Hamiltonian in jj-coupling to a Hamiltonian in LSJ-coupling for which fine-tuning applies. The fine-tuned matrix is then transformed back to a Hamiltonian in jj-coupling. The implementation of the method into the General Relativistic Atomic Structure Package is described and test runs to validate the program operations are reported. The new method is applied to the computation of the 2s21S0−2s2p1,3P1 transitions in C III and to the computation of Rydberg transitions in B I, for which the 2s2p22S1/2 perturber enters the 2s2ns2S1/2 series. Improved convergence patterns and results are found compared with ab initio calculations.
{"title":"Fine-Tuning of Atomic Energies in Relativistic Multiconfiguration Calculations","authors":"Yanting Li, G. Gaigalas, Wenxian Li, Chongyang Chen, P. Jönsson","doi":"10.3390/atoms11040070","DOIUrl":"https://doi.org/10.3390/atoms11040070","url":null,"abstract":"Ab initio calculations sometimes do not reproduce the experimentally observed energy separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks to ensure that calculated energy separations of the states that mix are in agreement with experiment. The process gives more accurate measures of the mixing than can be obtained in ab initio calculations. Fine-tuning requires the Hamiltonian matrix to be diagonally dominant, which is generally not the case for calculations based on jj-coupled configuration state functions. We show that this problem can be circumvented by a method that transforms the Hamiltonian in jj-coupling to a Hamiltonian in LSJ-coupling for which fine-tuning applies. The fine-tuned matrix is then transformed back to a Hamiltonian in jj-coupling. The implementation of the method into the General Relativistic Atomic Structure Package is described and test runs to validate the program operations are reported. The new method is applied to the computation of the 2s21S0−2s2p1,3P1 transitions in C III and to the computation of Rydberg transitions in B I, for which the 2s2p22S1/2 perturber enters the 2s2ns2S1/2 series. Improved convergence patterns and results are found compared with ab initio calculations.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44754334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We studied the 1Se and 1,3Po resonance states of negative hydrogen-like ions immersed in quantum plasmas. The exponential cosine screened Coulomb potential was considered to model the quantum plasma environment. The correlated exponential wave functions in which the exponents were generated by a pseudo-random technique were applied to represent the correlation effects between the charged particles. The stabilization method was used to calculate the resonance parameters (position and width). The resonance parameters (position and width) for Ps−, Mμ−, π−, 1H−, D−, T− and ∞H− embedded in quantum plasmas are reported for various screening parameters. The 1Se resonance parameters for Mμ−, π−, 1H−, D−, T− ions and 1,3 Po states for Ps−, Mμ−, π−, 1H−, D−, T− and ∞H− of the proposed systems are reported for the first time in the literature.
{"title":"Resonance States of Negative Hydrogen-like Ions in Quantum Plasmas","authors":"Suya Yao, Zishi Jiang, S. Kar","doi":"10.3390/atoms11040069","DOIUrl":"https://doi.org/10.3390/atoms11040069","url":null,"abstract":"We studied the 1Se and 1,3Po resonance states of negative hydrogen-like ions immersed in quantum plasmas. The exponential cosine screened Coulomb potential was considered to model the quantum plasma environment. The correlated exponential wave functions in which the exponents were generated by a pseudo-random technique were applied to represent the correlation effects between the charged particles. The stabilization method was used to calculate the resonance parameters (position and width). The resonance parameters (position and width) for Ps−, Mμ−, π−, 1H−, D−, T− and ∞H− embedded in quantum plasmas are reported for various screening parameters. The 1Se resonance parameters for Mμ−, π−, 1H−, D−, T− ions and 1,3 Po states for Ps−, Mμ−, π−, 1H−, D−, T− and ∞H− of the proposed systems are reported for the first time in the literature.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43785773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Jönsson, G. Gaigalas, C. Fischer, J. Bieroń, I. P. Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, Jiguang Li, Wenxian Li
grasp is a software package in Fortran 95, adapted to run in parallel under MPI, for research in atomic physics. The basic premise is that, given a wave function, any observed atomic property can be computed. Thus, the first step is always to determine a wave function. Different properties challenge the accuracy of the wave function in different ways. This software is distributed under the MIT Licence.
