Pub Date : 2023-03-19DOI: 10.1080/20964471.2023.2185920
Gabriel Narváez, L. F. Giraldo, M. Bressan, C. A. Guillén, María A. Pabón, Nicolás Díaz, Manuel Felipe Porras, B. Medina, Fernando Jiménez, Guillermo Jiménez-Estévez, A. Pantoja, Corinne Alonso
ABSTRACT This paper presents the building process of an interactive instrument called the Colombian Solar Atlas able to easily visualize meteorological data but also assess the current and future potentials of solar photovoltaic generation throughout the whole territory of Colombia, South America. This new tool is based on two different meteorological databases. The first one is done with historical data extracted from satellite imagery information, and the other one corresponds to data issues from regional-scale climate change projection models. The satellite database was validated with different in-situ measurements. The Colombian Solar Atlas uses basic and advanced photovoltaic generation models to estimate the generation of a custom solar installation. With this tool, a user selects a point on the map and can have directly pertinent information to search for an optimal location with a spatial resolution of 4 km2. This tool is the first open interactive online tool particularly adapted to study the photovoltaic power potential in Colombia, considering the country’s needs and native language.
{"title":"An interactive tool for visualization and prediction of solar radiation and photovoltaic generation in Colombia","authors":"Gabriel Narváez, L. F. Giraldo, M. Bressan, C. A. Guillén, María A. Pabón, Nicolás Díaz, Manuel Felipe Porras, B. Medina, Fernando Jiménez, Guillermo Jiménez-Estévez, A. Pantoja, Corinne Alonso","doi":"10.1080/20964471.2023.2185920","DOIUrl":"https://doi.org/10.1080/20964471.2023.2185920","url":null,"abstract":"ABSTRACT This paper presents the building process of an interactive instrument called the Colombian Solar Atlas able to easily visualize meteorological data but also assess the current and future potentials of solar photovoltaic generation throughout the whole territory of Colombia, South America. This new tool is based on two different meteorological databases. The first one is done with historical data extracted from satellite imagery information, and the other one corresponds to data issues from regional-scale climate change projection models. The satellite database was validated with different in-situ measurements. The Colombian Solar Atlas uses basic and advanced photovoltaic generation models to estimate the generation of a custom solar installation. With this tool, a user selects a point on the map and can have directly pertinent information to search for an optimal location with a spatial resolution of 4 km2. This tool is the first open interactive online tool particularly adapted to study the photovoltaic power potential in Colombia, considering the country’s needs and native language.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"1 1","pages":"904 - 929"},"PeriodicalIF":4.0,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79809799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-07DOI: 10.1080/20964471.2023.2177435
Yanxing Hu, T. Che, L. Dai, Yu Zhu, Lin Xiao, Jie Deng, Xin Li
. A h igh-quality snow depth product is very import for cryospheric science and its related disciplines. Current long time-series snow depth products covering the Northern Hemisphere can be divided into two categories: remote sensing snow depth product and reanalysis snow depth products. However, existing gridded snow depth products have some shortcomings. Remote sensing-derived snow depth products are temporally and spatially discontinuous and tend to underestimate snow depth, while reanalysis snow depth products have coarse spatial resolutions and great uncertainties. To overcome these 20 problems, in our previous work we proposed a novel data fusion framework based on Random Forest Regression of snow products from Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), Advanced Microwave Scanning Radiometer 2 (AMSR-2), Global Snow Monitoring for Climate Research (GlobSnow), the Northern Hemisphere Snow Depth (NHSD), ERA-Interim, and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), incorporated geolocation (latitude and longitude), and topographic data (elevation), which were used 25 as input independent variables. More than 30,000 ground observation sites were used as the dependent variable to train and validate the model in different time period. This fusion framework resulted in a long time series of continuous daily snow depth product over the Northern Hemisphere with a spatial resolution of 0.25°. Here we compared the fused snow depth and the original gridded snow depth products with 13,272 observation sites, showing an improved precision of our product. The evaluation indexes of the fused (best original) dataset yielded a coefficient of determination R 2 of 0.81 (0.23), Root Mean 30 Squared