Pub Date : 2004-11-04DOI: 10.1016/j.bbabio.2004.07.009
Francesca Di Pancrazio, Irene Mavelli, Miriam Isola, Gianni Losano, Pasquale Pagliaro, David A Harris, Giovanna Lippe
A method has been developed to allow the level of F(0)F(1)ATP synthase capacity and the quantity of IF(1) bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF(1) content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF(1) antibodies. Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF(1) content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF(1). In addition, both in vivo and in vitro, 1.3-1.4 mol of IF(1) was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF(1) in the F(0) sector.
{"title":"In vitro and in vivo studies of F(0)F(1)ATP synthase regulation by inhibitor protein IF(1) in goat heart.","authors":"Francesca Di Pancrazio, Irene Mavelli, Miriam Isola, Gianni Losano, Pasquale Pagliaro, David A Harris, Giovanna Lippe","doi":"10.1016/j.bbabio.2004.07.009","DOIUrl":"10.1016/j.bbabio.2004.07.009","url":null,"abstract":"<p><p>A method has been developed to allow the level of F(0)F(1)ATP synthase capacity and the quantity of IF(1) bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF(1) content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF(1) antibodies. Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF(1) content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF(1). In addition, both in vivo and in vitro, 1.3-1.4 mol of IF(1) was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF(1) in the F(0) sector.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"52-62"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.07.009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-04DOI: 10.1016/j.bbabio.2004.08.008
Jürgen M W Meyer Zu Tittingdorf, Sascha Rexroth, Eva Schäfer, Ralf Schlichting, Christoph Giersch, Norbert A Dencher, Holger Seelert
The chloroplast H(+)-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO(2) concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H(+)-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants.
{"title":"The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state.","authors":"Jürgen M W Meyer Zu Tittingdorf, Sascha Rexroth, Eva Schäfer, Ralf Schlichting, Christoph Giersch, Norbert A Dencher, Holger Seelert","doi":"10.1016/j.bbabio.2004.08.008","DOIUrl":"https://doi.org/10.1016/j.bbabio.2004.08.008","url":null,"abstract":"<p><p>The chloroplast H(+)-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO(2) concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H(+)-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"92-9"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.08.008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-04DOI: 10.1016/j.bbabio.2004.07.010
Magnus Althage, Tania Bizouarn, Bert Kindlund, Jonathan Mullins, Johan Alander, Jan Rydström
Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha and a beta subunit of 54 and 49 kDa, respectively, and is made up of three domains. Domain I (dI) and III (dIII) are hydrophilic and contain the NAD(H)- and NADP(H)-binding sites, respectively, whereas the hydrophobic domain II (dII) contains 13 transmembrane alpha-helices and harbours the proton channel. Using a cysteine-free transhydrogenase, the organization of dII and helix-helix distances were investigated by the introduction of one or two cysteines in helix-helix loops on the periplasmic side. Mutants were subsequently cross-linked in the absence and presence of diamide and the bifunctional maleimide cross-linker o-PDM (6 A), and visualized by SDS-PAGE. In the alpha(2)beta(2) tetramer, alphabeta cross-links were obtained with the alphaG476C-betaS2C, alphaG476C-betaT54C and alphaG476C-betaS183C double mutants. Significant alphaalpha cross-links were obtained with the alphaG476C single mutant in the loop connecting helix 3 and 4, whereas betabeta cross-links were obtained with the betaS2C, betaT54C and betaS183C single mutants in the beginning of helix 6, the loop between helix 7 and 8 and the loop connecting helix 11 and 12, respectively. In a model based on 13 mutants, the interface between the alpha and beta subunits in the dimer is lined along an axis formed by helices 3 and 4 from the alpha subunit and helices 6, 7 and 8 from the beta subunit. In addition, helices 2 and 4 in the alpha subunit together with helices 6 and 12 in the beta subunit interact with their counterparts in the alpha(2)beta(2) tetramer. Each beta subunit in the alpha(2)beta(2) tetramer was concluded to contain a proton channel composed of the highly conserved helices 9, 10, 13 and 14.
