Pub Date : 2024-09-05DOI: 10.1007/s10509-024-04351-1
M. Cuntz, S. D. Patel
We present a statistical analysis of the ages and metallicities of triple stellar systems that are known to host exoplanets. With controversial cases disregarded, so far 27 of those systems have been identified. Our analysis, based on an exploratory approach, shows that those systems are on average notably younger than stars situated in the solar neighborhood. Though the statistical significance of this result is not fully established, the most plausible explanation is a possible double selection effect due to the relatively high mass of planet-hosting stars of those systems (which spend less time on the main-sequence than low-mass stars) and that planets in triple stellar systems may be long-term orbitally unstable. The stellar metallicities are on average solar-like; however, owing to the limited number of data, this result is not inconsistent with the previous finding that stars with planets tend to be metal-rich as the deduced metallicity distribution is relatively broad.
{"title":"On the age and metallicity of planet-hosting triple star systems","authors":"M. Cuntz, S. D. Patel","doi":"10.1007/s10509-024-04351-1","DOIUrl":"10.1007/s10509-024-04351-1","url":null,"abstract":"<div><p>We present a statistical analysis of the ages and metallicities of triple stellar systems that are known to host exoplanets. With controversial cases disregarded, so far 27 of those systems have been identified. Our analysis, based on an exploratory approach, shows that those systems are on average notably younger than stars situated in the solar neighborhood. Though the statistical significance of this result is not fully established, the most plausible explanation is a possible double selection effect due to the relatively high mass of planet-hosting stars of those systems (which spend less time on the main-sequence than low-mass stars) and that planets in triple stellar systems may be long-term orbitally unstable. The stellar metallicities are on average solar-like; however, owing to the limited number of data, this result is not inconsistent with the previous finding that stars with planets tend to be metal-rich as the deduced metallicity distribution is relatively broad.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 9","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s10509-024-04358-8
F. M. Menteso, A. E. Chukwude, O. Okike, J. A. Alhassan
Low-magnitude (FD(%) (geq -3%)) Forbush decreases (FDs) and their space weather linkages are recently becoming popular in the literature. Accurate timing and correct magnitude measurement of weak FDs are a desideratum. This demands disentangling the effects of the ever present cosmic ray (CR) diurnal wave that exerts undesirable influence on CR data. An enhanced version of a recently developed algorithm has been deployed to decompose raw CR data at Apatity (APTY) and Moscow (MOSC) neutron monitor (NM) stations into low and high frequency signals. A subroutine in the Fast Fourier transform software simultaneously calculates the magnitude and the epoch time of the events from the transformed data. The software selected 335 and 359 low magnitude FDs respectively for APTY and MOSC observatories. The large catalogues of low-amplitude FDs selected compared to those in literature may be attributed to the efficiency of the present algorithm. We carried out a regression analysis on the magnitude of these events and the corresponding solar wind disturbance agents. The analysis shows that for the APTY NM station, the correlation coefficient results (r) for FD-interplanetary magnetic field (IMF) and FD-planetary geomagnetic activity index (ap) relations are statistically significant at 95% confidence level. At the MOSC station, we find (r) ∼ −0.41 statistically significant at 95% confidence level for FD-solar wind speed (SWS) relation (after removing events due to co-rotating interaction regions). Analyzing all (low- and high-amplitude) FDs, (r) is relatively strong and statistically significant at 95% confidence level. The implications of these findings are discussed.
