The results of stress analysis of a ceramic matrix composite (CMC) vane using a physics-based model developed for two-dimensional woven CMCs are presented. The model considers the inherent defects and micromechanical damage in woven CMCs along with time-dependent deformation of the constituents. Predictions include damage state under general load conditions and the global deformation response of the vane. Strain-gage data from burst tests are compared to strain predictions obtained using the model. Results from time-dependent analysis and life prediction of the vane under constant loads and cyclic loads at elevated temperatures are presented. Effect of fatigue frequency on the deformation and long-term life of the vane are also discussed.
{"title":"Stress Analysis and Life Prediction of a Ceramic Matrix Composite Vane Using a Micromechanics-Based Approach","authors":"U. Santhosh, Jalees Ahmad","doi":"10.21926/rpm.2304035","DOIUrl":"https://doi.org/10.21926/rpm.2304035","url":null,"abstract":"The results of stress analysis of a ceramic matrix composite (CMC) vane using a physics-based model developed for two-dimensional woven CMCs are presented. The model considers the inherent defects and micromechanical damage in woven CMCs along with time-dependent deformation of the constituents. Predictions include damage state under general load conditions and the global deformation response of the vane. Strain-gage data from burst tests are compared to strain predictions obtained using the model. Results from time-dependent analysis and life prediction of the vane under constant loads and cyclic loads at elevated temperatures are presented. Effect of fatigue frequency on the deformation and long-term life of the vane are also discussed.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":"6 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This mini-review discussed the best-known chemical and synthetic methodologies used in the last years to modify carbon allotropes, with an interest in nanotechnology. In this perspective, chemistry with optoelectronics applications and recent trends within bio-applications focusing mainly on graphene and its derivatives were considered. So, the mini-review intended to focus on methodologies to add functional groups with varied reactivities, polymer chemistry, and nanoscale control. These methodologies provide insight for further developments. In this manner, traditional methods using strong acid media to convert simple carbon bonds into carboxylic acid and aldehydes organic functional groups were shown and discussed. Hence, chemical modifications in a variety of solvents could be developed. Notably, many organic chemical reactions, such as bimolecular nucleophilic substitution (SN2), click chemistry, and photochemical reactions, showed essential insights in designing the carbon-based material modifications and the bottom-up method. Moreover, incorporating atomic entities within graphene material defects led to interesting spectroscopic and quantum properties. The atomic change added blemishes to this homogeneous structure, which was tuned to modify optical properties. In addition, the review was also oriented towards the discussion on incorporating polymeric films, such as boron- and silicon-based monomers, to form polymeric-modified carbon-based slides. In this way, organoboranes and organosilanes permitted chemical functionalization because their chemical modification was more accessible on nanosurfaces. Moreover, emphasis was placed on exploiting non-covalent bonding with ions and polarized molecules with the highly electronic densities of graphene and its derivatives. In this manner, the manuscript intends to summarize the main types of reactions and synthetic pathways reported until today. Therefore, particular focus was given to chemical composition, 2D and 3D chemical structures, and their properties related to non-covalent interactions. Thus, based on the properties and reactivity of carbon allotropes, the review was intended to open the analysis and discussion, considering the design of new carbon-based materials, hybrid nanocomposites, and metamaterials.
