首页 > 最新文献

Materials Horizons最新文献

英文 中文
Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant. 企鹅羽毛灵感的柔性气凝胶复合膜具有超低的导热系数和介电常数。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-15 DOI: 10.1039/d4mh01442a
Rui Yang, Kexing Yu, Xiang Yu, Wenqi Zhang, Kaixuan Sun, Fangcheng Lv, Yunpeng Liu, Sidi Fan

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films. However, additional cross-linking agents are necessitated for constructing a robust structure, complicating the production process. Herein, we report a flexible aerogel film based on meta-aramid composites, inspired by the porous structure of penguin feathers. The intermolecular hydrogen bonds function as natural cross-linking agents. Their disruption results in the dissolution of meta-aramid fibers, while their reconstruction facilitates localized rearrangement of meta-aramid chains during the sol-gel process, generating closed nanopores. Furthermore, fluorinated hollow glass microspheres are filled, compressing the nanopores situated near the interface to 75-150 nm. This meets the critical threshold required by the Knudsen effect, decreasing the thermal conductivity to levels below that of ambient air. At an optimized doping ratio of 3 wt%, the thermal conductivity is 21.6 mW m-1 K-1, while achieving a low dielectric constant of 1.43. Simultaneously, aerogel films exhibit enhanced mechanical properties, and also show benefits of hydrophobicity, colorability, ultralightness, and flame retardancy, making themselves multifunctional materials suitable for practical applications.

考虑到极高的孔隙率,气凝胶在作为隔热和透波材料方面表现出了显著的优势。不幸的是,它们的实际应用受到其固有脆弱性的极大限制。近年来聚合物气凝胶的出现为柔性气凝胶膜的发展提供了理想的平台。然而,需要额外的交联剂来构建坚固的结构,使生产过程复杂化。在此,我们报道了一种基于间位芳纶复合材料的柔性气凝胶膜,灵感来自企鹅羽毛的多孔结构。分子间氢键起天然交联剂的作用。它们的破坏导致间芳纶纤维的溶解,而它们的重建促进了间芳纶链在溶胶-凝胶过程中的局部重排,产生封闭的纳米孔。此外,填充氟化中空玻璃微球,将位于界面附近的纳米孔压缩到75-150 nm。这满足了克努森效应所要求的临界阈值,将导热系数降低到低于环境空气的水平。当掺杂比为3 wt%时,导热系数为21.6 mW m-1 K-1,介电常数为1.43。同时,气凝胶膜表现出增强的机械性能,还表现出疏水性、着色性、超轻性和阻燃性等优点,使其成为适合实际应用的多功能材料。
{"title":"Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.","authors":"Rui Yang, Kexing Yu, Xiang Yu, Wenqi Zhang, Kaixuan Sun, Fangcheng Lv, Yunpeng Liu, Sidi Fan","doi":"10.1039/d4mh01442a","DOIUrl":"https://doi.org/10.1039/d4mh01442a","url":null,"abstract":"<p><p>Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films. However, additional cross-linking agents are necessitated for constructing a robust structure, complicating the production process. Herein, we report a flexible aerogel film based on <i>meta</i>-aramid composites, inspired by the porous structure of penguin feathers. The intermolecular hydrogen bonds function as natural cross-linking agents. Their disruption results in the dissolution of <i>meta</i>-aramid fibers, while their reconstruction facilitates localized rearrangement of <i>meta</i>-aramid chains during the sol-gel process, generating closed nanopores. Furthermore, fluorinated hollow glass microspheres are filled, compressing the nanopores situated near the interface to 75-150 nm. This meets the critical threshold required by the Knudsen effect, decreasing the thermal conductivity to levels below that of ambient air. At an optimized doping ratio of 3 wt%, the thermal conductivity is 21.6 mW m<sup>-1</sup> K<sup>-1</sup>, while achieving a low dielectric constant of 1.43. Simultaneously, aerogel films exhibit enhanced mechanical properties, and also show benefits of hydrophobicity, colorability, ultralightness, and flame retardancy, making themselves multifunctional materials suitable for practical applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stretchable wrinkle-structured liquid metal sandwich films enable strain-insensitive electromagnetic shielding and Joule heating. 可拉伸的褶皱结构液态金属夹层膜可实现应变不敏感的电磁屏蔽和焦耳加热。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-15 DOI: 10.1039/d4mh01746c
Yiming Ren, Jiali Chen, Jiaheng Yao, Liqiang Shang, Wenge Zheng, Bin Shen

Stretchable electromagnetic interference (EMI) shields with strain-insensitive EMI shielding and Joule heating performances are highly desirable to be integrated with wearable electronics. To explore the possibility of applying geometric design in elastomeric liquid metal (LM) composites and fully investigate the influence of LM geometry on stretchable EMI shielding and Joule heating, multifunctional wrinkle-structured LM/Ecoflex sandwich films with excellent stretchability are developed. The denser LM wrinkle enables not only better electrical conduction, higher shielding effectiveness (SE) and steady-state temperature, but also enhanced strain-stable far-field/near-field shielding performance and Joule-heating capability. More strikingly, compared to most previously reported stretchable EMI shields or electric heaters, the densely wrinkled film could achieve multidirectional strain-insensitive shielding behavior with slightly strain-enhanced or strain-invariant EMI SE under stretching parallel or perpendicular to the electric field of EM waves, as well as show ideal strain-insensitive Joule-heating behavior over a larger strain range of 250%. The current findings suggest an effective strategy for developing stretchable LM-based composites with strain-insensitive properties.

