首页 > 最新文献

Astrophysics and Space Science最新文献

英文 中文
Tracing shock waves: type II radio emission on 27th of September 2001 追踪冲击波:2001 年 9 月 27 日的 II 类射电辐射
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-16 DOI: 10.1007/s10509-024-04328-0
Firas Al-Hamadani, Amjad Al-Sawad

This study focus on atypical Type II radio bursts observed in conjunction with three simultaneous coronal mass ejections (CMEs) on September 27, 2001. These CMEs originated from a single active region (AR) and were linked to relatively weak solar flares. Analysis of the CME sequences revealed distinct periods of interplanetary (IP) Type II radio emissions, characterized by pronounced increases in intensity. The first radio enhancement, lasting 20 minutes, exhibited very low density and frequency (1.65–1.5 MHz) at a height range of (7.8–8.2) solar radii (). Subsequently, the second radio signature persisted for 40 minutes with a frequency range of (900–700) kHz and a height range of (10.9–12.6) . The third radio signature spanned 1 hour and 20 minutes, featuring a frequency range of (660–390) kHz and a height range of (13.2–18.6) . The fourth enhancement extended over 3 hours, ranging from (550–250) kHz in frequency and (14.6–25.0) in height. We concluded that the initial low-density radio signature resulted from a shock wave generated by reconnection of magnetic field lines, without an intense flare or extreme ultraviolet imaging telescope (EIT) wave. This shock wave then accelerated subsequent CMEs. Alternatively, the radio burst could have formed in the wake of the initial slow CME, creating a low-density environment. The second radio enhancement coincided with the accelerated propagation of CME1’s core and was attributed to enhanced radio emission resulting from the Type II shock encountering filament material. The third radio enhancement aligned with the concept of a CME bow shock, indicating that the shock was positioned at the leading front of the CME. This enhancement occurred when the shock met remnant material from earlier CMEs, yet the shock continued propagating at a constant speed. The fourth enhancement progressed to higher frequencies due to the merging of CME1’s core with CME2, propagating along CME3’s path. This comprehensive analysis provides valuable insights into the complex dynamics and interactions associated with these unique Type II radio bursts and their correlation with coronal mass ejections.

这项研究的重点是 2001 年 9 月 27 日与三个同时发生的日冕物质抛射(CMEs)一起观测到的非典型 II 型射电暴。这些日冕物质抛射源自一个活动区(AR),与相对较弱的太阳耀斑有关。对日冕物质抛射序列的分析表明,行星际(IP)II 类射电辐射有明显的不同时期,其特点是强度明显增加。第一次无线电增强持续了 20 分钟,在(7.8-8.2)太阳半径()的高度范围内表现出极低的密度和频率(1.65-1.5 兆赫)。随后,第二个无线电信号持续了 40 分钟,频率范围为(900-700)千赫,高度范围为(10.9-12.6)太阳半径。第三个无线电信号持续了 1 小时 20 分钟,频率范围为(660-390)千赫,高度范围为(13.2-18.6)。第四次增强持续了 3 个小时,频率范围为(550-250)千赫,高度范围为(14.6-25.0)。我们的结论是,最初的低密度射电特征是由磁场线重新连接产生的冲击波造成的,没有强烈的耀斑或极紫外成像望远镜(EIT)波。这种冲击波随后加速了后续的 CME。或者,射电暴可能是在最初的慢速 CME 之后形成的,从而创造了一个低密度环境。第二次射电增强与 CME1 核心的加速传播相吻合,并被归因于 II 型冲击遇到丝状物质导致的射电发射增强。第三次无线电增强与 CME 弓形冲击的概念一致,表明冲击位于 CME 的前沿。当冲击遇到早期 CME 的残余物质时,就会出现这种增强,但冲击仍以恒定的速度传播。第四次增强是由于 CME1 的核心与 CME2 合并,沿着 CME3 的路径传播,从而导致频率升高。这项综合分析为了解与这些独特的第二类射电暴有关的复杂动力学和相互作用及其与日冕物质抛射的相关性提供了宝贵的见解。
{"title":"Tracing shock waves: type II radio emission on 27th of September 2001","authors":"Firas Al-Hamadani,&nbsp;Amjad Al-Sawad","doi":"10.1007/s10509-024-04328-0","DOIUrl":"10.1007/s10509-024-04328-0","url":null,"abstract":"<div><p>This study focus on atypical Type II radio bursts observed in conjunction with three simultaneous coronal mass ejections (CMEs) on September 27, 2001. These CMEs originated from a single active region (AR) and were linked to relatively weak solar flares. Analysis of the CME sequences revealed distinct periods of interplanetary (IP) Type II radio emissions, characterized by pronounced increases in intensity. The first radio enhancement, lasting 20 minutes, exhibited very low density and frequency (1.65–1.5 MHz) at a height range of (7.8–8.2) solar radii (<img>). Subsequently, the second radio signature persisted for 40 minutes with a frequency range of (900–700) kHz and a height range of (10.9–12.6) <img>. The third radio signature spanned 1 hour and 20 minutes, featuring a frequency range of (660–390) kHz and a height range of (13.2–18.6) <img>. The fourth enhancement extended over 3 hours, ranging from (550–250) kHz in frequency and (14.6–25.0) <img> in height. We concluded that the initial low-density radio signature resulted from a shock wave generated by reconnection of magnetic field lines, without an intense flare or extreme ultraviolet imaging telescope (EIT) wave. This shock wave then accelerated subsequent CMEs. Alternatively, the radio burst could have formed in the wake of the initial slow CME, creating a low-density environment. The second radio enhancement coincided with the accelerated propagation of CME1’s core and was attributed to enhanced radio emission resulting from the Type II shock encountering filament material. The third radio enhancement aligned with the concept of a CME bow shock, indicating that the shock was positioned at the leading front of the CME. This enhancement occurred when the shock met remnant material from earlier CMEs, yet the shock continued propagating at a constant speed. The fourth enhancement progressed to higher frequencies due to the merging of CME1’s core with CME2, propagating along CME3’s path. This comprehensive analysis provides valuable insights into the complex dynamics and interactions associated with these unique Type II radio bursts and their correlation with coronal mass ejections.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141715167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameters and the Eddington pulsation constant of Galactic RRab stars 银河系 RRab 恒星的参数和爱丁顿脉动常数
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-12 DOI: 10.1007/s10509-024-04331-5
S. V. Sinitsyn