{"title":"Versatile Surface Chemistry of Carbon-Based Nanoplatforms by Covalent Bonding, Non-Covalent Linking, Crosslinking, and Self-Assembling","authors":"A. Bracamonte","doi":"10.21926/rpm.2304034","DOIUrl":"https://doi.org/10.21926/rpm.2304034","url":null,"abstract":"This mini-review discussed the best-known chemical and synthetic methodologies used in the last years to modify carbon allotropes, with an interest in nanotechnology. In this perspective, chemistry with optoelectronics applications and recent trends within bio-applications focusing mainly on graphene and its derivatives were considered. So, the mini-review intended to focus on methodologies to add functional groups with varied reactivities, polymer chemistry, and nanoscale control. These methodologies provide insight for further developments. In this manner, traditional methods using strong acid media to convert simple carbon bonds into carboxylic acid and aldehydes organic functional groups were shown and discussed. Hence, chemical modifications in a variety of solvents could be developed. Notably, many organic chemical reactions, such as bimolecular nucleophilic substitution (SN2), click chemistry, and photochemical reactions, showed essential insights in designing the carbon-based material modifications and the bottom-up method. Moreover, incorporating atomic entities within graphene material defects led to interesting spectroscopic and quantum properties. The atomic change added blemishes to this homogeneous structure, which was tuned to modify optical properties. In addition, the review was also oriented towards the discussion on incorporating polymeric films, such as boron- and silicon-based monomers, to form polymeric-modified carbon-based slides. In this way, organoboranes and organosilanes permitted chemical functionalization because their chemical modification was more accessible on nanosurfaces. Moreover, emphasis was placed on exploiting non-covalent bonding with ions and polarized molecules with the highly electronic densities of graphene and its derivatives. In this manner, the manuscript intends to summarize the main types of reactions and synthetic pathways reported until today. Therefore, particular focus was given to chemical composition, 2D and 3D chemical structures, and their properties related to non-covalent interactions. Thus, based on the properties and reactivity of carbon allotropes, the review was intended to open the analysis and discussion, considering the design of new carbon-based materials, hybrid nanocomposites, and metamaterials.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139271449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey Allen, Guillermo Riveros, Ivan Beckman, Elton Freeman
In this work, we apply a multiphysics approach to fused deposition modeling to simulate extrusion and solidification. Restricting the work to a single line scan, we focus on the application of polylactic acid. In addition to heat, momentum and mass transfer, the solid/liquid/vapor interface is simulated using a front-tracking, level-set method. The results focus on the evolving temperature, viscosity, and volume fraction and are cast within a set of parametric studies, to include the printing and extrusion speed, as well as the extrusion temperature. Among other findings, it was observed that fused deposition modeling can be effectively modeled using a front-tracking method (i.e. the level set method) in concert with a temperature dependent porosity function. The use of the level-set method for discriminating the phase change interface in this context is relatively new and offers considerable advantages over existing methods.
{"title":"Mesoscale Modeling of Extrusion and Solidification During Material Extrusion Additive Manufacturing","authors":"Jeffrey Allen, Guillermo Riveros, Ivan Beckman, Elton Freeman","doi":"10.21926/rpm.2304033","DOIUrl":"https://doi.org/10.21926/rpm.2304033","url":null,"abstract":"In this work, we apply a multiphysics approach to fused deposition modeling to simulate extrusion and solidification. Restricting the work to a single line scan, we focus on the application of polylactic acid. In addition to heat, momentum and mass transfer, the solid/liquid/vapor interface is simulated using a front-tracking, level-set method. The results focus on the evolving temperature, viscosity, and volume fraction and are cast within a set of parametric studies, to include the printing and extrusion speed, as well as the extrusion temperature. Among other findings, it was observed that fused deposition modeling can be effectively modeled using a front-tracking method (i.e. the level set method) in concert with a temperature dependent porosity function. The use of the level-set method for discriminating the phase change interface in this context is relatively new and offers considerable advantages over existing methods.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135217068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Inert soil obtained from the Ghazipur Municipal Solid Waste landfill located in East Delhi, India has been used as the starting material for the work described in this paper. This mountain-like monster is often in the news for its bad smell, pollution of the groundwater in the area from its leachates, and the occasional fires in it endangering the lives of the people living nearby. Landfills produce many greenhouse gases (CO2, CH4, CO, HCHO, H2S, and NH3) which are poisonous and cause environmental pollution in the surrounding areas. Our work sought alternative uses for this waste material (“Waste to Wealth”). These studies could lead to a cleaner environment, lower carbon footprints, diminished global warming, and positively impact climate change. These are very hot topics being discussed under the sustainable development goals and COP-28 urging, in particular, the developed world to reduce their carbon footprints and to create a global fund to mitigate the climate crisis in underdeveloped countries caused by climate change. Four new Pyrethrin-like compounds have been isolated and characterized spectroscopically [using UV-visible, FT-IR, NMR spectroscopy (1H-NMR spectroscopy), Mass Spectrometry, and Scanning Electron Microscopy (SEM)]. The new compounds possess a cyclopropane ring substituted on one side by a 4-methoxy-3-oxo-pyruvate unit and on the other side by an N-formyl-amino acid unit. The presence of pyrethrin-like cyclopropane structures indicates possible insecticidal activities like natural pyrethrins. The N-formyl amino acid could be an important factor in their bioactivity. Computational studies using the software Chem J. predict antibacterial, and anti-inflammatory activities with an IC50 value of 8.720.