Error (RMSE) of 7.69 (15.86) cm, and Mean Absolute Error (MAE) of 2.74 (6.14) cm. Most of the bias (88.31%) between the fused snow depth and in situ observations was distributed from -5 cm to 5 cm depths. The accuracy assessment of independent snow observation sites – Sodankylä (SOD), Old Aspen (OAS), Old Black Spruce (OBS), and Old Jack Pine (OJP) – showed that the fused snow depth dataset had high precision under snow depths of less than 100 cm with a relatively homogeneous surrounding environment. In the altitude range of 100 m to 2000 m, the fused snow depth had a higher 35 precision, with R 2 varying from 0.73 to 0.86. The fused snow depth had a decreasing trend based on the spatiotemporal analysis and Mann-Kendall trend test method. This fused snow depth product provides the basis for understanding the temporal and spatial characteristics of snow cover and their relation to climate change, hydrological and water cycle, water resource management, ecological environment and snow disaster and hazard prevention. The new fused snow depth dataset is freely available from the National Plateau Data Center (TPDC) and can be downloaded at 40 https://dx.doi.org/10.11888/Snow.tpdc.271701 (Che et al
. 高质量的雪深产品对冰冻圈科学及其相关学科非常重要。目前覆盖北半球的长时间序列雪深产品可分为两类:遥感雪深产品和再分析雪深产品。然而,现有的网格化雪深产品存在一些不足。遥感雪深产品在时间和空间上不连续,容易低估雪深,而再分析雪深产品空间分辨率较粗,不确定性较大。为了解决这20个问题,我们在之前的工作中提出了一种新的数据融合框架,该框架基于对地观测系统高级微波扫描辐射计(AMSR-E)、高级微波扫描辐射计2 (AMSR-2)、全球气候监测(GlobSnow)、北半球雪深(NHSD)、ERA-Interim和现代研究与应用回顾性分析第2版(MERRA-2)雪产品的随机森林回归。结合地理位置(纬度和经度)和地形数据(海拔),它们被用作输入自变量。以3万多个地面观测点作为因变量,在不同时间段对模型进行训练和验证。这种融合框架产生了北半球连续日雪深产品的长时间序列,空间分辨率为0.25°。通过对13272个观测站点的融合雪深和原始网格化雪深产品进行比较,我们的产品精度得到了提高。融合(最佳原始)数据集的评价指标的决定系数r2为0.81(0.23),均方根误差(RMSE)为7.69 (15.86)cm,平均绝对误差(MAE)为2.74 (6.14)cm。融雪深度与原位观测偏差最大(88.31%)分布在-5 ~ 5 cm深度。通过对Sodankylä (SOD)、Old Aspen (OAS)、Old Black Spruce (OBS)和Old Jack Pine (OJP)独立积雪观测点的精度评估,结果表明,在雪深小于100 cm、周围环境相对均匀的情况下,融合雪深数据具有较高的精度。在海拔100 ~ 2000 m范围内,融合雪深具有较高的35精度,r2在0.73 ~ 0.86之间变化。基于时空分析和Mann-Kendall趋势检验方法,融合雪深呈减小趋势。该融合雪深产品为了解积雪时空特征及其与气候变化、水循环、水资源管理、生态环境和雪灾防灾的关系提供了基础。新的融合雪深数据集可从国家高原数据中心(TPDC)免费获得,可在40 https://dx.doi.org/10.11888/Snow.tpdc.271701下载(Che et al., 2021)。积雪深度也可以在https://zenodo.org/record/6336866#.Yjs0CMjjwzY下载。网格数据集交叉验证融合雪深数据集。雪像素是复杂的,有草,光秃秃的岩石和森林。在0.25°像素中,该位点仅代表一个小区域;海拔范围从2700米到3900米。这两个站点可以用来观测一个流域的积雪特征,但不能代表大面积的雪深。WFJ基地位于海拔约2540米的山坡上。在一个像素上,主要的土地覆盖类型是草地,但这个站点海拔更高。海拔从800米上升到2600米,超过350个像素,所以这个场地也有一个复杂的环境。在冬季的几个月里,在这个海拔高度,积雪堆积得更深。这些结果表明,融合雪深数据集的精度严重依赖于输入的网格化雪深产品。此外,雪深变化太快,这些产品无法准确捕获。也就是说,融合的雪深数据集在小于100 cm的雪深下具有更高的精度。高原积雪深度约为5至10厘米。随机森林410数据融合框架的现场观测数据较少,导致该地区雪深精度较低。
{"title":"A long-term daily gridded snow depth dataset for the Northern Hemisphere from 1980 to 2019 based on machine learning","authors":"Yanxing Hu, T. Che, L. Dai, Yu Zhu, Lin Xiao, Jie Deng, Xin Li","doi":"10.1080/20964471.2023.2177435","DOIUrl":"https://doi.org/10.1080/20964471.2023.2177435","url":null,"abstract":". A h igh-quality snow depth product is very import for cryospheric science and its related disciplines. Current long time-series snow depth products covering the Northern Hemisphere can be divided into two categories: remote sensing snow depth product and reanalysis snow depth products. However, existing gridded snow depth products have some shortcomings. Remote sensing-derived snow depth products are temporally and spatially discontinuous and tend to underestimate snow depth, while reanalysis snow depth products have coarse spatial resolutions and great uncertainties. To overcome these 20 problems, in our previous work we proposed a novel data fusion framework based on Random Forest Regression of snow products from Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), Advanced Microwave Scanning Radiometer 2 (AMSR-2), Global Snow Monitoring for Climate Research (GlobSnow), the Northern Hemisphere Snow Depth (NHSD), ERA-Interim, and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), incorporated geolocation (latitude and longitude), and topographic data (elevation), which were used 25 as input independent variables. More than 30,000 ground observation sites were used as the dependent variable to train and validate the model in different time period. This fusion framework resulted in a long time series of continuous daily snow depth product over the Northern Hemisphere with a spatial resolution of 0.25°. Here we compared the fused snow depth and the original gridded snow depth products with 13,272 observation sites, showing an improved precision of our product. The evaluation indexes of the fused (best original) dataset yielded a coefficient of determination R 2 of 0.81 (0.23), Root Mean 30 Squared Error (RMSE) of 7.69 (15.86) cm, and Mean Absolute Error (MAE) of 2.74 (6.14) cm. Most of the bias (88.31%) between the fused snow depth and in situ observations was distributed from -5 cm to 5 cm depths. The accuracy assessment of independent snow observation sites – Sodankylä (SOD), Old Aspen (OAS), Old Black Spruce (OBS), and Old Jack