具有应变不敏感电磁干扰屏蔽和焦耳加热性能的可拉伸电磁干扰(EMI)屏蔽非常适合与可穿戴电子产品集成。为了探索几何设计在弹性液态金属(LM)复合材料中应用的可能性,并充分研究LM几何结构对可拉伸电磁干扰屏蔽和焦耳加热的影响,开发了具有优异拉伸性能的多功能褶皱结构LM/Ecoflex夹层膜。更致密的LM褶皱不仅可以获得更好的导电性、更高的屏蔽效率(SE)和稳态温度,还可以增强应变稳定的远场/近场屏蔽性能和焦耳加热能力。更引人注目的是,与之前报道的大多数可拉伸电磁干扰屏蔽或电加热器相比,在平行或垂直于电磁波电场的拉伸下,密集褶皱薄膜可以实现多向应变不敏感屏蔽行为,具有轻微应变增强或应变不变的电磁干扰SE,并且在250%的更大应变范围内表现出理想的应变不敏感焦耳加热行为。目前的研究结果为开发具有应变不敏感性能的可拉伸lm基复合材料提供了有效的策略。
{"title":"Stretchable wrinkle-structured liquid metal sandwich films enable strain-insensitive electromagnetic shielding and Joule heating.","authors":"Yiming Ren, Jiali Chen, Jiaheng Yao, Liqiang Shang, Wenge Zheng, Bin Shen","doi":"10.1039/d4mh01746c","DOIUrl":"https://doi.org/10.1039/d4mh01746c","url":null,"abstract":"<p><p>Stretchable electromagnetic interference (EMI) shields with strain-insensitive EMI shielding and Joule heating performances are highly desirable to be integrated with wearable electronics. To explore the possibility of applying geometric design in elastomeric liquid metal (LM) composites and fully investigate the influence of LM geometry on stretchable EMI shielding and Joule heating, multifunctional wrinkle-structured LM/Ecoflex sandwich films with excellent stretchability are developed. The denser LM wrinkle enables not only better electrical conduction, higher shielding effectiveness (SE) and steady-state temperature, but also enhanced strain-stable far-field/near-field shielding performance and Joule-heating capability. More strikingly, compared to most previously reported stretchable EMI shields or electric heaters, the densely wrinkled film could achieve multidirectional strain-insensitive shielding behavior with slightly strain-enhanced or strain-invariant EMI SE under stretching parallel or perpendicular to the electric field of EM waves, as well as show ideal strain-insensitive Joule-heating behavior over a larger strain range of 250%. The current findings suggest an effective strategy for developing stretchable LM-based composites with strain-insensitive properties.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural relaxation chirality transfer enhanced circularly polarized luminescence in heteronuclear CeIII-MnII complexes. 结构弛豫手性转移增强了异核CeIII-MnII配合物的圆极化发光。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-15 DOI: 10.1039/d4mh01760a
Huanyu Liu, Gang Yu, Peihao Huo, Ruoyao Guo, Yujia Li, Hao Qi, Jiayin Zheng, Tong Jin, Zifeng Zhao, Zuqiang Bian, Zhiwei Liu

Circularly polarized luminescence (CPL) materials have developed rapidly in recent years due to their wide application prospects in fields like 3D displays and anti-counterfeiting. Utilizing energy transfer processes to transfer chirality has been proven as an efficient way to obtain CPL materials. However, the physics behind energy-transfer induced CPL is still not clear. Herein, in a well-designed heteronuclear CeIII-MnII complex system [(Ce((R/S)-L)Br(μ-Br))2]MnBr4 [(R/S)-L = (2R,3R)- or (2S,3S)-2,3-dimethyl-1,4,7,10,13,16-hexaoxacyclooctadecane] with intra energy transfer from CeIII to MnII, the luminescence dissymmetry factor of MnII obtained by excitation of CeIII is around 10 times higher than that obtained by direct excitation of MnII, while the CeIII center itself shows an almost negligible CPL. To address this unusual phenomenon, we proposed a new mechanism named structural relaxation chirality transfer (SRCT) where structural relaxation of the excited chiral donor amplified chirality transfer to the acceptor by intramolecular interactions. As an assistant proof, a mixture of CeIII-ZnII and LaIII-MnII complexes with inter energy transfer showed no CPL amplification. These results will inspire more breakthroughs in the physics nature and development of energy-transfer induced CPL.