{"title":"The implications of the superposed effect of cosmic ray diurnal anisotropy on weak Forbush Events at Apatity and Moscow Neutron Monitors","authors":"F. M. Menteso, A. E. Chukwude, O. Okike, J. A. Alhassan","doi":"10.1007/s10509-024-04358-8","DOIUrl":"10.1007/s10509-024-04358-8","url":null,"abstract":"<div><p>Low-magnitude (FD(%) <span>(geq -3%)</span>) Forbush decreases (FDs) and their space weather linkages are recently becoming popular in the literature. Accurate timing and correct magnitude measurement of weak FDs are a desideratum. This demands disentangling the effects of the ever present cosmic ray (CR) diurnal wave that exerts undesirable influence on CR data. An enhanced version of a recently developed algorithm has been deployed to decompose raw CR data at Apatity (APTY) and Moscow (MOSC) neutron monitor (NM) stations into low and high frequency signals. A subroutine in the Fast Fourier transform software simultaneously calculates the magnitude and the epoch time of the events from the transformed data. The software selected 335 and 359 low magnitude FDs respectively for APTY and MOSC observatories. The large catalogues of low-amplitude FDs selected compared to those in literature may be attributed to the efficiency of the present algorithm. We carried out a regression analysis on the magnitude of these events and the corresponding solar wind disturbance agents. The analysis shows that for the APTY NM station, the correlation coefficient results <span>(r)</span> for FD-interplanetary magnetic field (IMF) and FD-planetary geomagnetic activity index (ap) relations are statistically significant at 95% confidence level. At the MOSC station, we find <span>(r)</span> ∼ −0.41 statistically significant at 95% confidence level for FD-solar wind speed (SWS) relation (after removing events due to co-rotating interaction regions). Analyzing all (low- and high-amplitude) FDs, <span>(r)</span> is relatively strong and statistically significant at 95% confidence level. The implications of these findings are discussed.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 9","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1007/s10509-024-04350-2
P. Freitas-Lemes, P. C. da Rocha-Poppe, M. Faúndez-Abans, M. de Oliveira-Abans, I. Rodrigues, J. Tello, V. A. Fernandes-Martin
This observational study investigates the effects of interaction on the kinematics and chemical abundance of the peculiar galaxy ESO 287-IG50, which may be a polar ring galaxy in an ongoing formation process. The study utilized BVRI broad band imagery and longslit spectroscopy in the wavelength range of 4240-8700 Å. The STARLIGHT stellar population synthesis code was used to analyze the data, and standard diagnostic diagrams were employed to classify the main ionizing source of selected emission-line regions. Image analysis using filtering techniques revealed an inner ring with perpendicular structures at both ends, which could be the inner part of a bisymmetric spiral structure. Photometric analysis showed dusty filaments crossing the central structure, which was identified as the redder region of the galaxy, dominated by a non-negligible amount of dust. Shell-like structures, which could be remnants of a galaxy merging process, were also found. Image analysis through filtering revealed what appears to be an inner ring, with perpendicular structures at both ends, which could be the inner part of a bisymmetric spiral structure. Photometric analysis shows dusty filaments crossing the central structure. This region would be dominated by a non negligible amount of dust, identified as the redder region of the galaxy. A heliocentric radial velocity of 17 689±45 km s−1 was measured, and the velocity profile exhibited a clear rotational behavior, with peak velocities of 110 km s−1 to the SW and 80 km s−1 to the other side. The analysis of the nuclear region using the STARLIGHT code revealed a stellar population consisting of approximately one-third young stars and two-thirds old stars. The predominance of an aged stellar population, a distinctive feature in galaxies undergoing interaction processes, can be attributed to the prolonged evolutionary period of this galaxy, as evidenced by the shell structures we identified as indicators of this interaction process. The [NII](lambda )6584Å/H(alpha ) ratio suggests that ESO 287-IG50 may be an AGN due to the excess of Nitrogen relative to Hydrogen in the residual spectrum, a feature not yet reported in the literature. Studying the line ratios and EW(H(alpha )), we notice that this galaxy exhibits a peculiar AGN, with a non-stellar origin ionization mechanism.
这项观测研究调查了相互作用对奇特星系ESO 287-IG50的运动学和化学丰度的影响,该星系可能是一个正在形成过程中的极环星系。这项研究利用了波长范围为 4240-8700 Å 的 BVRI 宽带图像和长照光谱。使用 STARLIGHT 恒星群合成代码分析数据,并使用标准诊断图对选定发射线区域的主要电离源进行分类。利用滤波技术进行的图像分析发现了一个内环,其两端具有垂直结构,这可能是一个双对称螺旋结构的内部部分。光度分析表明,尘埃细丝穿过中央结构,被确定为星系中较红的区域,主要由不可忽略的尘埃构成。此外,还发现了贝壳状结构,可能是星系合并过程的残留物。通过滤波进行的图像分析发现了一个看似内环的东西,两端有垂直的结构,可能是一个双对称螺旋结构的内部部分。光度分析显示,尘埃丝穿过中央结构。这个区域主要由不可忽略的尘埃组成,被确定为星系中较红的区域。测得的日心径向速度为 17 689±45 km s-1,速度曲线表现出明显的旋转行为,西南方向的峰值速度为 110 km s-1,另一侧为 80 km s-1。利用 STARLIGHT 代码对核区域进行的分析表明,恒星群大约由三分之一的年轻恒星和三分之二的老龄恒星组成。老龄恒星群占优势是正在经历相互作用过程的星系的一个显著特点,这可以归因于这个星系的演化时间较长,我们发现的作为相互作用过程指标的壳结构就是证明。NII](lambda )6584Å/H(alpha )比值表明ESO 287-IG50可能是一个AGN,因为残余光谱中氮相对于氢的含量过多,而这一特征在文献中还没有报道过。通过研究线比率和EW(H(alpha )),我们注意到这个星系表现出一种奇特的AGN,具有非恒星起源的电离机制。