Pine (OJP) – showed that the fused snow depth dataset had high precision under snow depths of less than 100 cm with a relatively homogeneous surrounding environment. In the altitude range of 100 m to 2000 m, the fused snow depth had a higher 35 precision, with R 2 varying from 0.73 to 0.86. The fused snow depth had a decreasing trend based on the spatiotemporal analysis and Mann-Kendall trend test method. This fused snow depth product provides the basis for understanding the temporal and spatial characteristics of snow cover and their relation to climate change, hydrological and water cycle, water resource management, ecological environment and snow disaster and hazard prevention. The new fused snow depth dataset is freely available from the National Plateau Data Center (TPDC) and can be downloaded at 40 https://dx.doi.org/10.11888/Snow.tpdc.271701 (Che et al","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"7 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84318465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-17DOI: 10.1080/20964471.2023.2171581
P. Wetchayont, C. Ekkawatpanit, Sunsern Rueangrit, Jittawat Manduang
ABSTRACT Bangkok is located in a low land area, and floods frequently occur from rainfall, river discharge, and tides. High-accuracy rainfall data are needed to achieve high-accuracy flood predictions from hydrological models. The main objective of this study is to establish a method that improves the accuracy of precipitation estimates by merging rainfall from three sources: an infrared channel from the Himawari-8 satellite, rain gauges, and ground-based radar observations. This study applied cloud classification and bias correction using rain gauges to discriminate these errors. The bias factors were interpolated using the ordinary kriging (OK) method to fill in the areas of estimated rainfall where no rain gauge was available. The results show that bias correction improved the accuracy of radar and Himawari-8 rainfall estimates before their combination. The merged algorithm was then adopted to produce hourly merged rainfall products (GSR). Compared to the initial estimated product, the GSR is significantly more accurate. The merging algorithm increases the spatial resolution and quality of rainfall estimates and is simple to use. Furthermore, these findings not only reveal the potential and limitations of the merged algorithm but also provide useful information for future retrieval algorithm enhancement.
{"title":"Improvements in rainfall estimation over Bangkok, Thailand by merging satellite, radar, and gauge rainfall datasets with the geostatistical method","authors":"P. Wetchayont, C. Ekkawatpanit, Sunsern Rueangrit, Jittawat Manduang","doi":"10.1080/20964471.2023.2171581","DOIUrl":"https://doi.org/10.1080/20964471.2023.2171581","url":null,"abstract":"ABSTRACT Bangkok is located in a low land area, and floods frequently occur from rainfall, river discharge, and tides. High-accuracy rainfall data are needed to achieve high-accuracy flood predictions from hydrological models. The main objective of this study is to establish a method that improves the accuracy of precipitation estimates by merging rainfall from three sources: an infrared channel from the Himawari-8 satellite, rain gauges, and ground-based radar observations. This study applied cloud classification and bias correction using rain gauges to discriminate these errors. The bias factors were interpolated using the ordinary kriging (OK) method to fill in the areas of estimated rainfall where no rain gauge was available. The results show that bias correction improved the accuracy of radar and Himawari-8 rainfall estimates before their combination. The merged algorithm was then adopted to produce hourly merged rainfall products (GSR). Compared to the initial estimated product, the GSR is significantly more accurate. The merging algorithm increases the spatial resolution and quality of rainfall estimates and is simple to use. Furthermore, these findings not only reveal the potential and limitations of the merged algorithm but also provide useful information for future retrieval algorithm enhancement.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"151 1","pages":"251 - 275"},"PeriodicalIF":4.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83307933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-16DOI: 10.1080/20964471.2023.2172823
Zhiyuan Yang, Jing Li, J. Hyyppä, J. Gong, Jingbin Liu, Banghui Yang
{"title":"A comprehensive and up-to-date web-based interactive 3D emergency response and visualization system using Cesium Digital Earth: taking landslide disaster as an example","authors":"Zhiyuan Yang, Jing Li, J. Hyyppä, J. Gong, Jingbin Liu, Banghui Yang","doi":"10.1080/20964471.2023.2172823","DOIUrl":"https://doi.org/10.1080/20964471.2023.2172823","url":null,"abstract":"","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82375844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-13DOI: 10.1080/20964471.2023.2172820