圆偏振发光材料在3D显示、防伪等领域有着广阔的应用前景,近年来发展迅速。利用能量转移过程转移手性已被证明是获得CPL材料的有效途径。然而,能量转移诱导CPL背后的物理机制仍不清楚。在设计良好的异核CeIII-MnII配合体系[(Ce((R/S)- l)Br(μ-Br))2]MnBr4 [(R/S)- l = (2R,3R)-或(2S,3S)-2,3-二甲基-1,4,7,10,13,16-六氧基环十六烷]中,通过激发CeIII获得的MnII的发光不对称因子比直接激发MnII获得的发光不对称因子高10倍左右,而CeIII中心本身的发光不对称系数几乎可以忽略。我们提出了一种新的机制,称为结构弛豫手性转移(SRCT),即受激发的手性供体的结构弛豫通过分子内相互作用放大了手性向受体的转移。作为辅助证明,具有能量转移的CeIII-ZnII和LaIII-MnII配合物的混合物没有CPL扩增。这些结果将激发能量转移诱导CPL的物理性质和发展方面的更多突破。
{"title":"Structural relaxation chirality transfer enhanced circularly polarized luminescence in heteronuclear Ce<sup>III</sup>-Mn<sup>II</sup> complexes.","authors":"Huanyu Liu, Gang Yu, Peihao Huo, Ruoyao Guo, Yujia Li, Hao Qi, Jiayin Zheng, Tong Jin, Zifeng Zhao, Zuqiang Bian, Zhiwei Liu","doi":"10.1039/d4mh01760a","DOIUrl":"https://doi.org/10.1039/d4mh01760a","url":null,"abstract":"<p><p>Circularly polarized luminescence (CPL) materials have developed rapidly in recent years due to their wide application prospects in fields like 3D displays and anti-counterfeiting. Utilizing energy transfer processes to transfer chirality has been proven as an efficient way to obtain CPL materials. However, the physics behind energy-transfer induced CPL is still not clear. Herein, in a well-designed heteronuclear Ce<sup>III</sup>-Mn<sup>II</sup> complex system [(Ce((R/S)-L)Br(μ-Br))<sub>2</sub>]MnBr<sub>4</sub> [(R/S)-L = (2<i>R</i>,3<i>R</i>)- or (2<i>S</i>,3<i>S</i>)-2,3-dimethyl-1,4,7,10,13,16-hexaoxacyclooctadecane] with intra energy transfer from Ce<sup>III</sup> to Mn<sup>II</sup>, the luminescence dissymmetry factor of Mn<sup>II</sup> obtained by excitation of Ce<sup>III</sup> is around 10 times higher than that obtained by direct excitation of Mn<sup>II</sup>, while the Ce<sup>III</sup> center itself shows an almost negligible CPL. To address this unusual phenomenon, we proposed a new mechanism named structural relaxation chirality transfer (SRCT) where structural relaxation of the excited chiral donor amplified chirality transfer to the acceptor by intramolecular interactions. As an assistant proof, a mixture of Ce<sup>III</sup>-Zn<sup>II</sup> and La<sup>III</sup>-Mn<sup>II</sup> complexes with inter energy transfer showed no CPL amplification. These results will inspire more breakthroughs in the physics nature and development of energy-transfer induced CPL.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing. 用于粘附切换应变传感的湿响应超低迟滞聚合物离子凝胶。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-14 DOI: 10.1039/d4mh01593b
Yichen Zhou, Xing Zhang, Ying Zheng, Junfeng Liu, Yongzhong Bao, Guorong Shan, Chengtao Yu, Pengju Pan

Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%). Moreover, before and after phase separation, the viscoelastic behavior of the ionogels is maintained in the rubbery plateau region within common frequency ranges with ultralow mechanical hysteresis (∼3%) under large strain, enabling accurate and stable strain and pressure sensing. Accordingly, the ionogel films can be used as functional elements in a smart clamp to realize flytrap-like selective activation, based on high sensitivity to the vibration intensity from the targeted prey. This work may inspire future research on the development of advanced soft electronics.

可粘附切换的超低迟滞聚合物离子凝胶在软电子产品中非常需要,以避免脱粘损伤和信号失真,但这种离子凝胶的设计和制造具有挑战性。在此,我们提出了一种新的方法,利用具有两个相反亲和力的离子组分的二元离子溶剂来设计可切换的粘接离子凝胶。所获得的离子凝胶表现出水分诱导的相分离,促进了可切换的粘附,具有很高的分离效率(>99%)。此外,在相分离前后,离子凝胶的粘弹性行为在橡胶高原区域保持在共同频率范围内,在大应变下具有超低的机械滞后(~ 3%),从而实现准确和稳定的应变和压力传感。因此,基于对目标猎物振动强度的高灵敏度,离子凝胶膜可以用作智能钳中的功能元件,实现类似捕蝇器的选择性激活。这项工作可能会激发未来对先进软电子技术发展的研究。
{"title":"Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing.","authors":"Yichen Zhou, Xing Zhang, Ying Zheng, Junfeng Liu, Yongzhong Bao, Guorong Shan, Chengtao Yu, Pengju Pan","doi":"10.1039/d4mh01593b","DOIUrl":"https://doi.org/10.1039/d4mh01593b","url":null,"abstract":"<p><p>Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%). Moreover, before and after phase separation, the viscoelastic behavior of the ionogels is maintained in the rubbery plateau region within common frequency ranges with ultralow mechanical hysteresis (∼3%) under large strain, enabling accurate and stable strain and pressure sensing. Accordingly, the ionogel films can be used as functional elements in a smart clamp to realize flytrap-like selective activation, based on high sensitivity to the vibration intensity from the targeted prey. This work may inspire future research on the development of advanced soft electronics.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors. 适用于高灵敏度可穿戴传感器的环保多功能共聚物。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-14 DOI: 10.1039/d4mh01665c
Zhengen Wei, Lianghao Jia, Jinyu Yu, Hanrui Xu, Xing Guo, Tao Xiang, Shaobing Zhou