{"title":"Unravelling features of the peculiar galaxy ESO 287-IG50.","authors":"P. Freitas-Lemes, P. C. da Rocha-Poppe, M. Faúndez-Abans, M. de Oliveira-Abans, I. Rodrigues, J. Tello, V. A. Fernandes-Martin","doi":"10.1007/s10509-024-04350-2","DOIUrl":"10.1007/s10509-024-04350-2","url":null,"abstract":"<div><p>This observational study investigates the effects of interaction on the kinematics and chemical abundance of the peculiar galaxy ESO 287-IG50, which may be a polar ring galaxy in an ongoing formation process. The study utilized BVRI broad band imagery and longslit spectroscopy in the wavelength range of 4240-8700 Å. The <span>STARLIGHT</span> stellar population synthesis code was used to analyze the data, and standard diagnostic diagrams were employed to classify the main ionizing source of selected emission-line regions. Image analysis using filtering techniques revealed an inner ring with perpendicular structures at both ends, which could be the inner part of a bisymmetric spiral structure. Photometric analysis showed dusty filaments crossing the central structure, which was identified as the redder region of the galaxy, dominated by a non-negligible amount of dust. Shell-like structures, which could be remnants of a galaxy merging process, were also found. Image analysis through filtering revealed what appears to be an inner ring, with perpendicular structures at both ends, which could be the inner part of a bisymmetric spiral structure. Photometric analysis shows dusty filaments crossing the central structure. This region would be dominated by a non negligible amount of dust, identified as the redder region of the galaxy. A heliocentric radial velocity of 17 689±45 km s<sup>−1</sup> was measured, and the velocity profile exhibited a clear rotational behavior, with peak velocities of 110 km s<sup>−1</sup> to the SW and 80 km s<sup>−1</sup> to the other side. The analysis of the nuclear region using the <span>STARLIGHT</span> code revealed a stellar population consisting of approximately one-third young stars and two-thirds old stars. The predominance of an aged stellar population, a distinctive feature in galaxies undergoing interaction processes, can be attributed to the prolonged evolutionary period of this galaxy, as evidenced by the shell structures we identified as indicators of this interaction process. The [NII]<span>(lambda )</span>6584Å/H<span>(alpha )</span> ratio suggests that ESO 287-IG50 may be an AGN due to the excess of Nitrogen relative to Hydrogen in the residual spectrum, a feature not yet reported in the literature. Studying the line ratios and EW(H<span>(alpha )</span>), we notice that this galaxy exhibits a peculiar AGN, with a non-stellar origin ionization mechanism.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 9","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1007/s10509-024-04357-9
Srinadh Reddy Bhavanam, Sumohana S. Channappayya, Srijith P. K, Shantanu Desai
Accurate classification of celestial objects is essential for advancing our understanding of the universe. MargNet is a recently developed deep learning-based classifier applied to the Sloan Digital Sky Survey (SDSS) Data Release 16 (DR16) dataset to segregate stars, quasars, and compact galaxies using photometric data. MargNet utilizes a stacked architecture, combining a Convolutional Neural Network (CNN) for image modelling and an Artificial Neural Network (ANN) for modelling photometric parameters. Notably, MargNet focuses exclusively on compact galaxies and outperforms other methods in classifying compact galaxies from stars and quasars, even at fainter magnitudes. In this study, we propose enhancing MargNet’s performance by incorporating attention mechanisms and Vision Transformer (ViT)-based models for processing image data. The attention mechanism allows the model to focus on relevant features and capture intricate patterns within images, effectively distinguishing between different classes of celestial objects. Additionally, we leverage ViTs, a transformer-based deep learning architecture renowned for exceptional performance in image classification tasks. We enhance the model’s understanding of complex astronomical images by utilizing ViT’s ability to capture global dependencies and contextual information. Our approach uses a curated dataset comprising 240,000 compact and 150,000 faint objects. The models learn classification directly from the data, minimizing human intervention. Furthermore, we explore ViT as a hybrid architecture that uses photometric features and images together as input to predict astronomical objects. Our results demonstrate that the proposed attention mechanism augmented CNN in MargNet marginally outperforms the traditional MargNet and the proposed ViT-based MargNet models. Additionally, the ViT-based hybrid model emerges as the most lightweight and easy-to-train model with classification accuracy similar to that of the best-performing attention-enhanced MargNet. This advancement in deep learning will contribute to greater success in identifying objects in upcoming surveys like the Vera C. Rubin Large Synoptic Survey Telescope.