{"title":"Cross-linking of transmembrane helices in proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli: implications for the structure and function of the membrane domain.","authors":"Magnus Althage, Tania Bizouarn, Bert Kindlund, Jonathan Mullins, Johan Alander, Jan Rydström","doi":"10.1016/j.bbabio.2004.07.010","DOIUrl":"https://doi.org/10.1016/j.bbabio.2004.07.010","url":null,"abstract":"<p><p>Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha and a beta subunit of 54 and 49 kDa, respectively, and is made up of three domains. Domain I (dI) and III (dIII) are hydrophilic and contain the NAD(H)- and NADP(H)-binding sites, respectively, whereas the hydrophobic domain II (dII) contains 13 transmembrane alpha-helices and harbours the proton channel. Using a cysteine-free transhydrogenase, the organization of dII and helix-helix distances were investigated by the introduction of one or two cysteines in helix-helix loops on the periplasmic side. Mutants were subsequently cross-linked in the absence and presence of diamide and the bifunctional maleimide cross-linker o-PDM (6 A), and visualized by SDS-PAGE. In the alpha(2)beta(2) tetramer, alphabeta cross-links were obtained with the alphaG476C-betaS2C, alphaG476C-betaT54C and alphaG476C-betaS183C double mutants. Significant alphaalpha cross-links were obtained with the alphaG476C single mutant in the loop connecting helix 3 and 4, whereas betabeta cross-links were obtained with the betaS2C, betaT54C and betaS183C single mutants in the beginning of helix 6, the loop between helix 7 and 8 and the loop connecting helix 11 and 12, respectively. In a model based on 13 mutants, the interface between the alpha and beta subunits in the dimer is lined along an axis formed by helices 3 and 4 from the alpha subunit and helices 6, 7 and 8 from the beta subunit. In addition, helices 2 and 4 in the alpha subunit together with helices 6 and 12 in the beta subunit interact with their counterparts in the alpha(2)beta(2) tetramer. Each beta subunit in the alpha(2)beta(2) tetramer was concluded to contain a proton channel composed of the highly conserved helices 9, 10, 13 and 14.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"73-82"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.07.010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-04DOI: 10.1016/j.bbabio.2004.08.004
Helmut Kirchhoff, Mark Aurel Schöttler, Julia Maurer, Engelbert Weis
Reduction kinetics of cytochrome f, plastocyanin (PC) and P(700) ('high-potential chain') in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P(700). In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P(700). In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the 'high-potential chain' does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the 'high potential chain'. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.
{"title":"Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain.","authors":"Helmut Kirchhoff, Mark Aurel Schöttler, Julia Maurer, Engelbert Weis","doi":"10.1016/j.bbabio.2004.08.004","DOIUrl":"https://doi.org/10.1016/j.bbabio.2004.08.004","url":null,"abstract":"<p><p>Reduction kinetics of cytochrome f, plastocyanin (PC) and P(700) ('high-potential chain') in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P(700). In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P(700). In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the 'high-potential chain' does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the 'high potential chain'. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"63-72"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.08.004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We studied the effect of deuterium oxide (D(2)O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D(2)O increased the maximum isometric force P(0) by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load V(max) did not change appreciably in D(2)O, so that the force-velocity (P-V) curve was scaled depending on the value of P(0). The Mg-ATPase activity of the fibers during generation of steady isometric force P(0) was reduced by about 50% in D(2)O. Based on the Huxley contraction model, these results can be accounted for in terms of D(2)O-induced changes in the rate constants f(1) and g(1) for making and breaking actin-myosin linkages in the isometric condition, in such a way that f(1)/(f(1)+g(1)) increases by about 20%, while (f(1)+g(1)) remains unchanged. The D(2)O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.