Flexible hydrogel sensors have found extensive applications. However, the insufficient sensing sensitivity and the propensity to freeze at low temperatures restrict their use, particularly in frigid conditions. Herein, a multifunctional eutectogel with high transparency, anti-freezing, anti-swelling, adhesive, and self-healing properties is prepared by a one-step photopolymerization of acrylic acid and lauryl methacrylate in a binary solvent comprising water and deep eutectic solvent (DES). The results from the molecular dynamics simulations and density functional theory indicate that the hydrogen bonds between DES and water mixtures possess better stability than those between water molecules. On the other hand, DES breaks down hydrogen bonds in water, providing eutectogels with excellent anti-freezing even at -60 °C. Cetyltrimethylammonium bromide is incorporated to establish stable hydrophobic interactions and electrostatic attractions with polymer chains in the eutectogel network, resulting in superior mechanical (elongation at break of 2890%) and anti-swelling (only 2% swelling in water over 7 days) properties. The eutectogel-based strain sensors exhibit remarkable sensitivity, achieving a gauge factor of up to 15.4. The multifunctional eutectogel sensors can monitor motion and transmit encrypted information at low temperatures, demonstrating considerable potential for applications in flexible electronics within low-temperature environments.

柔性水凝胶传感器有广泛的应用。然而,感应灵敏度不足和在低温下结冰的倾向限制了它们的使用,特别是在寒冷的条件下。本发明利用丙烯酸和甲基丙烯酸月桂酯在由水和深度共晶溶剂(DES)组成的二元溶剂中一步光聚合制备了一种具有高透明度、防冻、抗膨胀、粘接和自愈性能的多功能共聚物。分子动力学模拟和密度泛函理论的结果表明,DES与水混合物之间的氢键比水分子之间的氢键具有更好的稳定性。另一方面,DES破坏水中的氢键,即使在-60°C下也能使共凝胶具有优异的抗冻性。十六烷基三甲基溴化铵与共聚网络中的聚合物链建立稳定的疏水相互作用和静电吸引力,从而产生优越的机械性能(断裂伸长率为2890%)和抗膨胀性能(在水中7天内仅膨胀2%)。基于共晶的应变传感器具有显著的灵敏度,测量系数高达15.4。多功能共tectol传感器可以在低温下监测运动和传输加密信息,在低温环境下的柔性电子应用中显示出相当大的潜力。
{"title":"Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.","authors":"Zhengen Wei, Lianghao Jia, Jinyu Yu, Hanrui Xu, Xing Guo, Tao Xiang, Shaobing Zhou","doi":"10.1039/d4mh01665c","DOIUrl":"https://doi.org/10.1039/d4mh01665c","url":null,"abstract":"<p><p>Flexible hydrogel sensors have found extensive applications. However, the insufficient sensing sensitivity and the propensity to freeze at low temperatures restrict their use, particularly in frigid conditions. Herein, a multifunctional eutectogel with high transparency, anti-freezing, anti-swelling, adhesive, and self-healing properties is prepared by a one-step photopolymerization of acrylic acid and lauryl methacrylate in a binary solvent comprising water and deep eutectic solvent (DES). The results from the molecular dynamics simulations and density functional theory indicate that the hydrogen bonds between DES and water mixtures possess better stability than those between water molecules. On the other hand, DES breaks down hydrogen bonds in water, providing eutectogels with excellent anti-freezing even at -60 °C. Cetyltrimethylammonium bromide is incorporated to establish stable hydrophobic interactions and electrostatic attractions with polymer chains in the eutectogel network, resulting in superior mechanical (elongation at break of 2890%) and anti-swelling (only 2% swelling in water over 7 days) properties. The eutectogel-based strain sensors exhibit remarkable sensitivity, achieving a gauge factor of up to 15.4. The multifunctional eutectogel sensors can monitor motion and transmit encrypted information at low temperatures, demonstrating considerable potential for applications in flexible electronics within low-temperature environments.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvothermally optimizing Ag2Te/Ag2S composites with high thermoelectric performance and plasticity. 溶解热优化具有高热电性能和可塑性的 Ag2Te/Ag2S 复合材料。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1039/d4mh01654h
Min Zhu, Xiao-Lei Shi, Meng Li, Hao Wu, De-Zhuang Wang, Liang-Cao Yin, Ting Wu, Wei-Di Liu, Yan Huang, Zhi-Gang Chen, Qingfeng Liu