{"title":"Pyrethrin Type Compounds from the Municipal Solid Waste Ghazipur Landfill Inert Soil as Brain and Cancer 5-HT Receptor Binding Agents","authors":"S. K. Thakur, S. Eswaran","doi":"10.21926/rpm.2303032","DOIUrl":"https://doi.org/10.21926/rpm.2303032","url":null,"abstract":"The Inert soil obtained from the Ghazipur Municipal Solid Waste landfill located in East Delhi, India has been used as the starting material for the work described in this paper. This mountain-like monster is often in the news for its bad smell, pollution of the groundwater in the area from its leachates, and the occasional fires in it endangering the lives of the people living nearby. Landfills produce many greenhouse gases (CO2, CH4, CO, HCHO, H2S, and NH3) which are poisonous and cause environmental pollution in the surrounding areas. Our work sought alternative uses for this waste material (“Waste to Wealth”). These studies could lead to a cleaner environment, lower carbon footprints, diminished global warming, and positively impact climate change. These are very hot topics being discussed under the sustainable development goals and COP-28 urging, in particular, the developed world to reduce their carbon footprints and to create a global fund to mitigate the climate crisis in underdeveloped countries caused by climate change. Four new Pyrethrin-like compounds have been isolated and characterized spectroscopically [using UV-visible, FT-IR, NMR spectroscopy (1H-NMR spectroscopy), Mass Spectrometry, and Scanning Electron Microscopy (SEM)]. The new compounds possess a cyclopropane ring substituted on one side by a 4-methoxy-3-oxo-pyruvate unit and on the other side by an N-formyl-amino acid unit. The presence of pyrethrin-like cyclopropane structures indicates possible insecticidal activities like natural pyrethrins. The N-formyl amino acid could be an important factor in their bioactivity. Computational studies using the software Chem J. predict antibacterial, and anti-inflammatory activities with an IC50 value of 8.720.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43579390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The chemically functionalized carbon nanotubes (f-CNTs) and hydrogen bonding modified polymer composites (CPCs) exhibit unique chemical, mechanical, electrical, and thermal properties and are emerging as promising materials to achieve extraordinarily high electrical and thermal conductivity, lightweight and anticorrosion, superior strength and stiffness for potential applications in the aerospace and automotive industries, energy conversion, and optical and electronic devices, therefore, attracting considerable research efforts over the past decade. In this review, the fundamentals of the topics on f-CNTs, hydrogen bonding, and CNT directional alignment have been briefly introduced. The research on the electrical, thermal, and mechanical properties have been reviewed. The effects of the CNT morphology, hydrogen bonding, CNT alignment and aspect ratio, and the interactions between the constitutes on the CPC performance is critical to understand the fundamentals and challenges of designing such materials with desired properties and their potential applications. However, to gain a comprehensive and quantitative understanding of the effects of these factors on the performance of CPCs, further studies by computer modeling, especially MD simulations, will be highly needed for effective new/novel material design and development.