{"title":"GRASP Manual for Users","authors":"P. Jönsson, G. Gaigalas, C. Fischer, J. Bieroń, I. P. Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, Jiguang Li, Wenxian Li","doi":"10.3390/atoms11040068","DOIUrl":"https://doi.org/10.3390/atoms11040068","url":null,"abstract":"grasp is a software package in Fortran 95, adapted to run in parallel under MPI, for research in atomic physics. The basic premise is that, given a wave function, any observed atomic property can be computed. Thus, the first step is always to determine a wave function. Different properties challenge the accuracy of the wave function in different ways. This software is distributed under the MIT Licence.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49123072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex J. Schimmoller, Harrison Pasquinilli, A. Landsman
A recent work shows how to extract the ionization site of a neutral diatomic molecule by comparing Quantum Trajectory Monte Carlo (QTMC) simulations with experimental measurements of the final electron momenta distribution. This method was applied to an experiment using a 40-femtosecond infrared pulse, finding that a downfield atom is roughly twice as likely to be ionized as an upfield atom in a neutral nitrogen molecule. However, an open question remains as to whether an assumption of the zero carrier envelope phase (CEP) used in the above work is still valid for short, few-cycle pulses where the CEP can play a large role. Given experimentalists’ limited control over the CEP and its dramatic effect on electron momenta after ionization, it is desirable to see what influence the CEP may have in determining the ionization site. In this paper, we employ QTMC techniques to simulate strong-field ionization and electron propagation from neutral N2 using an intense 6-cycle laser pulse with various CEP values. Comparing simulated electron momenta to experimental data indicates that the ratio of down-to-upfield ions remains roughly 2:1 regardless of the CEP. This confirms that the ionization site of a neutral molecule is determined predominantly by the laser frequency and intensity, as well as the ground-state molecular wavefunction, and is largely independent of the CEP.
{"title":"Does Carrier Envelope Phase Affect the Ionization Site in a Neutral Diatomic Molecule?","authors":"Alex J. Schimmoller, Harrison Pasquinilli, A. Landsman","doi":"10.3390/atoms11040067","DOIUrl":"https://doi.org/10.3390/atoms11040067","url":null,"abstract":"A recent work shows how to extract the ionization site of a neutral diatomic molecule by comparing Quantum Trajectory Monte Carlo (QTMC) simulations with experimental measurements of the final electron momenta distribution. This method was applied to an experiment using a 40-femtosecond infrared pulse, finding that a downfield atom is roughly twice as likely to be ionized as an upfield atom in a neutral nitrogen molecule. However, an open question remains as to whether an assumption of the zero carrier envelope phase (CEP) used in the above work is still valid for short, few-cycle pulses where the CEP can play a large role. Given experimentalists’ limited control over the CEP and its dramatic effect on electron momenta after ionization, it is desirable to see what influence the CEP may have in determining the ionization site. In this paper, we employ QTMC techniques to simulate strong-field ionization and electron propagation from neutral N2 using an intense 6-cycle laser pulse with various CEP values. Comparing simulated electron momenta to experimental data indicates that the ratio of down-to-upfield ions remains roughly 2:1 regardless of the CEP. This confirms that the ionization site of a neutral molecule is determined predominantly by the laser frequency and intensity, as well as the ground-state molecular wavefunction, and is largely independent of the CEP.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42083277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We outline an experimental technique for measuring the degree of polarization of a positron beam using an optically pumped, spin-polarized Rb target. The technique is based on the production and measurement of the ortho- and para-positronium fractions through positron collisions with the Rb atoms as a function of their polarization. Using realistic estimates for the cross sections and experimental parameters involved, we estimate that a polarization measurement with an uncertainty of 3% of the measured value can be achieved in an hour.