Silver-based fast ionic conductors show promising potential in thermoelectric applications. Among these, Ag2S offers unique high plasticity but low electrical conductivity, whereas Ag2Te exhibits high intrinsic electrical conductivity yet faces limitations due to high thermal conductivity and poor plasticity. Developing a composite thermoelectric material that combines the benefits of both is therefore essential. Here, this study reports the successful synthesis of Ag2Te/Ag2S composites via a facile and low-cost solvothermal method. By finely adjusting the composition of Ag2S and Ag2Te to obtain the optimized carrier concentration and the enhanced mobility, the figure of merit ZT of Ag2Te/Ag2S composites reached ∼0.42 at 373 K and ∼0.38 at 298 K, both surpassing those of pure Ag2S and Ag2Te. This increase in ZT also benefits from lattice defects created by the solvothermally synthesized biphasic composition, effectively scattering phonons of various wavelengths and reducing thermal conductivity compared to pure Ag2Te. Additionally, the plasticity of the Ag2Te/Ag2S composites improved considerably over pure Ag2Te, achieving a bending strain of ∼2.5% (versus ∼1.2% for intrinsic Ag2Te). This study can fill a critical gap in the research on composite silver-based fast ionic conductors synthesized via wet chemical methods and provide valuable guidance for future exploration.

银基快速离子导体在热电领域具有广阔的应用前景。其中,Ag2S具有独特的高塑性,但电导率低,而Ag2Te具有高的固有电导率,但由于热导率高,塑性差而面临局限性。因此,开发一种结合两者优点的复合热电材料至关重要。在这里,本研究报告了通过简单和低成本的溶剂热方法成功合成Ag2Te/Ag2S复合材料。通过精细调整Ag2S和Ag2Te的组成来获得优化的载流子浓度和增强的迁移率,Ag2Te/Ag2S复合材料的优点ZT在373 K和298 K时分别达到了~ 0.42和~ 0.38,均超过了纯Ag2S和Ag2Te。这种ZT的增加也得益于溶剂热合成的双相成分产生的晶格缺陷,与纯Ag2Te相比,有效地散射各种波长的声子并降低热导率。此外,与纯Ag2Te相比,Ag2Te/Ag2S复合材料的塑性得到了显著改善,弯曲应变达到了~ 2.5%(而本质Ag2Te为~ 1.2%)。该研究填补了湿化学方法合成银基复合快速离子导体研究的关键空白,为今后的探索提供了有价值的指导。
{"title":"Solvothermally optimizing Ag<sub>2</sub>Te/Ag<sub>2</sub>S composites with high thermoelectric performance and plasticity.","authors":"Min Zhu, Xiao-Lei Shi, Meng Li, Hao Wu, De-Zhuang Wang, Liang-Cao Yin, Ting Wu, Wei-Di Liu, Yan Huang, Zhi-Gang Chen, Qingfeng Liu","doi":"10.1039/d4mh01654h","DOIUrl":"https://doi.org/10.1039/d4mh01654h","url":null,"abstract":"<p><p>Silver-based fast ionic conductors show promising potential in thermoelectric applications. Among these, Ag<sub>2</sub>S offers unique high plasticity but low electrical conductivity, whereas Ag<sub>2</sub>Te exhibits high intrinsic electrical conductivity yet faces limitations due to high thermal conductivity and poor plasticity. Developing a composite thermoelectric material that combines the benefits of both is therefore essential. Here, this study reports the successful synthesis of Ag<sub>2</sub>Te/Ag<sub>2</sub>S composites <i>via</i> a facile and low-cost solvothermal method. By finely adjusting the composition of Ag<sub>2</sub>S and Ag<sub>2</sub>Te to obtain the optimized carrier concentration and the enhanced mobility, the figure of merit <i>ZT</i> of Ag<sub>2</sub>Te/Ag<sub>2</sub>S composites reached ∼0.42 at 373 K and ∼0.38 at 298 K, both surpassing those of pure Ag<sub>2</sub>S and Ag<sub>2</sub>Te. This increase in <i>ZT</i> also benefits from lattice defects created by the solvothermally synthesized biphasic composition, effectively scattering phonons of various wavelengths and reducing thermal conductivity compared to pure Ag<sub>2</sub>Te. Additionally, the plasticity of the Ag<sub>2</sub>Te/Ag<sub>2</sub>S composites improved considerably over pure Ag<sub>2</sub>Te, achieving a bending strain of ∼2.5% (<i>versus</i> ∼1.2% for intrinsic Ag<sub>2</sub>Te). This study can fill a critical gap in the research on composite silver-based fast ionic conductors synthesized <i>via</i> wet chemical methods and provide valuable guidance for future exploration.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetylene semi-hydrogenation catalyzed by Pd single atoms sandwiched in zeolitic imidazolate frameworks via hydrogen activation and spillover. 夹在沸石咪唑啉框架中的钯单原子通过氢活化和溢出催化乙炔半氢化。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1039/d4mh01787k
Yan-Ting Li, Wen-Gang Cui, Ying-Fei Huo, Lei Zhou, Xinqiang Wang, Fan Gao, Qiang Zhang, Wei Li, Tong-Liang Hu