S. Karozis, I. Klampanos, A. Sfetsos, D. Vlachogiannis
ABSTRACT Numerical Weather Prediction (NWP) simulations produce meteorological data in various spatial and temporal scales, depending on the application requirements. In the current study, a deep learning approach, based on convolutional autoencoders, is explored to effectively correct the error of the NWP simulation. An undercomplete convolutional autoencoder (CAE) is applied as part of the dynamic error correction of NWP data. This work is an attempt to improve the seasonal forecast (3–6 months ahead) data accuracy for Greece using a global reanalysis dataset (that incorporates observations, satellite imaging, etc.) of higher spatial resolution. More specifically, the publically available Meteo France Seasonal (Copernicus platform) and the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) (NOAA) datasets are utilized. In addition, external information is used as evidence transfer, concerning the time conditions (month, day, and season) and the simulation characteristics (initialization of simulation). It is found that convolutional autoencoders help to improve the resolution of the seasonal data and successfully reduce the error of the NWP data for 6-months ahead forecasting. Interestingly, the month evidence yields the best agreement indicating a seasonal dependence of the performance.
{"title":"A deep learning approach for spatial error correction of numerical seasonal weather prediction simulation data","authors":"S. Karozis, I. Klampanos, A. Sfetsos, D. Vlachogiannis","doi":"10.1080/20964471.2023.2172820","DOIUrl":"https://doi.org/10.1080/20964471.2023.2172820","url":null,"abstract":"ABSTRACT Numerical Weather Prediction (NWP) simulations produce meteorological data in various spatial and temporal scales, depending on the application requirements. In the current study, a deep learning approach, based on convolutional autoencoders, is explored to effectively correct the error of the NWP simulation. An undercomplete convolutional autoencoder (CAE) is applied as part of the dynamic error correction of NWP data. This work is an attempt to improve the seasonal forecast (3–6 months ahead) data accuracy for Greece using a global reanalysis dataset (that incorporates observations, satellite imaging, etc.) of higher spatial resolution. More specifically, the publically available Meteo France Seasonal (Copernicus platform) and the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) (NOAA) datasets are utilized. In addition, external information is used as evidence transfer, concerning the time conditions (month, day, and season) and the simulation characteristics (initialization of simulation). It is found that convolutional autoencoders help to improve the resolution of the seasonal data and successfully reduce the error of the NWP data for 6-months ahead forecasting. Interestingly, the month evidence yields the best agreement indicating a seasonal dependence of the performance.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"3 1 1","pages":"231 - 250"},"PeriodicalIF":4.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82229391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-05DOI: 10.1080/20964471.2022.2161218
Y. Zhuang, Jingyong Zhang
ABSTRACT Changes in temperature and precipitation have a profound effect on the ecological environment and socioeconomic systems. In this study, we focus on the major Belt and Road Initiative (BRI) regions and develop a dataset of temperature and precipitation at global temperature rise targets of 1.5°C, 2°C, and 3°C above pre-industrial levels under the Representative Concentration Pathway (RCP) 8.5 emission scenario using 4 downscaled global model datasets data at a fine spatial resolution of 0.0449147848° (~5 km) globally from EnviDat. The temperature variables include the daily maximum (Tmax), minimum (Tmin) and average (Tmp) surface air temperatures, and the diurnal temperature range (DTR). We first evaluate the performance of the downscaled model data using CRU-observed gridded data for the historical period 1986–2005. The results indicate that the downscaled model data can generally reproduce the pattern characteristics of temperature and precipitation variations well over the major BRI regions for 1986–2005. Furthermore, we project temperature and precipitation variations over the major BRI regions at global temperature rise targets of 1.5°C, 2°C, and 3°C under the RCP8.5 emission scenario based on the dataset by adopting the multiple-model ensemble mean. Our dataset contributes to understanding detailed the characteristics of climate change over the major BRI regions, and provides data fundamental for adopting appropriate strategies and options to reduce or avoid disadvantaged consequences associated with climate change over the major BRI regions. The dataset is available at https://doi.org/10.57760/sciencedb.01850.