For Galactic RRab stars 121 empirical and semiempirical metallicity–absolute magnitude relations known since 1990 are analyzed. For these variables, using their known empirical data, relations are determined between the mass, the radius, the effective surface temperature, the bolometric correction, the luminosity, the absolute magnitude, on the one hand, and the metallicity and the pulsation period, on the other hand. Using these relations, the empirical value of the Eddington pulsation constant is accurately determined for RRab stars for the first time.

对于银河系 RRab 星,分析了自 1990 年以来已知的 121 个经验和半经验金属性-绝对星等关系。对于这些变量,利用其已知的经验数据,一方面确定了质量、半径、有效表面温度、测亮校正、光度、绝对星等之间的关系,另一方面确定了金属性和脉动周期之间的关系。利用这些关系,首次精确测定了 RRab 星的爱丁顿脉动常数的经验值。
{"title":"Parameters and the Eddington pulsation constant of Galactic RRab stars","authors":"S. V. Sinitsyn","doi":"10.1007/s10509-024-04331-5","DOIUrl":"10.1007/s10509-024-04331-5","url":null,"abstract":"<div><p>For Galactic RRab stars 121 empirical and semiempirical metallicity–absolute magnitude relations known since 1990 are analyzed. For these variables, using their known empirical data, relations are determined between the mass, the radius, the effective surface temperature, the bolometric correction, the luminosity, the absolute magnitude, on the one hand, and the metallicity and the pulsation period, on the other hand. Using these relations, the empirical value of the Eddington pulsation constant is accurately determined for RRab stars for the first time.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What is the hard spectral state in X-ray binaries? Insights from GRRMHD accretion flows simulations and polarization of their X-ray emission X 射线双星的硬光谱状态是什么?从 GRRMHD 吸积流模拟及其 X 射线辐射偏振中获得的启示
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-09 DOI: 10.1007/s10509-024-04333-3
M. Moscibrodzka

X-ray binaries are known to exhibit different spectral states which are often associated with different black hole accretion modes. The exact geometry and properties of these accretion modes is still uncertain. Recent IXPE measurements of linear polarization of X-ray emission in canonical X-ray binary system Cygnus X-1 allow us to test models for the hard spectral state of accretion in a unique way. We show that general relativistic radiative magnetohydrodynamic (GRRMHD) simulations of accreting stellar black hole in a hard X-ray state may be consistent with the new observational information. In the presented framework, where first-principle models have limited number of free parameters, the polarimetric X-ray observations put constraints on the viewing angle of the inner hot accretion flow.