{"title":"Effect of deuterium oxide on contraction characteristics and ATPase activity in glycerinated single rabbit skeletal muscle fibers.","authors":"Takakazu Kobayashi, Yasutake Saeki, Shigeru Chaen, Ibuki Shirakawa, Haruo Sugi","doi":"10.1016/j.bbabio.2004.07.008","DOIUrl":"https://doi.org/10.1016/j.bbabio.2004.07.008","url":null,"abstract":"<p><p>We studied the effect of deuterium oxide (D(2)O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D(2)O increased the maximum isometric force P(0) by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load V(max) did not change appreciably in D(2)O, so that the force-velocity (P-V) curve was scaled depending on the value of P(0). The Mg-ATPase activity of the fibers during generation of steady isometric force P(0) was reduced by about 50% in D(2)O. Based on the Huxley contraction model, these results can be accounted for in terms of D(2)O-induced changes in the rate constants f(1) and g(1) for making and breaking actin-myosin linkages in the isometric condition, in such a way that f(1)/(f(1)+g(1)) increases by about 20%, while (f(1)+g(1)) remains unchanged. The D(2)O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"46-51"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.07.008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-04DOI: 10.1016/j.bbabio.2004.08.001
Jean-Charles Cadoret, Raphaël Demoulière, Johann Lavaud, Hans J van Gorkom, Jean Houmard, Anne-Lise Etienne
The chlorophyll-protein CP43' (isiA gene) induced by stress conditions in cyanobacteria is shown to serve as an antenna for Photosystem II (PSII), in addition to its known role as an antenna for Photosystem I (PSI). At high light intensity, this antenna is converted to an efficient trap for chlorophyll excitations that protects system II from photo-inhibition. In contrast to the 'energy-dependent non-photochemical quenching' (NPQ) in chloroplasts, this photoprotective energy dissipation in cyanobacteria is triggered by blue light. The induction is proportional to light intensity. Induction and decay of the quenching exhibit the same large temperature-dependence.
{"title":"Dissipation of excess energy triggered by blue light in cyanobacteria with CP43' (isiA).","authors":"Jean-Charles Cadoret, Raphaël Demoulière, Johann Lavaud, Hans J van Gorkom, Jean Houmard, Anne-Lise Etienne","doi":"10.1016/j.bbabio.2004.08.001","DOIUrl":"https://doi.org/10.1016/j.bbabio.2004.08.001","url":null,"abstract":"<p><p>The chlorophyll-protein CP43' (isiA gene) induced by stress conditions in cyanobacteria is shown to serve as an antenna for Photosystem II (PSII), in addition to its known role as an antenna for Photosystem I (PSI). At high light intensity, this antenna is converted to an efficient trap for chlorophyll excitations that protects system II from photo-inhibition. In contrast to the 'energy-dependent non-photochemical quenching' (NPQ) in chloroplasts, this photoprotective energy dissipation in cyanobacteria is triggered by blue light. The induction is proportional to light intensity. Induction and decay of the quenching exhibit the same large temperature-dependence.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"100-4"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-04DOI: 10.1016/j.bbabio.2004.03.019
Petr Paucek, Martin Jabůrek
The Na(+)/Ca(2+) antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na(+) or Ca(2+). Na(+)/Ca(2+) exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca(2+) oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the K(m) for Ca(2+). When present on the same side as Ca(2+), K(+) activated exchange by lowering the K(m) for Ca(2+) from 2 to 0.9 microM. The K(m) for Na(+) was 8 mM. In the absence of Ca(2+), the exchanger catalyzed high rates of Na(+)/Li(+) and Na(+)/K(+) exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na(+)/Ca(2+) and Na(+)/K(+) exchange with IC(50) values of 10 and 0.6 microM, respectively. The V(max) for Na(+)/Ca(2+) exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.