{"title":"Dataset of temperature and precipitation over the major Belt and Road Initiative regions under different temperature rise scenarios","authors":"Y. Zhuang, Jingyong Zhang","doi":"10.1080/20964471.2022.2161218","DOIUrl":"https://doi.org/10.1080/20964471.2022.2161218","url":null,"abstract":"ABSTRACT Changes in temperature and precipitation have a profound effect on the ecological environment and socioeconomic systems. In this study, we focus on the major Belt and Road Initiative (BRI) regions and develop a dataset of temperature and precipitation at global temperature rise targets of 1.5°C, 2°C, and 3°C above pre-industrial levels under the Representative Concentration Pathway (RCP) 8.5 emission scenario using 4 downscaled global model datasets data at a fine spatial resolution of 0.0449147848° (~5 km) globally from EnviDat. The temperature variables include the daily maximum (Tmax), minimum (Tmin) and average (Tmp) surface air temperatures, and the diurnal temperature range (DTR). We first evaluate the performance of the downscaled model data using CRU-observed gridded data for the historical period 1986–2005. The results indicate that the downscaled model data can generally reproduce the pattern characteristics of temperature and precipitation variations well over the major BRI regions for 1986–2005. Furthermore, we project temperature and precipitation variations over the major BRI regions at global temperature rise targets of 1.5°C, 2°C, and 3°C under the RCP8.5 emission scenario based on the dataset by adopting the multiple-model ensemble mean. Our dataset contributes to understanding detailed the characteristics of climate change over the major BRI regions, and provides data fundamental for adopting appropriate strategies and options to reduce or avoid disadvantaged consequences associated with climate change over the major BRI regions. The dataset is available at https://doi.org/10.57760/sciencedb.01850.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"17 1","pages":"375 - 397"},"PeriodicalIF":4.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76436878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-05DOI: 10.1080/20964471.2022.2157093
Yufen Cao, Yuanhao Qu, Jinghui Ma
ABSTRACT Serious regional ozone (O3) pollution often plagues the Yangtze River Delta (YRD). The formation mechanism of these regional pollution events, including the meteorological and emission factors leading to these pollution events and how to affect the distribution of O3, still needs further research and exploration. In this study, we first define the standard of O3 regional pollution in the YRD, and then select 248 regional pollution cases from 2015 to 2020 according to the defined standard. For the pollution cases in pollution months (May and June), PCT (principal component analysis in T-mode) classification method is used to classify the ozone concentration distribution in YRD area. The regional distribution of the O3 concentrations in the YRD is divided into five types, and the overall type (Type 1) accounts for 15%, which is related to the control of YRD area by high-pressure center. Under the control of high pressure, the weather is sunny with the high temperature, and this weather condition is favorable for ozone generation and intercity transmission, causing extensive pollution. The double center type (Type 2) accounts for 8%. This type of YRD is controlled by the front of the high pressure (the high-pressure center is located in North China), and the weather in the middle and north is conducive to the generation and transmission of O3. Inland type (Type 3) accounts for 24%. The main body of this type of high pressure is located in Mongolia. The easterly wind in YRD area is conducive to the inland transmission of O3 precursors. The northern coastal type (Type 4) accounts for 44%. This type of YRD area is mainly controlled by the weak pressure field. The weather in the northern coastal area is sunny and the solar radiation for a long time is conducive to the formation of O3. The southern coastal type (Type 5) accounts for 10%, the solar radiation is strong in the southern region mainly under the influence of the post-offshore high pressure. This study provides new insights into the relationship between O3 pollution distribution types and atmospheric circulation in YRD area, and reveals the difference of potential meteorological impacts of different O3 pollution distribution types.