对天体进行精确分类对于增进我们对宇宙的了解至关重要。MargNet是最近开发的基于深度学习的分类器,应用于斯隆数字巡天(SDSS)第16版数据集(DR16),利用测光数据对恒星、类星体和紧凑星系进行分类。MargNet 采用堆叠式架构,结合了用于图像建模的卷积神经网络(CNN)和用于光度参数建模的人工神经网络(ANN)。值得注意的是,MargNet 专注于紧凑星系,在从恒星和类星体中对紧凑星系进行分类方面优于其他方法,即使在较暗的星等下也是如此。在这项研究中,我们建议通过加入注意力机制和基于视觉转换器(ViT)的图像数据处理模型来提高 MargNet 的性能。注意力机制允许模型关注相关特征,捕捉图像中错综复杂的模式,从而有效区分不同类别的天体。此外,我们还利用了 ViTs,这是一种基于变换器的深度学习架构,因其在图像分类任务中的出色表现而闻名。我们利用 ViTs 捕捉全局依赖关系和上下文信息的能力,增强了模型对复杂天文图像的理解。我们的方法使用了一个经过策划的数据集,其中包括 240,000 个紧凑天体和 150,000 个暗弱天体。模型直接从数据中学习分类,最大程度地减少了人工干预。此外,我们还将 ViT 作为一种混合架构进行了探索,该架构将测光特征和图像一起作为输入来预测天体。我们的结果表明,MargNet 中的拟议注意力机制增强型 CNN 略优于传统的 MargNet 和拟议的基于 ViT 的 MargNet 模型。此外,基于 ViT 的混合模型是最轻便、最易训练的模型,其分类准确率与表现最好的注意力增强型 MargNet 相似。 深度学习的这一进步将有助于在即将开展的巡天观测(如维拉-鲁宾大型同步巡天望远镜)中更成功地识别天体。
{"title":"Enhanced astronomical source classification with integration of attention mechanisms and vision transformers","authors":"Srinadh Reddy Bhavanam, Sumohana S. Channappayya, Srijith P. K, Shantanu Desai","doi":"10.1007/s10509-024-04357-9","DOIUrl":"10.1007/s10509-024-04357-9","url":null,"abstract":"<div><p>Accurate classification of celestial objects is essential for advancing our understanding of the universe. MargNet is a recently developed deep learning-based classifier applied to the Sloan Digital Sky Survey (SDSS) Data Release 16 (DR16) dataset to segregate stars, quasars, and compact galaxies using photometric data. MargNet utilizes a stacked architecture, combining a Convolutional Neural Network (CNN) for image modelling and an Artificial Neural Network (ANN) for modelling photometric parameters. Notably, MargNet focuses exclusively on compact galaxies and outperforms other methods in classifying compact galaxies from stars and quasars, even at fainter magnitudes. In this study, we propose enhancing MargNet’s performance by incorporating attention mechanisms and Vision Transformer (ViT)-based models for processing image data. The attention mechanism allows the model to focus on relevant features and capture intricate patterns within images, effectively distinguishing between different classes of celestial objects. Additionally, we leverage ViTs, a transformer-based deep learning architecture renowned for exceptional performance in image classification tasks. We enhance the model’s understanding of complex astronomical images by utilizing ViT’s ability to capture global dependencies and contextual information. Our approach uses a curated dataset comprising 240,000 compact and 150,000 faint objects. The models learn classification directly from the data, minimizing human intervention. Furthermore, we explore ViT as a hybrid architecture that uses photometric features and images together as input to predict astronomical objects. Our results demonstrate that the proposed attention mechanism augmented CNN in MargNet marginally outperforms the traditional MargNet and the proposed ViT-based MargNet models. Additionally, the ViT-based hybrid model emerges as the most lightweight and easy-to-train model with classification accuracy similar to that of the best-performing attention-enhanced MargNet. This advancement in deep learning will contribute to greater success in identifying objects in upcoming surveys like the Vera C. Rubin Large Synoptic Survey Telescope.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s10509-024-04353-z
Tridib Roy, Mayuresh Surnis, Ramkrishna Das
Pulsars are believed to be one of the most important celestial objects in the universe. The emission mechanism of pulsars is still a big paradox for physicists, as no completely acceptable theory can reach a suitable consensus with observation. Some complicated coherent plasma processes and acceleration-based mechanisms in the pulsar magnetosphere generate a powerful radio beam. There have been dedicated theories such as the geometrical and relativistic phase shift (RPS) methods. The relativistic phase shift method is owing to the combined effects of aberration-retardation (A/R) and polar cap current effect (PCC), etc., and by implementing this method, we make quantitative inspections to deduce the emission altitude of the pulsar’s radio emission components. Here, we have shown the estimation of the emission height of pulsar PSR B2111+46 for both core and conal components at 925 MHz, 1.25 GHz, 1.65 GHz, and 4.85 GHz. Moreover, we have estimated the foot point, normalized with the last open field line constant, corresponding to pulse edges at multiple bands. Current analysis of the paper shows that at least for PSR B2111+46, the full polar cap is not sensitive to radio emission for most of the cases in the given stretch of radio frequency.