{"title":"Kinetics and ion specificity of Na(+)/Ca(2+) exchange mediated by the reconstituted beef heart mitochondrial Na(+)/Ca(2+) antiporter.","authors":"Petr Paucek, Martin Jabůrek","doi":"10.1016/j.bbabio.2004.03.019","DOIUrl":"https://doi.org/10.1016/j.bbabio.2004.03.019","url":null,"abstract":"<p><p>The Na(+)/Ca(2+) antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na(+) or Ca(2+). Na(+)/Ca(2+) exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca(2+) oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the K(m) for Ca(2+). When present on the same side as Ca(2+), K(+) activated exchange by lowering the K(m) for Ca(2+) from 2 to 0.9 microM. The K(m) for Na(+) was 8 mM. In the absence of Ca(2+), the exchanger catalyzed high rates of Na(+)/Li(+) and Na(+)/K(+) exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na(+)/Ca(2+) and Na(+)/K(+) exchange with IC(50) values of 10 and 0.6 microM, respectively. The V(max) for Na(+)/Ca(2+) exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"83-91"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.03.019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-04DOI: 10.1016/j.bbabio.2004.06.003
Jiqing Ye, Andrew R Osborne, Michael Groll, Tom A Rapoport
A large class of ATPases contains a RecA-like structural domain and uses the energy of nucleotide binding and hydrolysis to perform mechanical work, for example, to move polypeptides or nucleic acids. These ATPases include helicases, ABC transporters, clamp loaders, and proteases. The functional units of the ATPases contain different numbers of RecA-like domains, but the nucleotide is always bound at the interface between two adjacent RecA-like folds and the two domains move relative to one another during the ATPase cycle. The structures determined for different RecA-like motor ATPases begin to reveal how they move macromolecules.
{"title":"RecA-like motor ATPases--lessons from structures.","authors":"Jiqing Ye, Andrew R Osborne, Michael Groll, Tom A Rapoport","doi":"10.1016/j.bbabio.2004.06.003","DOIUrl":"https://doi.org/10.1016/j.bbabio.2004.06.003","url":null,"abstract":"<p><p>A large class of ATPases contains a RecA-like structural domain and uses the energy of nucleotide binding and hydrolysis to perform mechanical work, for example, to move polypeptides or nucleic acids. These ATPases include helicases, ABC transporters, clamp loaders, and proteases. The functional units of the ATPases contain different numbers of RecA-like domains, but the nucleotide is always bound at the interface between two adjacent RecA-like folds and the two domains move relative to one another during the ATPase cycle. The structures determined for different RecA-like motor ATPases begin to reveal how they move macromolecules.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1659 1","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2004-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbabio.2004.06.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24784868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-10-14DOI: 10.1016/j.bbadis.2004.06.007
Moon Kyu Kim, Eun Sook Kim, Dong Soo Kim, In-Hong Choi, Taesung Moon, Chang No Yoon, Jeon-Soo Shin
Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by eczema, thrombocytopenia and increased susceptibility of infections, with mutations of the WAS gene being responsible for WAS and X-linked thrombocytopenia. Herein, two novel mutations of WAS at T336C on exon 3, and at 1326-1329, a G deletion on exon 10, resulting in L101P missense mutation and frameshift mutation 444 stop, respectively, are reported. The affected patients with either mutation showed severe suppression of WAS protein (WASP) levels, T cell proliferation, and CFSE-labeled T cells division. Because WASP L101 have not shown direct nuclear Overhauser effect (NOE) contact with the WASP-interacting protein (WIP) in NMR spectroscopy, molecular modeling was performed to evaluate the molecular effect of WASP P101 to WIP peptide. It is presumed that P101 induced a conformational change in the Q99 residue of WASP and made the side chain of Q99 move away from the WIP peptide, resulting in disruption of the hydrogen bond between Q99 WASP and Y475 WIP. A possible model for the molecular pathogenesis of WAS has been proposed by analyzing the interactions of WASP and WIP using a molecular modeling study.