众所周知,X射线双星会表现出不同的光谱状态,而这些光谱状态往往与不同的黑洞吸积模式有关。这些吸积模式的确切几何形状和特性仍不确定。最近在经典 X 射线双星系统天鹅座 X-1 中对 X 射线发射的线性偏振进行的 IXPE 测量,使我们能够以一种独特的方式检验吸积的硬光谱状态模型。我们的研究表明,对处于硬X射线状态的吸积恒星黑洞的广义相对论辐射磁流体动力学(GRRMHD)模拟可能与新的观测信息相一致。在提出的框架中,第一原理模型的自由参数数量有限,而偏振 X 射线观测则对内部热吸积流的视角施加了约束。
{"title":"What is the hard spectral state in X-ray binaries? Insights from GRRMHD accretion flows simulations and polarization of their X-ray emission","authors":"M. Moscibrodzka","doi":"10.1007/s10509-024-04333-3","DOIUrl":"10.1007/s10509-024-04333-3","url":null,"abstract":"<div><p>X-ray binaries are known to exhibit different spectral states which are often associated with different black hole accretion modes. The exact geometry and properties of these accretion modes is still uncertain. Recent IXPE measurements of linear polarization of X-ray emission in canonical X-ray binary system Cygnus X-1 allow us to test models for the hard spectral state of accretion in a unique way. We show that general relativistic radiative magnetohydrodynamic (GRRMHD) simulations of accreting stellar black hole in a hard X-ray state may be consistent with the new observational information. In the presented framework, where first-principle models have limited number of free parameters, the polarimetric X-ray observations put constraints on the viewing angle of the inner hot accretion flow.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-024-04333-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbital analysis in the gravitational potential of elongated asteroids 细长小行星引力势能中的轨道分析
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-08 DOI: 10.1007/s10509-024-04329-z
José D. Gutiérrez, Eva Tresaco, Andrés Riaguas

This work studies the motion around irregular elongated asteroids through two approaches. Firstly, it revisits the dipole-segment model, identifying families of periodic orbits for asymmetric mass distribution. Additionally, a new model incorporating variable density for elongated asteroids is introduced and compared to the dipole-segment model. Several families of periodic orbits have been found through continuation of planar orbits and out-of-plane bifurcation processes, obtaining results in agreement with previous studies about the dynamics around irregular asteroids. This highlights the relevance of simple mathematical models in studying asteroid dynamics and the importance of accounting for density and geometric properties. Although the families of periodic orbits studied in this work are not comprehensively sampled, they constitute an example of the variety of orbits that can be followed by a particle orbiting the asteroid, helping us to better understand the dynamics around these elongated bodies.

这项工作通过两种方法研究不规则细长小行星的运动。首先,它重新审视了偶极段模型,确定了非对称质量分布的周期轨道族。此外,还引入了一个新模型,该模型结合了细长小行星的可变密度,并与偶极段模型进行了比较。通过平面轨道的延续和平面外分叉过程,发现了几个周期轨道族,其结果与之前关于不规则小行星周围动力学的研究一致。这凸显了简单数学模型在研究小行星动力学方面的意义,以及考虑密度和几何特性的重要性。虽然这项工作中研究的周期轨道族并没有全面采样,但它们构成了一个例子,说明了绕小行星运行的粒子可能遵循的各种轨道,有助于我们更好地理解这些细长天体周围的动力学。
{"title":"Orbital analysis in the gravitational potential of elongated asteroids","authors":"José D. Gutiérrez,&nbsp;Eva Tresaco,&nbsp;Andrés Riaguas","doi":"10.1007/s10509-024-04329-z","DOIUrl":"10.1007/s10509-024-04329-z","url":null,"abstract":"<div><p>This work studies the motion around irregular elongated asteroids through two approaches. Firstly, it revisits the dipole-segment model, identifying families of periodic orbits for asymmetric mass distribution. Additionally, a new model incorporating variable density for elongated asteroids is introduced and compared to the dipole-segment model. Several families of periodic orbits have been found through continuation of planar orbits and out-of-plane bifurcation processes, obtaining results in agreement with previous studies about the dynamics around irregular asteroids. This highlights the relevance of simple mathematical models in studying asteroid dynamics and the importance of accounting for density and geometric properties. Although the families of periodic orbits studied in this work are not comprehensively sampled, they constitute an example of the variety of orbits that can be followed by a particle orbiting the asteroid, helping us to better understand the dynamics around these elongated bodies.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-024-04329-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of short-term periodicities in the occurrence of Forbush decreases: wavelet analysis 福布什下降现象的短期周期性研究:小波分析
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-02 DOI: 10.1007/s10509-024-04330-6
Y. P. Singh,  Badruddin

We utilized the Forbush decreases (magnitude (>1.5%)) detected in cosmic ray neutron monitor data during continuous five solar cycles, viz., 20, 21, 22, 23 and 24 (1965 to 2019) and subjected them to wavelet analysis in order to obtain the possible periodicities in their occurrence. We also studied the periodicities separately during the odd and even solar activity cycles. In addition to solar activity, the solar magnetic polarity and its extension into the interplanetary space makes significant difference in the cosmic ray modulation in the helisphere, we have also applied the wavelet analysis procedure separately during positive (A > 0) and negative (A < 0) polarity states of the heliospheric magnetic fields. Observed periodicities in Forbush decreases have been discussed and compared with earlier detected periodicities in solar and geomagnetic activity indices, e.g., sunspot numbers, sunspot areas, sunspot groups, solar flares, coronal mass ejections, and various geomagnetic activity indices. Significant short-term periodic behaviour detected in the occurrence of Forbush decreases, which in general, corroborates the observed behaviour in solar (in particular, solar eruptive activity) and geomagnetic activity. Understanding the quasi-periodic process in magnetic field emergence from solar active regions and solar eruptive activity, as well as solar-terrestrial coupling and space weather effects, requires comparing the quasi-periodic behaviour between parameters representing solar and geomagnetic activity along with cosmic ray variability.