The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared via impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8). Semi-hydrogenation of acetylene was performed and Z@Pd@Z achieved 100% acetylene conversion at 120 °C with an ethylene selectivity of more than 98.3% at an extra low Pd concentration. Z@Pd@Z exhibited a specific activity of 1872.69 mLC2H4 mgPd-1 h-1, surpassing most of the reported Pd-based catalysts. The existence of Pd single atoms coordinated by nitrogen (Pd-N4) was verified by XAS (synchrotron X-ray absorption spectroscopy), which provided active sites for H2 dissociation and the dissociated hydrogen quickly spilled over the surface of the outer ZIF layer to hydrogenate alkyne to ethene; besides, the catalytic activity could be controlled by adjusting the thickness of the outer ZIF layer. The confinement of the ZIF on Pd single-atom sites and the high energy barrier of ethylene hydrogenation were found to be responsible for the superior C2H2 semi-hydrogenation activity. This work opens up valuable insights into the design of ZIF-derived single-atom catalysts for efficient acetylene selective hydrogenation.

在化学工业中,将炔烃半氢化成烯烃而不是烷烃具有重要意义,目前采用的是钯基金属催化剂。遗憾的是,相当高的成本和不可控的过氢化阻碍了钯基催化剂的大规模应用。本文通过浸渍交换和外延生长方法制备了一种三明治结构的单原子钯催化剂 Z@Pd@Z(Z 代表 ZIF-8),其中钯单原子被吡咯烷 N 稳定在沸石咪唑酸框架(ZIF-8)中。Z@Pd@Z 在 120 °C 时实现了 100% 的乙炔转化,在超低钯浓度下乙烯选择性超过 98.3%。Z@Pd@Z 的比活度为 1872.69 mLC2H4 mgPd-1 h-1,超过了大多数已报道的钯基催化剂。XAS(同步辐射 X 射线吸收光谱)验证了氮配位钯单原子(Pd-N4)的存在,这为 H2 离解提供了活性位点,离解的氢迅速溢出 ZIF 外层表面,将炔烃氢化为乙烯;此外,催化活性可通过调节 ZIF 外层的厚度来控制。研究发现,ZIF 对钯单原子位点的限制和乙烯氢化的高能垒是 C2H2 半氢化活性优异的原因。这项研究为设计 ZIF 衍生单原子催化剂以实现高效乙炔选择性氢化提供了宝贵的见解。
{"title":"Acetylene semi-hydrogenation catalyzed by Pd single atoms sandwiched in zeolitic imidazolate frameworks <i>via</i> hydrogen activation and spillover.","authors":"Yan-Ting Li, Wen-Gang Cui, Ying-Fei Huo, Lei Zhou, Xinqiang Wang, Fan Gao, Qiang Zhang, Wei Li, Tong-Liang Hu","doi":"10.1039/d4mh01787k","DOIUrl":"https://doi.org/10.1039/d4mh01787k","url":null,"abstract":"<p><p>The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared <i>via</i> impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8). Semi-hydrogenation of acetylene was performed and Z@Pd@Z achieved 100% acetylene conversion at 120 °C with an ethylene selectivity of more than 98.3% at an extra low Pd concentration. Z@Pd@Z exhibited a specific activity of 1872.69 mL<sub>C<sub>2</sub>H<sub>4</sub></sub> mg<sub>Pd</sub><sup>-1</sup> h<sup>-1</sup>, surpassing most of the reported Pd-based catalysts. The existence of Pd single atoms coordinated by nitrogen (Pd-N<sub>4</sub>) was verified by XAS (synchrotron X-ray absorption spectroscopy), which provided active sites for H<sub>2</sub> dissociation and the dissociated hydrogen quickly spilled over the surface of the outer ZIF layer to hydrogenate alkyne to ethene; besides, the catalytic activity could be controlled by adjusting the thickness of the outer ZIF layer. The confinement of the ZIF on Pd single-atom sites and the high energy barrier of ethylene hydrogenation were found to be responsible for the superior C<sub>2</sub>H<sub>2</sub> semi-hydrogenation activity. This work opens up valuable insights into the design of ZIF-derived single-atom catalysts for efficient acetylene selective hydrogenation.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lanthanide-polyoxometalate-based self-erasing luminescent hydrogels with time-dependent and resilient properties for advanced information encryption. 基于镧系多金属氧酸盐的自擦发光水凝胶,具有时间依赖性和弹性特性,用于高级信息加密。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1039/d4mh01451k
Yumei Hua, Jingfang Li, Min Gao, Liye Liang, Sicong Zhao, Guangming Li