{"title":"Review on Material Performance of Carbon Nanotube-Modified Polymeric Nanocomposites","authors":"Zhong Hu, H. Hong","doi":"10.21926/rpm.2303031","DOIUrl":"https://doi.org/10.21926/rpm.2303031","url":null,"abstract":"The chemically functionalized carbon nanotubes (f-CNTs) and hydrogen bonding modified polymer composites (CPCs) exhibit unique chemical, mechanical, electrical, and thermal properties and are emerging as promising materials to achieve extraordinarily high electrical and thermal conductivity, lightweight and anticorrosion, superior strength and stiffness for potential applications in the aerospace and automotive industries, energy conversion, and optical and electronic devices, therefore, attracting considerable research efforts over the past decade. In this review, the fundamentals of the topics on f-CNTs, hydrogen bonding, and CNT directional alignment have been briefly introduced. The research on the electrical, thermal, and mechanical properties have been reviewed. The effects of the CNT morphology, hydrogen bonding, CNT alignment and aspect ratio, and the interactions between the constitutes on the CPC performance is critical to understand the fundamentals and challenges of designing such materials with desired properties and their potential applications. However, to gain a comprehensive and quantitative understanding of the effects of these factors on the performance of CPCs, further studies by computer modeling, especially MD simulations, will be highly needed for effective new/novel material design and development.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46245980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This brief letter presents this Special Issue nominated as “Hybrid Graphene-based Materials: Synthesis, Characterization, Properties, and Applications”. This intends to show and discuss the main properties of Graphene and its derivatives; and how it could be synthesized, modified and tuned for Optics, Electro-Optics, Electronics, and Quantum characteristics. In this context, the synthesis and chemical modifications were highlighted for the design of Hybrid composites, platforms. In this context, it was afforded to varied developments within Multidisciplinary fields for high-impact Research and applications. In this manner, Graphene joined to other organic and inorganic materials showed different properties compared to free and non-modified Graphene. This fact, permitted to tune of electronic properties through materials that were transferred to applications. For example, the high electronic density could generate pseudo-electromagnetic fields and other phenomena such as luminescence, electronic conductions, and specific Quantum states that could be joined to optical active materials. Thus, it was afforded to the discussion and introduction in this other Research field as well. In this manner, it was intended to afford an overview of the high-impact Research and potential perspectives of Hybrid Graphene materials.
{"title":"Insights Focused on Hybrid Graphene Modifications within the Nanoscale for Opto-Electronics Perspectives","authors":"Guillermo Bracamonte","doi":"10.21926/rpm.2303030","DOIUrl":"https://doi.org/10.21926/rpm.2303030","url":null,"abstract":"This brief letter presents this Special Issue nominated as “Hybrid Graphene-based Materials: Synthesis, Characterization, Properties, and Applications”. This intends to show and discuss the main properties of Graphene and its derivatives; and how it could be synthesized, modified and tuned for Optics, Electro-Optics, Electronics, and Quantum characteristics. In this context, the synthesis and chemical modifications were highlighted for the design of Hybrid composites, platforms. In this context, it was afforded to varied developments within Multidisciplinary fields for high-impact Research and applications. In this manner, Graphene joined to other organic and inorganic materials showed different properties compared to free and non-modified Graphene. This fact, permitted to tune of electronic properties through materials that were transferred to applications. For example, the high electronic density could generate pseudo-electromagnetic fields and other phenomena such as luminescence, electronic conductions, and specific Quantum states that could be joined to optical active materials. Thus, it was afforded to the discussion and introduction in this other Research field as well. In this manner, it was intended to afford an overview of the high-impact Research and potential perspectives of Hybrid Graphene materials.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44832750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, civil wars and terror activities have caused blast-loading effects on reinforced concrete buildings, resulting in catastrophic human and material damage. When a building is exposed to a blast load, a very high air pressure affects the building within a very short duration. To decide on the reconstruction or retrofit of a building exposed to blast loading, the behavior of the building under blast loading should be investigated. In this paper a case study of a RC building exposed to blast loading during the Libyan war in the last years was investigated. Nonlinear analysis results indicate that the failure mode is localized and that most structural elements remain elastic after explosions. The paper presents, building description details, material tests, finite element model and nonlinear analysis results.