我们利用在连续五个太阳周期,即20、21、22、23和24(1965年至2019年)的宇宙射线中子监测器数据中探测到的福布什递减(幅度为1.5%),并对其进行小波分析,以获得其出现的可能周期性。我们还分别研究了奇数和偶数太阳活动周期的周期性。除了太阳活动之外,太阳磁极及其向行星际空间的延伸也对日球中的宇宙射线调制产生重大影响,因此我们还分别对日球磁场的正极性(A >0)和负极性(A <0)状态进行了小波分析。我们对观测到的福布什下降周期性进行了讨论,并将其与早先探测到的太阳和地磁活动指数的周期性进行了比较,例如太阳黑子数量、太阳黑子面积、太阳黑子群、太阳耀斑、日冕物质抛射以及各种地磁活动指数。在福布什下降现象中发现了重要的短期周期行为,总体上与观测到的太阳活动(特别是太阳爆发活动)和地磁活动的行为相吻合。要了解太阳活动区磁场出现的准周期过程和太阳爆发活动,以及日地耦合和空间天气效应,就需要比较代表太阳和地磁活动的参数与宇宙射线变异性之间的准周期行为。
{"title":"Study of short-term periodicities in the occurrence of Forbush decreases: wavelet analysis","authors":"Y. P. Singh,&nbsp; Badruddin","doi":"10.1007/s10509-024-04330-6","DOIUrl":"10.1007/s10509-024-04330-6","url":null,"abstract":"<div><p>We utilized the Forbush decreases (magnitude <span>(&gt;1.5%)</span>) detected in cosmic ray neutron monitor data during continuous five solar cycles, viz., 20, 21, 22, 23 and 24 (1965 to 2019) and subjected them to wavelet analysis in order to obtain the possible periodicities in their occurrence. We also studied the periodicities separately during the odd and even solar activity cycles. In addition to solar activity, the solar magnetic polarity and its extension into the interplanetary space makes significant difference in the cosmic ray modulation in the helisphere, we have also applied the wavelet analysis procedure separately during positive (A &gt; 0) and negative (A &lt; 0) polarity states of the heliospheric magnetic fields. Observed periodicities in Forbush decreases have been discussed and compared with earlier detected periodicities in solar and geomagnetic activity indices, e.g., sunspot numbers, sunspot areas, sunspot groups, solar flares, coronal mass ejections, and various geomagnetic activity indices. Significant short-term periodic behaviour detected in the occurrence of Forbush decreases, which in general, corroborates the observed behaviour in solar (in particular, solar eruptive activity) and geomagnetic activity. Understanding the quasi-periodic process in magnetic field emergence from solar active regions and solar eruptive activity, as well as solar-terrestrial coupling and space weather effects, requires comparing the quasi-periodic behaviour between parameters representing solar and geomagnetic activity along with cosmic ray variability.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galaxy formation catalyzed by gravastars and the JWST, revisited 重力星和 JWST 催化的星系形成再探
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-02 DOI: 10.1007/s10509-024-04334-2
Stephen L. Adler

We have proposed that galaxy formation is catalyzed by the collision of infalling and outstreaming particles from leaky, horizonless astrophysical black holes, most likely gravastars, and based on this gave a model for the disk galaxy scale length. In this paper we modify our original scale length formula by including an activation probability (P) for a collision to lead to nucleation of star formation. The revised formula extrapolates from early universe JWST data to late time data to within a factor of five, and suggests that galaxy dimensions should systematically get smaller as the observed redshift z increases. We also show that particles recycling through gravastars can lead to a reduction in the temperature of the surrounding gas, through a “heat pump” refrigeration effect. This can trigger galaxy formation through enhanced star formation in the vicinity of the gravastar.