{"title":"A Method to Measure Positron Beam Polarization Using Optically Polarized Atoms","authors":"J. Machacek, S. Hodgman, S. Buckman, T. Gay","doi":"10.3390/atoms11040065","DOIUrl":"https://doi.org/10.3390/atoms11040065","url":null,"abstract":"We outline an experimental technique for measuring the degree of polarization of a positron beam using an optically pumped, spin-polarized Rb target. The technique is based on the production and measurement of the ortho- and para-positronium fractions through positron collisions with the Rb atoms as a function of their polarization. Using realistic estimates for the cross sections and experimental parameters involved, we estimate that a polarization measurement with an uncertainty of 3% of the measured value can be achieved in an hour.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45261112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study reports on the absolute photoionization cross sections for the magnesium-like Cl5+ ion over the 190–370 eV photon energy range, corresponding to the L-shell (2s and 2p subshells) excitation regime. The experiments were performed using the Multi-Analysis Ion Apparatus (MAIA) on the PLéIADES beamline at the SOLEIL synchrotron radiation storage ring facility. Single and double ionization ion yields, produced by photoionization of the 2p subshell of the Cl5+ ion from the 2p63s2 1S0 ground state and the 2p63s3p 3P0,1,2 metastable levels, were observed, as well as 2s excitations. Theoretical calculations of the photoionization cross sections using the Multi-Configuration Dirac-Fock and R-matrix approaches were carried out, and the results were compared with the experimental data. The Cl5+ results were examined within the overall evolution of L-shell excitation for the early members of the Mg-like isoelectronic sequence (Mg, Al+, Si2+, S4+, Cl5+). Characteristic photon energies for P3+ were estimated by interpolation.
{"title":"L-Shell Photoionization of Magnesium-like Ions with New Results for Cl5+","authors":"","doi":"10.3390/atoms11040066","DOIUrl":"https://doi.org/10.3390/atoms11040066","url":null,"abstract":"This study reports on the absolute photoionization cross sections for the magnesium-like Cl5+ ion over the 190–370 eV photon energy range, corresponding to the L-shell (2s and 2p subshells) excitation regime. The experiments were performed using the Multi-Analysis Ion Apparatus (MAIA) on the PLéIADES beamline at the SOLEIL synchrotron radiation storage ring facility. Single and double ionization ion yields, produced by photoionization of the 2p subshell of the Cl5+ ion from the 2p63s2 1S0 ground state and the 2p63s3p 3P0,1,2 metastable levels, were observed, as well as 2s excitations. Theoretical calculations of the photoionization cross sections using the Multi-Configuration Dirac-Fock and R-matrix approaches were carried out, and the results were compared with the experimental data. The Cl5+ results were examined within the overall evolution of L-shell excitation for the early members of the Mg-like isoelectronic sequence (Mg, Al+, Si2+, S4+, Cl5+). Characteristic photon energies for P3+ were estimated by interpolation.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41590789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Mendoza, J. E. Méndez-Delgado, M. Bautista, J. García-Rojas, C. Morisset
We use the PyNeb 1.1.16 Python package to evaluate the atomic datasets available for the spectral modeling of [Fe ii] and [Fe iii], which list level energies, A-values, and effective collision strengths. Most datasets are reconstructed from the sources, and new ones are incorporated to be compared with observed and measured benchmarks. For [Fe iii], we arrive at conclusive results that allow us to select the default datasets, while for [Fe ii], the conspicuous temperature dependency on the collisional data becomes a deterrent. This dependency is mainly due to the singularly low critical density of the 3d7a4F9/2 metastable level that strongly depends on both the radiative and collisional data, although the level populating by fluorescence pumping from the stellar continuum cannot be ruled out. A new version of PyNeb (1.1.17) is released containing the evaluated datasets.
{"title":"Atomic Data Assessment with PyNeb: Radiative and Electron Impact Excitation Rates for [Fe ii] and [Fe iii]","authors":"C. Mendoza, J. E. Méndez-Delgado, M. Bautista, J. García-Rojas, C. Morisset","doi":"10.3390/atoms11040063","DOIUrl":"https://doi.org/10.3390/atoms11040063","url":null,"abstract":"We use the PyNeb 1.1.16 Python package to evaluate the atomic datasets available for the spectral modeling of [Fe ii] and [Fe iii], which list level energies, A-values, and effective collision strengths. Most datasets are reconstructed from the sources, and new ones are incorporated to be compared with observed and measured benchmarks. For [Fe iii], we arrive at conclusive results that allow us to select the default datasets, while for [Fe ii], the conspicuous temperature dependency on the collisional data becomes a deterrent. This dependency is mainly due to the singularly low critical density of the 3d7a4F9/2 metastable level that strongly depends on both the radiative and collisional data, although the level populating by fluorescence pumping from the stellar continuum cannot be ruled out. A new version of PyNeb (1.1.17) is released containing the evaluated datasets.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41442856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}