脉冲星被认为是宇宙中最重要的天体之一。脉冲星的发射机制对物理学家来说仍然是一个巨大的悖论,因为没有一种完全可以接受的理论能够与观测结果达成适当的共识。脉冲星磁层中一些复杂的相干等离子体过程和加速机制产生了强大的射电波束。目前已有专门的理论,如几何相移法和相对论相移法(RPS)。相对论相移法是由于像差-衰减(A/R)和极帽电流效应(PCC)等综合效应而产生的,通过实施这种方法,我们可以对脉冲星射电发射成分的发射高度进行定量检测推导。在这里,我们展示了脉冲星 PSR B2111+46 在 925 MHz、1.25 GHz、1.65 GHz 和 4.85 GHz 上的核心和锥体成分的发射高度估算。此外,我们还估算了在多个波段与脉冲边缘相对应的脚点,并以最后一个开放场线常数进行归一化。本文目前的分析表明,至少对于 PSR B2111+46 来说,在给定的射电频率范围内的大多数情况下,全极帽对射电发射并不敏感。
{"title":"Absolute emission height determination of the radio emission components of PSR B2111+46 at multiple bands by relativistic phase shift method","authors":"Tridib Roy, Mayuresh Surnis, Ramkrishna Das","doi":"10.1007/s10509-024-04353-z","DOIUrl":"10.1007/s10509-024-04353-z","url":null,"abstract":"<div><p>Pulsars are believed to be one of the most important celestial objects in the universe. The emission mechanism of pulsars is still a big paradox for physicists, as no completely acceptable theory can reach a suitable consensus with observation. Some complicated coherent plasma processes and acceleration-based mechanisms in the pulsar magnetosphere generate a powerful radio beam. There have been dedicated theories such as the geometrical and relativistic phase shift (RPS) methods. The relativistic phase shift method is owing to the combined effects of aberration-retardation (A/R) and polar cap current effect (PCC), etc., and by implementing this method, we make quantitative inspections to deduce the emission altitude of the pulsar’s radio emission components. Here, we have shown the estimation of the emission height of pulsar PSR B2111+46 for both core and conal components at 925 MHz, 1.25 GHz, 1.65 GHz, and 4.85 GHz. Moreover, we have estimated the foot point, normalized with the last open field line constant, corresponding to pulse edges at multiple bands. Current analysis of the paper shows that at least for PSR B2111+46, the full polar cap is not sensitive to radio emission for most of the cases in the given stretch of radio frequency.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1007/s10509-024-04355-x
Ketevan Arabuli, Andria Rogava, Stefaan Poedts
The dynamics of Langmuir modes, waves (LW), and shear Langmuir vortices (SLV) are studied in kinematically complex astrophysical plasma flows. It is found that they exhibit several peculiar, velocity shear-induced, asymptotically persistent phenomena, including efficient energy exchange with the background flow and various kinds of instabilities, leading to their exponential growth and echoing solutions with persistent wave-vortex-wave conversions. There is a remarkable similarity between these phenomena and those happening with compressible acoustic modes. The relevance and possible importance of these phenomena for different types of astrophysical plasma flow patterns with kinematic complexity are discussed. In particular, we argue that these physical processes may account for the persistent appearance of plasma oscillations in the heliosphere and interstellar plasma flows. In particular, we believe that the kinematically complex motion of plasma may naturally lead to the asymptotically persistent appearance of Langmuir modes that are born, grown, fed, sustained and maintained by these flows.