In such an era of information explosion, improving the level of information security is still a challenging task. Self-erasing luminescent hydrogels are becoming ideal candidates for improving the level of information security with simple encryption and decryption methods. Herein, a lanthanide-polyoxometalate-based self-erasing luminescent hydrogel with time-dependent and resilient properties was constructed through a covalent crosslinked network constructed with polyacrylamide and a non-covalent crosslinked network constructed with [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride/Na9DyW10O36, along with doping urease. This acquired hydrogel exhibited reversible luminescence switching properties in the presence of HCl-urea mixed solution. At the same time, obvious changes in the luminescence intensity can be seen on the timescale by modulating the concentrations of HCl and urea/urease. Based on this, the information loaded onto the hydrogel by using a HCl-urea mixed solution self-erased over time, leading to misinformation during this process. The real information can only be recognized at a specific time. Moreover, the information is self-erased permanently, which can avoid secondary leakage of information. In addition, the hydrogel has excellent resilience. The information can be loaded in the stretched state of the hydrogel, resulting in the information only being recognized in the re-stretched state of the hydrogel while the information cannot be recognized in the normal state of the hydrogel. The combination of time-dependent and resilient properties of the hydrogel can further improve the level of information security effectively. This self-erasing luminescent hydrogel with time-dependent and resilient properties has great potential in improving the security of information encryption.

在这样一个信息爆炸的时代,提高信息安全水平仍然是一项具有挑战性的任务。自擦发光水凝胶正成为通过简单的加密和解密方法提高信息安全水平的理想候选者。本文通过聚丙烯酰胺共价交联网络和[2-(甲基丙烯氧基)乙基]三甲基氯化铵/Na9DyW10O36非共价交联网络,以及掺杂脲酶,构建了一种具有时间依赖性和弹性的镧系多金属氧酸盐基自擦发光凝胶。该水凝胶在盐酸-尿素混合溶液中表现出可逆的发光开关特性。同时,通过调节HCl和尿素/脲酶的浓度,在时间尺度上可以观察到明显的发光强度变化。在此基础上,通过使用盐酸-尿素混合溶液加载到水凝胶上的信息会随着时间的推移而自我擦除,从而在此过程中导致错误信息。真实的信息只有在特定的时间才能被识别。此外,该信息是永久自擦的,可以避免信息的二次泄露。此外,水凝胶具有优异的回弹性。所述信息可以在水凝胶的拉伸状态下加载,导致所述信息仅在水凝胶的再拉伸状态下被识别,而在水凝胶的正常状态下不能被识别。水凝胶的时变特性和弹性特性相结合,可以进一步有效地提高信息安全水平。这种具有时间依赖性和弹性的自擦发光水凝胶在提高信息加密安全性方面具有很大的潜力。
{"title":"Lanthanide-polyoxometalate-based self-erasing luminescent hydrogels with time-dependent and resilient properties for advanced information encryption.","authors":"Yumei Hua, Jingfang Li, Min Gao, Liye Liang, Sicong Zhao, Guangming Li","doi":"10.1039/d4mh01451k","DOIUrl":"https://doi.org/10.1039/d4mh01451k","url":null,"abstract":"<p><p>In such an era of information explosion, improving the level of information security is still a challenging task. Self-erasing luminescent hydrogels are becoming ideal candidates for improving the level of information security with simple encryption and decryption methods. Herein, a lanthanide-polyoxometalate-based self-erasing luminescent hydrogel with time-dependent and resilient properties was constructed through a covalent crosslinked network constructed with polyacrylamide and a non-covalent crosslinked network constructed with [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride/Na<sub>9</sub>DyW<sub>10</sub>O<sub>36</sub>, along with doping urease. This acquired hydrogel exhibited reversible luminescence switching properties in the presence of HCl-urea mixed solution. At the same time, obvious changes in the luminescence intensity can be seen on the timescale by modulating the concentrations of HCl and urea/urease. Based on this, the information loaded onto the hydrogel by using a HCl-urea mixed solution self-erased over time, leading to misinformation during this process. The real information can only be recognized at a specific time. Moreover, the information is self-erased permanently, which can avoid secondary leakage of information. In addition, the hydrogel has excellent resilience. The information can be loaded in the stretched state of the hydrogel, resulting in the information only being recognized in the re-stretched state of the hydrogel while the information cannot be recognized in the normal state of the hydrogel. The combination of time-dependent and resilient properties of the hydrogel can further improve the level of information security effectively. This self-erasing luminescent hydrogel with time-dependent and resilient properties has great potential in improving the security of information encryption.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness. 具有低开启电压和高亮度的高偏振单晶有机发光器件。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1039/d4mh01376j
Aijia Pang, Fan Yin, Jianbo De, Cunbin An, Bo Liao, Chunling Gu, Qing Liao, Hongbing Fu

Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared. These devices exhibit a degree of polarization (DOP) of up to 0.96 for photoluminescence and 0.95 for electroluminescence, values that are close to the ideal linearly-polarized light (DOP = 1). The LP-OLEDs demonstrate outstanding performance, with a low turn-on voltage of just 2.5 volts, an exceptionally high brightness of 200 000 cd m-2, and a current density surpassing 300 A cm-2. This is the best overall performance reported for single crystal-based OLEDs to date. These results open the door to the development of next-generation, low-power consumption displays, marking a significant step forward in the field of organic single crystal-based LP-OLEDs.