我们曾提出,星系的形成是由来自泄漏的无视界天体物理黑洞(很可能是引力星)的内流粒子和外流粒子的碰撞催化的,并在此基础上给出了一个盘状星系尺度长度模型。在本文中,我们修改了最初的尺度长度公式,加入了碰撞导致恒星形成成核的活化概率(P)。修改后的公式从早期宇宙的JWST数据推断到晚期数据的误差在5倍以内,并表明星系的尺寸应该随着观测到的红移z的增加而系统地变小。我们还表明,粒子通过引力星的循环可以通过 "热泵 "制冷效应降低周围气体的温度。这可以通过增强引力星附近恒星的形成来触发星系的形成。
{"title":"Galaxy formation catalyzed by gravastars and the JWST, revisited","authors":"Stephen L. Adler","doi":"10.1007/s10509-024-04334-2","DOIUrl":"10.1007/s10509-024-04334-2","url":null,"abstract":"<div><p>We have proposed that galaxy formation is catalyzed by the collision of infalling and outstreaming particles from leaky, horizonless astrophysical black holes, most likely gravastars, and based on this gave a model for the disk galaxy scale length. In this paper we modify our original scale length formula by including an activation probability <span>(P)</span> for a collision to lead to nucleation of star formation. The revised formula extrapolates from early universe JWST data to late time data to within a factor of five, and suggests that galaxy dimensions should systematically get smaller as the observed redshift z increases. We also show that particles recycling through gravastars can lead to a reduction in the temperature of the surrounding gas, through a “heat pump” refrigeration effect. This can trigger galaxy formation through enhanced star formation in the vicinity of the gravastar.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics and solar wind control of the recovery of strong geomagnetic storms 强地磁风暴恢复的动力学和太阳风控制
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-02 DOI: 10.1007/s10509-024-04325-3
O. Ahmed, B. Badruddin, M. Derouich

In this work we have studied about the characteristics and dynamical changes during the recovery time of moderate and strong geomagnetic storms of ((mathrm{Dst}<-50text{ nT})). In our investigation of 57 storms triggered by CMEs/CIRs, we concentrated on the solar wind’s influence on their decay phases. Selected storms were classified into distinct groups based on their recovery characteristics. Employing the superposed epoch analysis and best fit methods, we scrutinized several interplanetary solar wind plasma and field parameters and their various functions. The analysis encompassed various single, dual, and multiple interplanetary plasma and field parameters/functions. We determined the most representative characteristic time for the storm’s recovery profile by carefully fitting an exponential curve. A correlation analysis between Dst and solar wind parameters/functions led us to isolate a coupling function ((rho ^{frac{1}{2}}mathrm{Ey})) which best described the decay rate of the ring current. It shows that electric field term (Ey) coupled with a viscus term ((rho ^{frac{1}{2}})) plays pivotal role in determining the recovery rate of a geomagnetic storms. Additionally, we modeled the complex patterns of Dst recovery in relation to solar wind parameters and functions using a second-order polynomial. Remarkably, during the recovery phase, a dynamic correlation between Dst and solar wind parameters/functions was revealed. The three-parameter solar wind-magnetosphere electrodynamical coupling functions, which combines the viscus term ((rho ^{frac{1}{2}})) and the electric field-related function ((mathrm{v}^{frac{4}{3}}mathrm{B})) ((rho ^{frac{1}{2}}mathrm{v}^{frac{4}{3}}mathrm{B})), significantly impacts the recovery phase of geomagnetic disturbances. Our investigation extended to the relationship between main and recovery phase durations, providing valuable insights into the solar wind’s intricate control over the decay of the geomagnetic disturbances. These findings contribute significantly to advancing our comprehension of the complex relationship between solar wind dynamics and the evolution of geomagnetic disturbances.