{"title":"On the asymptotic persistence of Langmuir modes in kinematically complex plasma flows","authors":"Ketevan Arabuli, Andria Rogava, Stefaan Poedts","doi":"10.1007/s10509-024-04355-x","DOIUrl":"10.1007/s10509-024-04355-x","url":null,"abstract":"<div><p>The dynamics of Langmuir modes, waves (LW), and shear Langmuir vortices (SLV) are studied in kinematically complex astrophysical plasma flows. It is found that they exhibit several peculiar, velocity shear-induced, <i>asymptotically persistent</i> phenomena, including efficient energy exchange with the background flow and various kinds of instabilities, leading to their exponential growth and echoing solutions with persistent wave-vortex-wave conversions. There is a remarkable similarity between these phenomena and those happening with compressible acoustic modes. The relevance and possible importance of these phenomena for different types of astrophysical plasma flow patterns with kinematic complexity are discussed. In particular, we argue that these physical processes may account for the persistent appearance of plasma oscillations in the heliosphere and interstellar plasma flows. In particular, we believe that the kinematically complex motion of plasma may naturally lead to the asymptotically persistent appearance of Langmuir modes that are born, grown, fed, sustained and maintained by these flows.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efficient forecasting of solar flares is of significant importance for better risk prevention. Currently, there is relatively rare research on multi/four-classification of flares, and the influence of the number of time steps and data feature dimensions on the prediction performance of multi-class models has not been considered. In this study, we utilize the Space-weather HMI Active Region Patch (SHARP) data to develop two categories of models for multiclass flare prediction within 24 hr, including direct output four-classification models and four-classification models using a cascading scheme. The former encompasses Random Forest (RF) model, Long Short-Term Memory (LSTM) model, and Bidirectional LSTM (BLSTM) model, while the latter includes BLSTM Cascade (BLSTM-C) model and BLSTM Cascade with Attention Mechanism (BLSTM-C-A) model. These two categories of models are employed to contrast the impact of different numbers of time steps and the predictive performance in solar flare multi/four-classification. Additionally, we conduct, for the first time, feature importance analysis for multi/four-classification solar flare prediction using deep learning models. The main results are as follows: (1) As the number of time steps increases, the True Skill Statistic (TSS) scores of the four deep learning models improve, showing an overall upward trend in predictive performance. The models achieve their optimal performance when the number of time steps reaches 120. (2) Among the direct output four-class models, deep learning models (LSTM and BLSTM) outperform traditional machine learning model (RF). In both multi-class and binary-class predictions using deep learning, the BLSTM-C model performs better than other deep learning models (LSTM, BLSTM, and BLSTM-C-A). (3) In the feature importance analysis, the top-ranked important features include SAVNCPP and R_VALUE, while the least important features include SHRGT45 and MEANPOT.
{"title":"Analysis of the main factors affecting the performance of multi-classification forecast model for solar flares","authors":"Changtian Xiang, Yanfang Zheng, Xuebao Li, Jinfang Wei, Pengchao Yan, Yingzhen Si, Xusheng Huang, Liang Dong, Shuainan Yan, Hengrui Lou, Hongwei Ye, Xuefeng Li, Shunhuang Zhang, Yexin Pan, Huiwen Wu","doi":"10.1007/s10509-024-04356-w","DOIUrl":"10.1007/s10509-024-04356-w","url":null,"abstract":"<div><p>Efficient forecasting of solar flares is of significant importance for better risk prevention. Currently, there is relatively rare research on multi/four-classification of flares, and the influence of the number of time steps and data feature dimensions on the prediction performance of multi-class models has not been considered. In this study, we utilize the Space-weather HMI Active Region Patch (SHARP) data to develop two categories of models for multiclass flare prediction within 24 hr, including direct output four-classification models and four-classification models using a cascading scheme. The former encompasses Random Forest (RF) model, Long Short-Term Memory (LSTM) model, and Bidirectional LSTM (BLSTM) model, while the latter includes BLSTM Cascade (BLSTM-C) model and BLSTM Cascade with Attention Mechanism (BLSTM-C-A) model. These two categories of models are employed to contrast the impact of different numbers of time steps and the predictive performance in solar flare multi/four-classification. Additionally, we conduct, for the first time, feature importance analysis for multi/four-classification solar flare prediction using deep learning models. The main results are as follows: (1) As the number of time steps increases, the True Skill Statistic (TSS) scores of the four deep learning models improve, showing an overall upward trend in predictive performance. The models achieve their optimal performance when the number of time steps reaches 120. (2) Among the direct output four-class models, deep learning models (LSTM and BLSTM) outperform traditional machine learning model (RF). In both multi-class and binary-class predictions using deep learning, the BLSTM-C model performs better than other deep learning models (LSTM, BLSTM, and BLSTM-C-A). (3) In the feature importance analysis, the top-ranked important features include SAVNCPP and R_VALUE, while the least important features include SHRGT45 and MEANPOT.