{"title":"Two novel mutations of Wiskott-Aldrich syndrome: the molecular prediction of interaction between the mutated WASP L101P with WASP-interacting protein by molecular modeling.","authors":"Moon Kyu Kim, Eun Sook Kim, Dong Soo Kim, In-Hong Choi, Taesung Moon, Chang No Yoon, Jeon-Soo Shin","doi":"10.1016/j.bbadis.2004.06.007","DOIUrl":"https://doi.org/10.1016/j.bbadis.2004.06.007","url":null,"abstract":"<p><p>Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by eczema, thrombocytopenia and increased susceptibility of infections, with mutations of the WAS gene being responsible for WAS and X-linked thrombocytopenia. Herein, two novel mutations of WAS at T336C on exon 3, and at 1326-1329, a G deletion on exon 10, resulting in L101P missense mutation and frameshift mutation 444 stop, respectively, are reported. The affected patients with either mutation showed severe suppression of WAS protein (WASP) levels, T cell proliferation, and CFSE-labeled T cells division. Because WASP L101 have not shown direct nuclear Overhauser effect (NOE) contact with the WASP-interacting protein (WIP) in NMR spectroscopy, molecular modeling was performed to evaluate the molecular effect of WASP P101 to WIP peptide. It is presumed that P101 induced a conformational change in the Q99 residue of WASP and made the side chain of Q99 move away from the WIP peptide, resulting in disruption of the hydrogen bond between Q99 WASP and Y475 WIP. A possible model for the molecular pathogenesis of WAS has been proposed by analyzing the interactions of WASP and WIP using a molecular modeling study.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1690 2","pages":"134-40"},"PeriodicalIF":0.0,"publicationDate":"2004-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbadis.2004.06.007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40984988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-10-14DOI: 10.1016/j.bbadis.2004.06.005
Luiz F Stoppiglia, Luiz F Rezende, Fabiano Ferreira, Eliane Filiputti, Everardo M Carneiro, Antonio C Boschero
B cell destruction during the onset of diabetes mellitus is associated with oxidative stress. In this work, we attempted to further trace the fate of H2O2 inside the pancreatic islets and determine whether it is mediated by enzymatic (peroxidase) activity or by chemical reaction with thiols from any protein chain. Our results suggest that the islet cells have a very similar peroxidase activity at the hydrophilic (cytoplasm) and hydrophobic compartments (organelles and nucleus), independent of the catalase content of the samples. This activity is composed of sacrificial thiols and by proteins with Fe3+/Mn3+ ions at non-heme catalytic sites. The capacity of the hydrophobic fraction to scavenge O2- was increased in the presence of high concentrations of NADP* and RS* and was highly dependent on RSH. On the contrary, the hydrophilic fraction exhibited a low RSH-dependent activity where the O2- scavenging is related to metal Cu2+/Fe3+/Mn3+ ions attached to the protein molecules.
{"title":"Characterization of the peroxidase system at low H2O2 concentrations in isolated neonatal rat islets.","authors":"Luiz F Stoppiglia, Luiz F Rezende, Fabiano Ferreira, Eliane Filiputti, Everardo M Carneiro, Antonio C Boschero","doi":"10.1016/j.bbadis.2004.06.005","DOIUrl":"https://doi.org/10.1016/j.bbadis.2004.06.005","url":null,"abstract":"<p><p>B cell destruction during the onset of diabetes mellitus is associated with oxidative stress. In this work, we attempted to further trace the fate of H2O2 inside the pancreatic islets and determine whether it is mediated by enzymatic (peroxidase) activity or by chemical reaction with thiols from any protein chain. Our results suggest that the islet cells have a very similar peroxidase activity at the hydrophilic (cytoplasm) and hydrophobic compartments (organelles and nucleus), independent of the catalase content of the samples. This activity is composed of sacrificial thiols and by proteins with Fe3+/Mn3+ ions at non-heme catalytic sites. The capacity of the hydrophobic fraction to scavenge O2- was increased in the presence of high concentrations of NADP* and RS* and was highly dependent on RSH. On the contrary, the hydrophilic fraction exhibited a low RSH-dependent activity where the O2- scavenging is related to metal Cu2+/Fe3+/Mn3+ ions attached to the protein molecules.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1690 2","pages":"159-68"},"PeriodicalIF":0.0,"publicationDate":"2004-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbadis.2004.06.005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40984991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}