在这项工作中,我们研究了((mathrm{Dst}<-50text{ nT}))中度和强地磁风暴恢复期间的特征和动力学变化。在对 57 个由 CMEs/CIRs 引发的风暴的研究中,我们主要关注太阳风对其衰减阶段的影响。我们根据所选风暴的恢复特征将其分为不同的组别。利用叠加历元分析和最佳拟合方法,我们仔细研究了若干行星际太阳风等离子体和场参数及其各种函数。分析包括各种单一、双重和多重行星际等离子体和场参数/函数。我们通过仔细拟合指数曲线,确定了风暴恢复曲线最具代表性的特征时间。通过对Dst和太阳风参数/函数之间的相关性分析,我们分离出了一个耦合函数((rho ^{frac{1}{2}}mathrm{Ey})),它能最好地描述环流的衰减率。这表明电场项(Ey)与粘性项((rho ^{/frac{1}{2}}))在决定地磁暴恢复率方面起着关键作用。此外,我们用二阶多项式模拟了Dst恢复与太阳风参数和函数的复杂关系。值得注意的是,在恢复阶段,Dst 与太阳风参数/函数之间存在动态相关性。三参数太阳风-磁层电动力学耦合函数、它结合了粘性项((rho ^{frac{1}{2}})和电场相关函数((mathrm{v}^{frac{4}{3}}mathrm{B}})((rho ^{frac{1}{2}}mathrm{v}^{frac{4}{3}}mathrm{B}})、对地磁扰动的恢复阶段有重大影响。我们的研究扩展到了主要阶段和恢复阶段持续时间之间的关系,为了解太阳风对地磁扰动衰减的复杂控制提供了宝贵的见解。这些发现极大地促进了我们对太阳风动力学与地磁扰动演变之间复杂关系的理解。
{"title":"Dynamics and solar wind control of the recovery of strong geomagnetic storms","authors":"O. Ahmed,&nbsp;B. Badruddin,&nbsp;M. Derouich","doi":"10.1007/s10509-024-04325-3","DOIUrl":"10.1007/s10509-024-04325-3","url":null,"abstract":"<div><p>In this work we have studied about the characteristics and dynamical changes during the recovery time of moderate and strong geomagnetic storms of (<span>(mathrm{Dst}&lt;-50text{ nT})</span>). In our investigation of 57 storms triggered by CMEs/CIRs, we concentrated on the solar wind’s influence on their decay phases. Selected storms were classified into distinct groups based on their recovery characteristics. Employing the superposed epoch analysis and best fit methods, we scrutinized several interplanetary solar wind plasma and field parameters and their various functions. The analysis encompassed various single, dual, and multiple interplanetary plasma and field parameters/functions. We determined the most representative characteristic time for the storm’s recovery profile by carefully fitting an exponential curve. A correlation analysis between Dst and solar wind parameters/functions led us to isolate a coupling function (<span>(rho ^{frac{1}{2}}mathrm{Ey})</span>) which best described the decay rate of the ring current. It shows that electric field term (Ey) coupled with a viscus term (<span>(rho ^{frac{1}{2}})</span>) plays pivotal role in determining the recovery rate of a geomagnetic storms. Additionally, we modeled the complex patterns of Dst recovery in relation to solar wind parameters and functions using a second-order polynomial. Remarkably, during the recovery phase, a dynamic correlation between Dst and solar wind parameters/functions was revealed. The three-parameter solar wind-magnetosphere electrodynamical coupling functions, which combines the viscus term (<span>(rho ^{frac{1}{2}})</span>) and the electric field-related function (<span>(mathrm{v}^{frac{4}{3}}mathrm{B})</span>) (<span>(rho ^{frac{1}{2}}mathrm{v}^{frac{4}{3}}mathrm{B})</span>), significantly impacts the recovery phase of geomagnetic disturbances. Our investigation extended to the relationship between main and recovery phase durations, providing valuable insights into the solar wind’s intricate control over the decay of the geomagnetic disturbances. These findings contribute significantly to advancing our comprehension of the complex relationship between solar wind dynamics and the evolution of geomagnetic disturbances.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 7","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the linear structure of the interlaced Alfvén vortices in the tail of Uranus at solstice 关于至日天王星尾部交错的阿尔芬涡旋的线性结构
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-28 DOI: 10.1007/s10509-024-04332-4
Filippo Pantellini

Incompressible vortex flow are observed in a large variety of astrophysical plasmas such as the convection zone and the atmosphere of stars, in astrophysical jets in stellar winds and in planetary magnetospheres. More specifically, magnetohydrodynamic (MHD) simulations have shown that two large scale interlaced Alfvénic vortices structure the magnetic tail of Uranus at solstice time. Assuming identical vortices, we compute the general linear structure of the flow near their centers within the frame of ideal MHD. We then use the analytic results to interpret and qualify the vortices observed in a 3D MHD simulation of a fast rotating Uranus-type planet.

在各种天体物理等离子体中,如恒星的对流区和大气层、恒星风中的天体物理喷流以及行星磁层中,都能观测到不可压缩的涡流。更具体地说,磁流体力学(MHD)模拟显示,两个大尺度交错的阿尔费尼旋涡在至日时构造了天王星的磁尾。假设涡旋完全相同,我们将在理想 MHD 框架内计算其中心附近流动的一般线性结构。然后,我们利用分析结果来解释和鉴定在快速旋转的天王星型行星的三维 MHD 模拟中观测到的漩涡。
{"title":"On the linear structure of the interlaced Alfvén vortices in the tail of Uranus at solstice","authors":"Filippo Pantellini","doi":"10.1007/s10509-024-04332-4","DOIUrl":"10.1007/s10509-024-04332-4","url":null,"abstract":"<div><p>Incompressible vortex flow are observed in a large variety of astrophysical plasmas such as the convection zone and the atmosphere of stars, in astrophysical jets in stellar winds and in planetary magnetospheres. More specifically, magnetohydrodynamic (MHD) simulations have shown that two large scale interlaced Alfvénic vortices structure the magnetic tail of Uranus at solstice time. Assuming identical vortices, we compute the general linear structure of the flow near their centers within the frame of ideal MHD. We then use the analytic results to interpret and qualify the vortices observed in a 3D MHD simulation of a fast rotating Uranus-type planet.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of solar radiation and geomagnetic disturbance during consecutive 27-day recurrent geomagnetic storms on variations of equatorial ionospheric parameters and spread F 连续 27 天周期性地磁暴期间太阳辐射和地磁扰动对赤道电离层参数变化和 F 传播的影响
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-26 DOI: 10.1007/s10509-024-04327-1
Thana Yeeram