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we report the detailed observation of the drift subpulse behavior of PSR J1514–4834 at a central frequency of 1369 MHz using the Parkes 64-m radio telescope. We have found that individual pulses of this pulsar exhibit distinct modulation behaviors for different profile components. The leading and middle components display periodic amplitude modulation with a period of (mathrm{P}_{3}=37.5pm 0.8, mathrm{P}), and a drifting sub-pulse phenomenon is detected in the phase region of trailing component with the measured drifting periods (mathrm{P}_{2}=7.0pm 0.4,mathrm{P}) and (mathrm{P}_{3}=37.5pm 0.8, mathrm{P}). Additionally, it was observed that the leading and trailing components of the pulsar have a clear correlation, the middle and trailing components have a clear anti-correlation, and there is no apparent correlation between the leading and middle components. Moreover, this pulsar deviates from the range of most amplitude-modulated pulsars in the (dot{mathrm{E}}-mathrm{P}_{3}) diagram, but it still falls within the category of subpulse drifting. PSR J1514–4834 exhibits periodic emission modulation and sub-pulse drifting simultaneously in different profile components, which is difficult to understand with the traditional carousel model. Our observational results will provide new observation evidence for theoretical studies of single-pulse emission mechanisms in pulsars.
{"title":"Subpulse drifting of PSR J1514–4834","authors":"Qingying Li, Shijun Dang, Lunhua Shang, Habtamu Menberu Tedila, Xin Xu, Wei Li, Jie Tian, Yanqing Cai, Zhixiang Yu, Chenbin Wu","doi":"10.1007/s10509-024-04352-0","DOIUrl":"10.1007/s10509-024-04352-0","url":null,"abstract":"<div><p>In this paper, we report the detailed observation of the drift subpulse behavior of PSR J1514–4834 at a central frequency of 1369 MHz using the Parkes 64-m radio telescope. We have found that individual pulses of this pulsar exhibit distinct modulation behaviors for different profile components. The leading and middle components display periodic amplitude modulation with a period of <span>(mathrm{P}_{3}=37.5pm 0.8, mathrm{P})</span>, and a drifting sub-pulse phenomenon is detected in the phase region of trailing component with the measured drifting periods <span>(mathrm{P}_{2}=7.0pm 0.4,mathrm{P})</span> and <span>(mathrm{P}_{3}=37.5pm 0.8, mathrm{P})</span>. Additionally, it was observed that the leading and trailing components of the pulsar have a clear correlation, the middle and trailing components have a clear anti-correlation, and there is no apparent correlation between the leading and middle components. Moreover, this pulsar deviates from the range of most amplitude-modulated pulsars in the <span>(dot{mathrm{E}}-mathrm{P}_{3})</span> diagram, but it still falls within the category of subpulse drifting. PSR J1514–4834 exhibits periodic emission modulation and sub-pulse drifting simultaneously in different profile components, which is difficult to understand with the traditional carousel model. Our observational results will provide new observation evidence for theoretical studies of single-pulse emission mechanisms in pulsars.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1007/s10509-024-04354-y
Christine C. Dantas
Phenomenological relations linking thermodynamics and kinetic theory in condensed matter have been empirically verified in numerous systems, yet their theoretical derivation from first principles remains an open question. One such relation is the so-called “excess-entropy scaling”. Do N-body gravitational systems exhibit a similar relation? We provide an affirmative response to this question, albeit with some limitations. Our analysis relies on a well-established thermodynamical quasi-equilibrium model for the cosmological N-body problem, along with an appropriate diffusion model for gravitational interactions. By identifying a scaling region, we were able to estimate diffusion coefficients directly from observational two-particle correlation functions or counts-in-cells distributions in large-scale structures. Intriguingly, the phenomenon of excess-entropy scaling manifests primarily during the nonlinear, asymptotic clustering phase preceding a potential thermodynamic phase transition.