线性偏振有机电致发光器件因其在各个领域的潜在应用而备受关注。然而,传统的薄膜有机发光二极管(OLED)面临着巨大的挑战,这主要是由于必须结合复杂的光学元件。在本研究中,我们介绍了基于有机单晶体设计和制备的线性偏振有机发光二极管(LP-OLED)。这些器件的光致发光极化度(DOP)高达 0.96,电致发光极化度(DOP)高达 0.95,接近理想的线性极化光(DOP = 1)。LP-OLED 性能卓越,开启电压低至 2.5 伏,亮度高达 200 000 cd m-2,电流密度超过 300 A cm-2。这是迄今所报道的单晶有机发光二极管的最佳整体性能。这些成果为开发下一代低功耗显示器打开了大门,标志着有机单晶基 LP-OLED 领域向前迈出了重要一步。
{"title":"Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness.","authors":"Aijia Pang, Fan Yin, Jianbo De, Cunbin An, Bo Liao, Chunling Gu, Qing Liao, Hongbing Fu","doi":"10.1039/d4mh01376j","DOIUrl":"https://doi.org/10.1039/d4mh01376j","url":null,"abstract":"<p><p>Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared. These devices exhibit a degree of polarization (DOP) of up to 0.96 for photoluminescence and 0.95 for electroluminescence, values that are close to the ideal linearly-polarized light (DOP = 1). The LP-OLEDs demonstrate outstanding performance, with a low turn-on voltage of just 2.5 volts, an exceptionally high brightness of 200 000 cd m<sup>-2</sup>, and a current density surpassing 300 A cm<sup>-2</sup>. This is the best overall performance reported for single crystal-based OLEDs to date. These results open the door to the development of next-generation, low-power consumption displays, marking a significant step forward in the field of organic single crystal-based LP-OLEDs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous polymers: structure, fabrication and application. 多孔聚合物:结构、制造和应用。
IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1039/d4mh01618a
Qingxian Liu, Jinkui Xiong, Wengui Lin, Jinlong Liu, Yongbiao Wan, Chuan Fei Guo, Quan Wang, Zhiguang Liu

The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials. In this review, the structural features, processing techniques and application fields of the porous polymer are discussed comprehensively to present their current status and provide a valuable tutorial guide and help for researchers. Firstly, the basic classification and structural features of porous polymers are elaborated upon to provide a comprehensive analysis from a mesoscopic to macroscopic perspective. Secondly, several established techniques for fabricating porous polymers are introduced, including their respective basic principles, characteristics of the resulting pores, and applied scopes. Thirdly, we demonstrate application research of porous polymers in various emerging frontier fields from multiple perspectives, including pressure sensing, thermal control, electromagnetic shielding, acoustic reduction, air purification, water treatment, health management, and so on. Finally, the review explores future directions for porous polymers and evaluates their future challenges and opportunities.

多孔聚合物是多孔材料大家族中一个常见而迷人的类别。它结合了多孔结构和聚合物的固有特性,具有原料充足、易于加工、孔结构可控、表面功能可调等宝贵特点。这些特点使其成为设计功能材料和先进材料的有效选择。本综述全面论述了多孔聚合物的结构特征、加工技术和应用领域,介绍了其发展现状,为研究人员提供有价值的指导和帮助。首先,阐述了多孔聚合物的基本分类和结构特征,从中观到宏观进行了全面分析。其次,介绍了几种制造多孔聚合物的成熟技术,包括其各自的基本原理、所得孔隙的特征和应用范围。第三,从压力传感、热控制、电磁屏蔽、隔音降噪、空气净化、水处理、健康管理等多个角度展示了多孔聚合物在各个新兴前沿领域的应用研究。最后,综述探讨了多孔聚合物的未来发展方向,并评估了其未来面临的挑战和机遇。
{"title":"Porous polymers: structure, fabrication and application.","authors":"Qingxian Liu, Jinkui Xiong, Wengui Lin, Jinlong Liu, Yongbiao Wan, Chuan Fei Guo, Quan Wang, Zhiguang Liu","doi":"10.1039/d4mh01618a","DOIUrl":"https://doi.org/10.1039/d4mh01618a","url":null,"abstract":"<p><p>The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials. In this review, the structural features, processing techniques and application fields of the porous polymer are discussed comprehensively to present their current status and provide a valuable tutorial guide and help for researchers. Firstly, the basic classification and structural features of porous polymers are elaborated upon to provide a comprehensive analysis from a mesoscopic to macroscopic perspective. Secondly, several established techniques for fabricating porous polymers are introduced, including their respective basic principles, characteristics of the resulting pores, and applied scopes. Thirdly, we demonstrate application research of porous polymers in various emerging frontier fields from multiple perspectives, including pressure sensing, thermal control, electromagnetic shielding, acoustic reduction, air purification, water treatment, health management, and so on. Finally, the review explores future directions for porous polymers and evaluates their future challenges and opportunities.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Horizons
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1