{"title":"Classification of ozone pollution and analysis of meteorological factors in the Yangtze River Delta","authors":"Yufen Cao, Yuanhao Qu, Jinghui Ma","doi":"10.1080/20964471.2022.2157093","DOIUrl":"https://doi.org/10.1080/20964471.2022.2157093","url":null,"abstract":"ABSTRACT Serious regional ozone (O3) pollution often plagues the Yangtze River Delta (YRD). The formation mechanism of these regional pollution events, including the meteorological and emission factors leading to these pollution events and how to affect the distribution of O3, still needs further research and exploration. In this study, we first define the standard of O3 regional pollution in the YRD, and then select 248 regional pollution cases from 2015 to 2020 according to the defined standard. For the pollution cases in pollution months (May and June), PCT (principal component analysis in T-mode) classification method is used to classify the ozone concentration distribution in YRD area. The regional distribution of the O3 concentrations in the YRD is divided into five types, and the overall type (Type 1) accounts for 15%, which is related to the control of YRD area by high-pressure center. Under the control of high pressure, the weather is sunny with the high temperature, and this weather condition is favorable for ozone generation and intercity transmission, causing extensive pollution. The double center type (Type 2) accounts for 8%. This type of YRD is controlled by the front of the high pressure (the high-pressure center is located in North China), and the weather in the middle and north is conducive to the generation and transmission of O3. Inland type (Type 3) accounts for 24%. The main body of this type of high pressure is located in Mongolia. The easterly wind in YRD area is conducive to the inland transmission of O3 precursors. The northern coastal type (Type 4) accounts for 44%. This type of YRD area is mainly controlled by the weak pressure field. The weather in the northern coastal area is sunny and the solar radiation for a long time is conducive to the formation of O3. The southern coastal type (Type 5) accounts for 10%, the solar radiation is strong in the southern region mainly under the influence of the post-offshore high pressure. This study provides new insights into the relationship between O3 pollution distribution types and atmospheric circulation in YRD area, and reveals the difference of potential meteorological impacts of different O3 pollution distribution types.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"50 1","pages":"318 - 337"},"PeriodicalIF":4.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78277337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-03DOI: 10.1080/20964471.2022.2148331
Rongrong Zhang, Virgílio A. Bento, Junyu Qi, Feng Xu, Jianjun Wu, Jianxiu Qiu, Jianwei Li, Wei Shui, Qianfeng Wang
ABSTRACT Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI), traditionally derived at a monthly scale, are widely used drought indices. To overcome temporal-resolution limitations, we have previously developed and published a well-validated daily SPI/SPEI in situ dataset. Although having a high temporal resolution, this in situ dataset presents low spatial resolution due to the scarcity of stations. Therefore, based on the China Meteorological Forcing Dataset, which is composed of data from more than 1,000 ground-based observation sites and multiple remote sensing grid meteorological dataset, we present the first high spatiotemporal-resolution daily SPI/SPEI raster datasets over China. It spans from 1979 to 2018, with a spatial resolution of 0.1° × 0.1°, a temporal resolution of 1-day, and the timescales of 30-, 90-, and 360-days. Results show that the spatial distributions of drought event characteristics detected by the daily SPI/SPEI are consistent with the monthly SPI/SPEI. The correlation between the daily value of the 12-month scale and the monthly value of SPI/SPEI is the strongest, with linear correlation, Nash-Sutcliffe coefficient, and normalized root mean square error of 0.98, 0.97, and 0.04, respectively. The daily SPI/SPEI is shown to be more sensitive to flash drought than the monthly SPI/SPEI. Our improved SPI/SPEI shows high accuracy and credibility, presenting enhanced results when compared to the monthly SPI/SPEI. The total data volume is up to 150 GB, compressed to 91 GB in Network Common Data Form (NetCDF). It can be available from Figshare (https://doi.org/10.6084/m9.figshare.c.5823533) and ScienceDB (https://doi.org/10.57760/sciencedb.j00076.00103).
标准化降水指数(SPI)和标准化降水蒸散指数(SPEI)是目前广泛应用的干旱指标,传统上以月为尺度推导。为了克服时间分辨率的限制,我们之前开发并发布了一个经过良好验证的每日SPI/SPEI原位数据集。虽然具有较高的时间分辨率,但由于站点的稀缺,该原位数据集的空间分辨率较低。基于中国气象强迫数据集(由1000多个地面观测点和多个遥感栅格气象数据集组成),首次构建了中国地区高时空分辨率的日SPI/SPEI栅格数据集。时间跨度为1979 ~ 2018年,空间分辨率为0.1°× 0.1°,时间分辨率为1天,时间尺度为30天、90天和360天。结果表明,日SPI/SPEI探测的干旱事件特征空间分布与月SPI/SPEI基本一致。12个月量表日值与SPI/SPEI月值相关性最强,呈线性相关,Nash-Sutcliffe系数和标准化均方根误差分别为0.98、0.97和0.04。日SPI/SPEI比月SPI/SPEI对突发性干旱更为敏感。我们改进的SPI/SPEI具有较高的准确性和可信度,与每月SPI/SPEI相比,结果有所增强。数据总量高达150gb, NetCDF (Network Common data Form)格式压缩为91gb。可以从Figshare (https://doi.org/10.6084/m9.figshare.c.5823533)和ScienceDB (https://doi.org/10.57760/sciencedb.j00076.00103)获得。
{"title":"The first high spatial resolution multi-scale daily SPI and SPEI raster dataset for drought monitoring and evaluating over China from 1979 to 2018","authors":"Rongrong Zhang, Virgílio A. Bento, Junyu Qi, Feng Xu, Jianjun Wu, Jianxiu Qiu, Jianwei Li, Wei Shui, Qianfeng Wang","doi":"10.1080/20964471.2022.2148331","DOIUrl":"https://doi.org/10.1080/20964471.2022.2148331","url":null,"abstract":"ABSTRACT Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI), traditionally derived at a monthly scale, are widely used drought indices. To overcome temporal-resolution limitations, we have previously developed and published a well-validated daily SPI/SPEI in situ dataset. Although having a high temporal resolution, this in situ dataset presents low spatial resolution due to the scarcity of stations. Therefore, based on the China Meteorological Forcing Dataset, which is composed of data from more than 1,000 ground-based observation sites and multiple remote sensing grid meteorological dataset, we present the first high spatiotemporal-resolution daily SPI/SPEI raster datasets over China. It spans from 1979 to 2018, with