{"title":"Behavior of RC Buildings under Blast Loading: Case Study","authors":"F. M. Layas, Vail Karakale, R. Suleiman","doi":"10.21926/rpm.2303029","DOIUrl":"https://doi.org/10.21926/rpm.2303029","url":null,"abstract":"In recent years, civil wars and terror activities have caused blast-loading effects on reinforced concrete buildings, resulting in catastrophic human and material damage. When a building is exposed to a blast load, a very high air pressure affects the building within a very short duration. To decide on the reconstruction or retrofit of a building exposed to blast loading, the behavior of the building under blast loading should be investigated. In this paper a case study of a RC building exposed to blast loading during the Libyan war in the last years was investigated. Nonlinear analysis results indicate that the failure mode is localized and that most structural elements remain elastic after explosions. The paper presents, building description details, material tests, finite element model and nonlinear analysis results.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45661045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The process of metal additive manufacturing (AM) involves creating strong, complex components by using fine metal powders. Extensive use of AM methods is expected in near future for the production of small and medium-sized batches of end-use products and tools. The ability to detect loads and defects would enable AM components to be used in critical applications and improve their value. In this study, the Surface Response to Excitation (SuRE) method was used to investigate wave propagation characteristics and load detection on AM metallic specimens. With completely solid infills and the same geometry, three stainless steel test bars are produced: one conventionally and two additively. To investigate the effect of infills, four bars with the same geometries are 3D printed with triangular and gyroid infills with either 0.5 mm or 1 mm skin thickness. Two piezoelectric disks are attached to each end of the test specimens to excite the parts with guided waves from one end and monitor the dynamic response to excitation at the other end. The response to excitation was recorded when bars were in a relaxed condition and when compressive loads were applied at five levels in the middle of them. For converting time-domain signals into 2D time-frequency images, the Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were implemented. To distinguish the data based on fabrication characteristics and level of loading, two deep learning models (Long Short-term Memory algorithm (LSTM) and Convolutional Neural Networks (2D CNN)) were utilized. Time-frequency images were used to train 2D CNN, while raw signal data was used to train LSTM. It was found that both LSTM and 2D CNN could estimate solid parts' loading level with an accuracy of more than 90%. In parts with infills, CNN outperformed LSTM for the classification of over five classes (internal geometry and loading level simultaneously).
{"title":"Detection of Anomalies in Additively Manufactured Metal Parts Using CNN and LSTM Networks","authors":"Alireza Modir, Arnaud Casterman, I. Tansel","doi":"10.21926/rpm.2303028","DOIUrl":"https://doi.org/10.21926/rpm.2303028","url":null,"abstract":"The process of metal additive manufacturing (AM) involves creating strong, complex components by using fine metal powders. Extensive use of AM methods is expected in near future for the production of small and medium-sized batches of end-use products and tools. The ability to detect loads and defects would enable AM components to be used in critical applications and improve their value. In this study, the Surface Response to Excitation (SuRE) method was used to investigate wave propagation characteristics and load detection on AM metallic specimens. With completely solid infills and the same geometry, three stainless steel test bars are produced: one conventionally and two additively. To investigate the effect of infills, four bars with the same geometries are 3D printed with triangular and gyroid infills with either 0.5 mm or 1 mm skin thickness. Two piezoelectric disks are attached to each end of the test specimens to excite the parts with guided waves from one end and monitor the dynamic response to excitation at the other end. The response to excitation was recorded when bars were in a relaxed condition and when compressive loads were applied at five levels in the middle of them. For converting time-domain signals into 2D time-frequency images, the Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were implemented. To distinguish the data based on fabrication characteristics and level of loading, two deep learning models (Long Short-term Memory algorithm (LSTM) and Convolutional Neural Networks (2D CNN)) were utilized. Time-frequency images were used to train 2D CNN, while raw signal data was used to train LSTM. It was found that both LSTM and 2D CNN could estimate solid parts' loading level with an accuracy of more than 90%. In parts with infills, CNN outperformed LSTM for the classification of over five classes (internal geometry and loading level simultaneously).","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44894654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rayara Silva dos Santos, Pedro Henrique Poubel Mendonça da Silveira, Beatriz Cruz Bastos, Marceli do Nascimento da Conceição, Roberto Carlos da Conceição Ribeiro, Daniele Cruz Bastos
This article presents the development and characterization of environmentally friendly composites comprising polypropylene (PP) reinforced with Bahia Beige (BB) marble waste. The composites were prepared using different PP/BB weight ratios and analyzed for their chemical, physical, mechanical, microstructural, and thermal properties. X-ray fluorescence (XRF) analysis revealed the composition of BB, which exhibited a significant concentration of CaO, indicating the presence of calcite and other oxides. X-ray diffraction (XRD) analysis confirmed the presence of PP and identified calcite, dolomite, and quartz phases in the composites. Due to enhanced ceramic reinforcement, the composites displayed increased crystallinity with higher BB content. Fourier-transform infrared (FTIR) analysis demonstrated the interaction between PP and BB, with the bands corresponding to PP being replaced by bands related to BB as filler content increased. The density tests indicated a slight increase in composite density without deviating significantly from pure PP, which is advantageous for low-density applications. The hardness of the composites increased with filler content, while the impact resistance decreased notably. Scanning electron microscopy (SEM) images showed the good distribution of BB within the composites and the presence of ductile characteristics on the composite surface. The heat deflection temperature (HDT) results revealed that adding BB up to 40% by weight increased HDT, whereas a significant reduction occurred at a 50% BB content. These composites demonstrated favorable properties for engineering applications, offering a sustainable solution through utilizing natural waste resources and contributing to Brazilian sustainability efforts.