This study investigates contributions of solar radiation and geomagnetic activity of consecutive 27-day recurrent geomagnetic storms (RGSs) to the variabilities in the equatorial ionospheric F-region in American Peruvian sector during 2007. Results show the ionospheric responses to the RGSs are quasi-periodic and multifaceted with highly evolved in the summer months. In High-Intensity Long-Duration Continuous (AE) Activity (HILDCAA) events, the ionospheric responses are more variable than in non-HILDCAA. The critical frequency and peak height of the F-layer tend to increase during storm-time in summer months. The maximum density enhancements are more than 70% in the three RGSs and they are long-lasting in the summer months. A new classification of daily variations in the virtual height of the F-layer ((h'F)) is proposed: Mode A shows mixing of great height before noon and low height near midnight, Mode B shows moderate height near midnight, and Mode C shows mixing of high height before noon and great height near midnight. These (h'F) Modes efficiently characterize the ionospheric variabilities and processes. The great uplifts of (h'F) during night-time in the summer months coincide with the presence of strong disturbance dynamo electric fields and disturbed neutral winds generated by intensified Joule heating. The solar EUV plays a role in the uplifts of (h'F) during the daytime. Zonal electric field disturbances and perturbations in the neutral meridional winds critically contribute to the equatorial ionospheric responses and ESF variabilities. Most cases of inhibited/suppressed ESF were observed in Mode A and occurred under overshielding conditions. The inhibited ESF associated with (h'F) not raised in the recovery phase is mainly contributed by a cooling state after great uplifts by daytime thermospheric winds.

这项研究调查了太阳辐射和连续 27 天的经常性地磁暴的地磁活动对 2007 年期间美洲秘鲁地区赤道电离层 F 区变化的贡献。结果表明,电离层对经常性地磁暴的反应是准周期性的、多方面的,在夏季月份高度演变。在高强度长时间连续活动(HILDCAA)事件中,电离层响应比非高强度长时间连续活动(HILDCAA)事件中的电离层响应更加多变。F 层的临界频率和峰值高度往往在夏季风暴期间增加。在三个 RGS 中,最大密度增强超过 70%,而且在夏季持续时间较长。对 F 层虚高的日变化提出了一种新的分类方法:模式 A 显示正午前大高度和近午夜低高度的混合,模式 B 显示近午夜中等高度的混合,模式 C 显示正午前高高度和近午夜大高度的混合。这些模式有效地描述了电离层的变化和过程。夏季夜间的(h'F())大幅上升与强扰动动力电场的存在和焦耳加热加剧产生的扰动中性风相吻合。太阳超紫外线在白天的(h'F)上升中起了作用。带状电场扰动和中性经向风扰动对赤道电离层响应和 ESF 变异起了关键作用。在模式 A 中观测到了大多数抑制/压制 ESF 的情况,并且发生在过屏蔽条件下。与恢复阶段未升高的 (h'F) 相关的受抑制的 ESF 主要是由日间热层风大幅抬升后的冷却状态造成的。
{"title":"The effects of solar radiation and geomagnetic disturbance during consecutive 27-day recurrent geomagnetic storms on variations of equatorial ionospheric parameters and spread F","authors":"Thana Yeeram","doi":"10.1007/s10509-024-04327-1","DOIUrl":"10.1007/s10509-024-04327-1","url":null,"abstract":"<div><p>This study investigates contributions of solar radiation and geomagnetic activity of consecutive 27-day recurrent geomagnetic storms (RGSs) to the variabilities in the equatorial ionospheric F-region in American Peruvian sector during 2007. Results show the ionospheric responses to the RGSs are quasi-periodic and multifaceted with highly evolved in the summer months. In High-Intensity Long-Duration Continuous <span>(AE)</span> Activity (HILDCAA) events, the ionospheric responses are more variable than in non-HILDCAA. The critical frequency and peak height of the F-layer tend to increase during storm-time in summer months. The maximum density enhancements are more than 70% in the three RGSs and they are long-lasting in the summer months. A new classification of daily variations in the virtual height of the F-layer (<span>(h'F)</span>) is proposed: Mode A shows mixing of great height before noon and low height near midnight, Mode B shows moderate height near midnight, and Mode C shows mixing of high height before noon and great height near midnight. These <span>(h'F)</span> Modes efficiently characterize the ionospheric variabilities and processes. The great uplifts of <span>(h'F)</span> during night-time in the summer months coincide with the presence of strong disturbance dynamo electric fields and disturbed neutral winds generated by intensified Joule heating. The solar EUV plays a role in the uplifts of <span>(h'F)</span> during the daytime. Zonal electric field disturbances and perturbations in the neutral meridional winds critically contribute to the equatorial ionospheric responses and ESF variabilities. Most cases of inhibited/suppressed ESF were observed in Mode A and occurred under overshielding conditions. The inhibited ESF associated with <span>(h'F)</span> not raised in the recovery phase is mainly contributed by a cooling state after great uplifts by daytime thermospheric winds.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-absorption in solar surge as observed by IRIS IRIS 观测到的太阳激波自吸收现象
IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-21 DOI: 10.1007/s10509-024-04323-5
B. Suresh Babu, Pradeep Kayshap, Sharad C. Tripathi