a spatial resolution of 0.1° × 0.1°, a temporal resolution of 1-day, and the timescales of 30-, 90-, and 360-days. Results show that the spatial distributions of drought event characteristics detected by the daily SPI/SPEI are consistent with the monthly SPI/SPEI. The correlation between the daily value of the 12-month scale and the monthly value of SPI/SPEI is the strongest, with linear correlation, Nash-Sutcliffe coefficient, and normalized root mean square error of 0.98, 0.97, and 0.04, respectively. The daily SPI/SPEI is shown to be more sensitive to flash drought than the monthly SPI/SPEI. Our improved SPI/SPEI shows high accuracy and credibility, presenting enhanced results when compared to the monthly SPI/SPEI. The total data volume is up to 150 GB, compressed to 91 GB in Network Common Data Form (NetCDF). It can be available from Figshare (https://doi.org/10.6084/m9.figshare.c.5823533) and ScienceDB (https://doi.org/10.57760/sciencedb.j00076.00103).","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"1 1","pages":"860 - 885"},"PeriodicalIF":4.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85566454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/20964471.2022.2163130
Siqin Wang, Ruomei Wang, Xiao Huang, Zhenlong Li, S. Bao
ABSTRACT COVID-19 cripples the restaurant industry as a crucial socioeconomic sector that contributes immensely to the global economy. However, what the current literature less explored is to quantify the effect of COVID-19 on restaurant visitation and revenue at different spatial scales, as well as its relationship with the neighborhood characteristics of customers’ origins. Based on the Point of Interest (POI) measures derived from SafeGraph data providing mobility records of 45 million cell phone users in the US, our study takes Lower Manhattan, New York City, as the pilot study, and aims to examine 1) the change of restaurant visitations and revenue in the period prior to and after the COVID-19 outbreak, 2) the areas where restaurant customers live, and 3) the association between the neighborhood characteristics of these areas and lost customers. By doing so, we provide a geographic information system-based analytical framework integrating the big data mining, web crawling techniques, and spatial-economic modelling. Our analytical framework can be implemented to estimate the broader effect of COVID-19 on other industries and can be augmented in a financially monitoring manner in response to future pandemics or public emergencies.
{"title":"A GIS-based analytical framework for evaluating the effect of COVID-19 on the restaurant industry with big data","authors":"Siqin Wang, Ruomei Wang, Xiao Huang, Zhenlong Li, S. Bao","doi":"10.1080/20964471.2022.2163130","DOIUrl":"https://doi.org/10.1080/20964471.2022.2163130","url":null,"abstract":"ABSTRACT COVID-19 cripples the restaurant industry as a crucial socioeconomic sector that contributes immensely to the global economy. However, what the current literature less explored is to quantify the effect of COVID-19 on restaurant visitation and revenue at different spatial scales, as well as its relationship with the neighborhood characteristics of customers’ origins. Based on the Point of Interest (POI) measures derived from SafeGraph data providing mobility records of 45 million cell phone users in the US, our study takes Lower Manhattan, New York City, as the pilot study, and aims to examine 1) the change of restaurant visitations and revenue in the period prior to and after the COVID-19 outbreak, 2) the areas where restaurant customers live, and 3) the association between the neighborhood characteristics of these areas and lost customers. By doing so, we provide a geographic information system-based analytical framework integrating the big data mining, web crawling techniques, and spatial-economic modelling. Our analytical framework can be implemented to estimate the broader effect of COVID-19 on other industries and can be augmented in a financially monitoring manner in response to future pandemics or public emergencies.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"36 1","pages":"37 - 58"},"PeriodicalIF":4.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88790868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/20964471.2022.2160156
Homa Masoumi, S. Shirowzhan, Paria Eskandarpour, C. Pettit
ABSTRACT The emerging field of City Digital Twins has advanced in recent years with the help of digital infrastructure and technologies connected to the Internet of Things (IoT). However, the evolution of this field has been so fast that a gap has opened in relation to systematic reviews of the relevant literature and the maturation of City Digital Twins on an urban scale. Our work bridges this gap by highlighting maturity in the field. We conducted a systematic literature review with bibliometric and content analysis of 41 selected papers published in Web of Science and Scopus databases, covering five areas: data types and sources, case studies, applied technologies and methods, maturity spectrum, and applications. Based on maturity indicators, the majority of the reviewed studies (90%) were at initial to medium stages of maturity (up to element 3), most of them focused on 3D modelling, monitoring and visualisation. However, digital twins cannot be limited to 3D models, monitoring and visualisation, for they can be developed to include two-directional interactions between humans and computers. Such a high level of maturity, which was not found in the reviewed studies, requires advanced technologies and methods such as cloud computing, artificial intelligence, BIM and GIS. We also found that further studies are essential if the field is to handle the complex urban challenges of multidisciplinary digital twins . While City Digital Twins extend by definition beyond mere 3D city modelling, some studies involving 3D city models still refer to their subjects as City Digital Twins. Among the research gaps we identified, we’d like to highlight the need for near-real-time data analytics algorithms, which could furnish City Digital Twins with big data insights. Other opportunities include public participation capabilities to increase social collaboration, integrating BIM and GIS technologies and improving storage and computation infrastructure.