{"title":"Development of Environmentally Ecofriendly Composites Based on Polypropylene/Bahia Beige Waste: Effect of Reinforcement Content on Physical, Mechanical, Chemical, and Microstructural Properties","authors":"Rayara Silva dos Santos, Pedro Henrique Poubel Mendonça da Silveira, Beatriz Cruz Bastos, Marceli do Nascimento da Conceição, Roberto Carlos da Conceição Ribeiro, Daniele Cruz Bastos","doi":"10.21926/rpm.2303027","DOIUrl":"https://doi.org/10.21926/rpm.2303027","url":null,"abstract":"This article presents the development and characterization of environmentally friendly composites comprising polypropylene (PP) reinforced with Bahia Beige (BB) marble waste. The composites were prepared using different PP/BB weight ratios and analyzed for their chemical, physical, mechanical, microstructural, and thermal properties. X-ray fluorescence (XRF) analysis revealed the composition of BB, which exhibited a significant concentration of CaO, indicating the presence of calcite and other oxides. X-ray diffraction (XRD) analysis confirmed the presence of PP and identified calcite, dolomite, and quartz phases in the composites. Due to enhanced ceramic reinforcement, the composites displayed increased crystallinity with higher BB content. Fourier-transform infrared (FTIR) analysis demonstrated the interaction between PP and BB, with the bands corresponding to PP being replaced by bands related to BB as filler content increased. The density tests indicated a slight increase in composite density without deviating significantly from pure PP, which is advantageous for low-density applications. The hardness of the composites increased with filler content, while the impact resistance decreased notably. Scanning electron microscopy (SEM) images showed the good distribution of BB within the composites and the presence of ductile characteristics on the composite surface. The heat deflection temperature (HDT) results revealed that adding BB up to 40% by weight increased HDT, whereas a significant reduction occurred at a 50% BB content. These composites demonstrated favorable properties for engineering applications, offering a sustainable solution through utilizing natural waste resources and contributing to Brazilian sustainability efforts.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46256179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper considers a finite-sized two-leg ladder of spin-1/2 particles with local inter-chain Ising interaction. We include the effects of an external magnetic field by incorporating a Zeeman-type coupling between the magnetic field and the spins localized on the lattice sites. To analyze the system, we utilize the transfer-matrix formalism to calculate the partition function. We compute the magnetization for different configurations by varying the system's parameters. We observe the presence 3of spontaneous magnetization within the system. As the inter-chain Ising interaction changes its sign, the magnetization value changes from negative to positive values. Furthermore, we identify a phase transition from diamagnetic to ferromagnetic states when examining the temperature dependence of the magnetization at zero magnetic fields. We observe a step-like behavior in the magnetization curve in the low temperature limit.
{"title":"Spontaneous Magnetization in the Finite-Size Two-Leg Ising Ladder in the External Magnetic Field","authors":"V. Apinyan","doi":"10.21926/rpm.2302026","DOIUrl":"https://doi.org/10.21926/rpm.2302026","url":null,"abstract":"This paper considers a finite-sized two-leg ladder of spin-1/2 particles with local inter-chain Ising interaction. We include the effects of an external magnetic field by incorporating a Zeeman-type coupling between the magnetic field and the spins localized on the lattice sites. To analyze the system, we utilize the transfer-matrix formalism to calculate the partition function. We compute the magnetization for different configurations by varying the system's parameters. We observe the presence 3of spontaneous magnetization within the system. As the inter-chain Ising interaction changes its sign, the magnetization value changes from negative to positive values. Furthermore, we identify a phase transition from diamagnetic to ferromagnetic states when examining the temperature dependence of the magnetization at zero magnetic fields. We observe a step-like behavior in the magnetization curve in the low temperature limit.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49321213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}