凝聚态物质中热力学和动力学理论之间的现象学关系已在许多系统中得到了经验验证,但从第一原理推导出这些关系的理论仍是一个未决问题。其中一种关系就是所谓的 "过熵标度"。N 体引力系统是否也表现出类似的关系?我们对这个问题做出了肯定的回答,尽管有一些局限性。我们的分析依赖于一个成熟的宇宙学 N 体问题热力学准平衡模型,以及一个适当的引力相互作用扩散模型。通过确定一个缩放区域,我们能够直接从观测到的双粒子相关函数或大尺度结构中的细胞计数分布中估算出扩散系数。耐人寻味的是,过熵缩放现象主要表现在潜在热力学相变之前的非线性渐近聚类阶段。
{"title":"Excess-entropy scaling in gravitational systems","authors":"Christine C. Dantas","doi":"10.1007/s10509-024-04354-y","DOIUrl":"10.1007/s10509-024-04354-y","url":null,"abstract":"<div><p>Phenomenological relations linking thermodynamics and kinetic theory in condensed matter have been empirically verified in numerous systems, yet their theoretical derivation from first principles remains an open question. One such relation is the so-called “excess-entropy scaling”. Do N-body gravitational systems exhibit a similar relation? We provide an affirmative response to this question, albeit with some limitations. Our analysis relies on a well-established thermodynamical quasi-equilibrium model for the cosmological N-body problem, along with an appropriate diffusion model for gravitational interactions. By identifying a scaling region, we were able to estimate diffusion coefficients directly from observational two-particle correlation functions or counts-in-cells distributions in large-scale structures. Intriguingly, the phenomenon of excess-entropy scaling manifests primarily during the nonlinear, asymptotic clustering phase preceding a potential thermodynamic phase transition.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1007/s10509-024-04349-9
Kimmo Lehtinen, Juha Kallunki, Esa Kallio
The hyperfine transition of atomic hydrogen at a wavelength of about 21 cm is an essential tool for studies of interstellar gas. It has been argued that also fine-structure transitions of hydrogen could be detected in astronomical sources. Our aim is to detect the fine-structure transition (2^{2}P_{3/2}-2^{2}S_{1/2}) of hydrogen at ∼10 GHz in the radio spectrum of the Sun, with a spectral resolution which enables a detailed study of the line profile. The Sun was observed with the 13.7 m radio telescope at the Metsähovi Radio Observatory, in Finland. We detect emission from two of the three hyperfine components of the transition. The width of the components is ∼15 MHz, much less than the expected natural line width of ∼100 MHz (broadened solely by the uncertainty principle). At red-shifted Doppler velocities, the lines show enhanced emission and possibly self-absorption. If the absorption happens at the chromosphere, our observations challenge the traditional view that chromospheric temperature increases gradually towards higher altitudes. Our unconventional results have to be confirmed by further observations. This transition would be the only known spectral line in the Sun at radio frequencies.
{"title":"A detection of the (2^{2}P_{3/2}-2^{2}S_{1/2}) fine-structure transition of hydrogen in the radio spectrum of the Sun?","authors":"Kimmo Lehtinen, Juha Kallunki, Esa Kallio","doi":"10.1007/s10509-024-04349-9","DOIUrl":"10.1007/s10509-024-04349-9","url":null,"abstract":"<div><p>The hyperfine transition of atomic hydrogen at a wavelength of about 21 cm is an essential tool for studies of interstellar gas. It has been argued that also fine-structure transitions of hydrogen could be detected in astronomical sources. Our aim is to detect the fine-structure transition <span>(2^{2}P_{3/2}-2^{2}S_{1/2})</span> of hydrogen at ∼10 GHz in the radio spectrum of the Sun, with a spectral resolution which enables a detailed study of the line profile. The Sun was observed with the 13.7 m radio telescope at the Metsähovi Radio Observatory, in Finland. We detect emission from two of the three hyperfine components of the transition. The width of the components is ∼15 MHz, much less than the expected natural line width of ∼100 MHz (broadened solely by the uncertainty principle). At red-shifted Doppler velocities, the lines show enhanced emission and possibly self-absorption. If the absorption happens at the chromosphere, our observations challenge the traditional view that chromospheric temperature increases gradually towards higher altitudes. Our unconventional results have to be confirmed by further observations. This transition would be the only known spectral line in the Sun at radio frequencies.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}