近年来,随着数字基础设施和与物联网(IoT)相关的技术的发展,城市数字孪生(City Digital Twins)这一新兴领域得到了发展。然而,这一领域的发展如此之快,以至于在对相关文献的系统回顾和城市规模的城市数字孪生的成熟方面出现了空白。我们的工作通过突出该领域的成熟度来弥合这一差距。我们对Web of Science和Scopus数据库中发表的41篇论文进行了系统的文献综述和内容分析,涵盖了数据类型和来源、案例研究、应用技术和方法、成熟度谱和应用五个方面。根据成熟度指标,大多数审查的研究(90%)处于成熟度的初始到中期阶段(直到元素3),其中大多数集中在3D建模,监测和可视化。然而,数字双胞胎不能局限于3D模型、监控和可视化,因为它们可以发展到包括人与计算机之间的双向交互。如此高的成熟度,在所审查的研究中没有发现,需要先进的技术和方法,如云计算、人工智能、BIM和GIS。我们还发现,如果该领域要处理多学科数字孪生的复杂城市挑战,进一步的研究是必不可少的。虽然城市数字双胞胎的定义超越了单纯的3D城市建模,但一些涉及3D城市模型的研究仍然将其研究对象称为城市数字双胞胎。在我们发现的研究差距中,我们想强调对近实时数据分析算法的需求,这可以为城市数字双胞胎提供大数据见解。其他机会包括公众参与能力,以增加社会协作,集成BIM和GIS技术,改善存储和计算基础设施。
{"title":"City Digital Twins: their maturity level and differentiation from 3D city models","authors":"Homa Masoumi, S. Shirowzhan, Paria Eskandarpour, C. Pettit","doi":"10.1080/20964471.2022.2160156","DOIUrl":"https://doi.org/10.1080/20964471.2022.2160156","url":null,"abstract":"ABSTRACT The emerging field of City Digital Twins has advanced in recent years with the help of digital infrastructure and technologies connected to the Internet of Things (IoT). However, the evolution of this field has been so fast that a gap has opened in relation to systematic reviews of the relevant literature and the maturation of City Digital Twins on an urban scale. Our work bridges this gap by highlighting maturity in the field. We conducted a systematic literature review with bibliometric and content analysis of 41 selected papers published in Web of Science and Scopus databases, covering five areas: data types and sources, case studies, applied technologies and methods, maturity spectrum, and applications. Based on maturity indicators, the majority of the reviewed studies (90%) were at initial to medium stages of maturity (up to element 3), most of them focused on 3D modelling, monitoring and visualisation. However, digital twins cannot be limited to 3D models, monitoring and visualisation, for they can be developed to include two-directional interactions between humans and computers. Such a high level of maturity, which was not found in the reviewed studies, requires advanced technologies and methods such as cloud computing, artificial intelligence, BIM and GIS. We also found that further studies are essential if the field is to handle the complex urban challenges of multidisciplinary digital twins . While City Digital Twins extend by definition beyond mere 3D city modelling, some studies involving 3D city models still refer to their subjects as City Digital Twins. Among the research gaps we identified, we’d like to highlight the need for near-real-time data analytics algorithms, which could furnish City Digital Twins with big data insights. Other opportunities include public participation capabilities to increase social collaboration, integrating BIM and GIS technologies and improving storage and computation infrastructure.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"623 1","pages":"1 - 36"},"PeriodicalIF":4.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77214454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}