Solar surges are collimated flows of plasma that occur in the periphery of active regions (ARs). The kinematics, physical properties, and triggering mechanisms of a solar surge were studied through imaging and spectroscopic diagnosis. The surge has a typical inverted Y-shape, and it moves with a speed of more than 200 km/s in the transition-region (TR) which is much higher than the sound speed of TR. The observational findings suggest that the surge was triggered due to magnetic reconnection. In addition, a hot jet formed after around 03 minutes and propagated at a speed that is comparable to the sound speed of the corona. Hence, most probably, the hot jet forms due to the chromospheric evaporation. The spectroscopic diagnosis reveals that electron densities are log10 10.82±0.90 and log10 9.93±1.27 in the base and spire of the surge, respectively. Further, it is found that the Si iv line ratio is around 1.85 in the base and 1.80 in the spire of the surge. Hence, we say that most of the Si iv profiles are forming under optically thick conditions in the surge. Most importantly, some Si iv spectral profiles from the base and spire of the surge are double peak profiles with a dip close to the central wavelength. Also, in the same region, optically thick conditions exist, therefore, most probably, the central dip in the profiles is a result of the self-absorption. This is the first-ever report of self-absorption in the solar surges.

太阳激波是发生在活动区(ARs)外围的等离子体准直流。通过成像和光谱诊断研究了太阳激波的运动学、物理特性和触发机制。浪涌呈典型的倒 Y 形,在过渡区(TR)的运动速度超过 200 公里/秒,远高于过渡区的声速。观测结果表明,浪涌是由磁重联引发的。此外,约 03 分钟后形成了热喷流,其传播速度与日冕的声速相当。因此,热喷流很可能是由于色球层蒸发而形成的。光谱诊断显示,浪涌底部和尖顶的电子密度分别为 log10 10.82±0.90 和 log10 9.93±1.27。此外,还发现浪涌底部和尖顶的 Si iv 线比率分别为 1.85 和 1.80 左右。因此,我们可以说大部分 Si iv 剖面是在涌流的光学厚度条件下形成的。最重要的是,浪涌底部和尖顶的一些 Si iv 光谱剖面是双峰剖面,其倾角接近中心波长。此外,在同一区域还存在光厚条件,因此很可能是自吸收导致了剖面的中心凹陷。这是首次报告日涌中的自吸收现象。
{"title":"Self-absorption in solar surge as observed by IRIS","authors":"B. Suresh Babu,&nbsp;Pradeep Kayshap,&nbsp;Sharad C. Tripathi","doi":"10.1007/s10509-024-04323-5","DOIUrl":"10.1007/s10509-024-04323-5","url":null,"abstract":"<div><p>Solar surges are collimated flows of plasma that occur in the periphery of active regions (ARs). The kinematics, physical properties, and triggering mechanisms of a solar surge were studied through imaging and spectroscopic diagnosis. The surge has a typical inverted Y-shape, and it moves with a speed of more than 200 km/s in the transition-region (TR) which is much higher than the sound speed of TR. The observational findings suggest that the surge was triggered due to magnetic reconnection. In addition, a hot jet formed after around 03 minutes and propagated at a speed that is comparable to the sound speed of the corona. Hence, most probably, the hot jet forms due to the chromospheric evaporation. The spectroscopic diagnosis reveals that electron densities are log<sub>10</sub> 10.82±0.90 and log<sub>10</sub> 9.93±1.27 in the base and spire of the surge, respectively. Further, it is found that the Si <span>iv</span> line ratio is around 1.85 in the base and 1.80 in the spire of the surge. Hence, we say that most of the Si <span>iv</span> profiles are forming under optically thick conditions in the surge. Most importantly, some Si <span>iv</span> spectral profiles from the base and spire of the surge are double peak profiles with a dip close to the central wavelength. Also, in the same region, optically thick conditions exist, therefore, most probably, the central dip in the profiles is a result of the self-absorption. This is the first-ever report of self-absorption in the solar surges.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Astrophysics and Space Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1