Pub Date : 2024-08-22DOI: 10.1016/j.bbalip.2024.159559
Bo Yu , Chuchu Yuan , Jinna Chen , Zhixiang Zhou , Yile Zhang , Ming Su , Dangheng Wei , Peng Wu
Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal flora, is recognized as an independent risk factor for atherosclerosis and atherosclerotic cardiovascular diseases. However, the underlying mechanism remains poorly understood. Here, we showed that dietary TMAO supplementation accelerates atherosclerosis in ApoE−/− mice. Pyroptosis and the expression of phospholipid-modifying enzyme MBOAT2 were increased in endothelial cells within atherosclerotic lesions. Genetic upregulation of MBOAT2 via adeno-associated virus with endothelium-specific promoter results in increased atherosclerotic lesions in ApoE−/− mice. Mechanistically, the overexpression of MBOAT2 disrupted glycerophospholipid metabolism and induced endothelial cell pyroptosis in an Endoplasmic reticulum stress-dependent manner. These data reveal that TMAO promotes endothelial cell pyroptosis and the progression of atherosclerotic lesions through the upregulation of MBOAT2, indicating that MBOAT2 is a promising therapeutic target for atherosclerosis.
{"title":"TMAO induces pyroptosis of vascular endothelial cells and atherosclerosis in ApoE−/− mice via MBOAT2-mediated endoplasmic reticulum stress","authors":"Bo Yu , Chuchu Yuan , Jinna Chen , Zhixiang Zhou , Yile Zhang , Ming Su , Dangheng Wei , Peng Wu","doi":"10.1016/j.bbalip.2024.159559","DOIUrl":"10.1016/j.bbalip.2024.159559","url":null,"abstract":"<div><p>Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal flora, is recognized as an independent risk factor for atherosclerosis and atherosclerotic cardiovascular diseases. However, the underlying mechanism remains poorly understood. Here, we showed that dietary TMAO supplementation accelerates atherosclerosis in ApoE<sup>−/−</sup> mice. Pyroptosis and the expression of phospholipid-modifying enzyme MBOAT2 were increased in endothelial cells within atherosclerotic lesions. Genetic upregulation of MBOAT2 via adeno-associated virus with endothelium-specific promoter results in increased atherosclerotic lesions in ApoE<sup>−/−</sup> mice. Mechanistically, the overexpression of MBOAT2 disrupted glycerophospholipid metabolism and induced endothelial cell pyroptosis in an Endoplasmic reticulum stress-dependent manner. These data reveal that TMAO promotes endothelial cell pyroptosis and the progression of atherosclerotic lesions through the upregulation of MBOAT2, indicating that MBOAT2 is a promising therapeutic target for atherosclerosis.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159559"},"PeriodicalIF":3.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.bbalip.2024.159557
Elnaz Sheikh , Qianglin Liu , David Burk , William N. Beavers , Xing Fu , Manas Ranjan Gartia
Dysregulated lipid metabolism in obesity leads to adipose tissue expansion, a major contributor to metabolic dysfunction and chronic disease. Lipid metabolism and fatty acid changes play vital roles in the progression of obesity. In this proof-of-concept study, Raman techniques combined with histochemical imaging methods were utilized to analyze the impact of a high-fat diet (HFD) on different types of adipose tissue in mice, using a small sample size (n = 3 per group). After six weeks of high-fat diet (HFD) feeding, our findings showed hypertrophy, elevated collagen levels, and increased macrophage presence in the adipose tissues of the HFD group compared to the low-fat diet (LFD) group. Statistical analysis of Raman spectra revealed significantly lower unsaturated lipid levels and higher lipid to protein content in different fat pads (brown adipose tissue (BAT), subcutaneous white adipose tissue (SWAT), and visceral white adipose tissue (VWAT)) with HFD. Raman images of adipose tissues were analyzed using Empty modeling and DCLS methods to spatially profile unsaturated and saturated lipid species in the tissues. It revealed elevated levels of ω-3, ω-6, cholesterol, and triacylglycerols in BAT adipose tissues of HFD compared to LFD tissues. These findings indicated that while cholesterol, ω-6/ω-3 ratio, and triacylglycerol levels have risen in the SWAT and VWAT adipose tissues of the HFD group, the levels of ω-3 and ω-6 have decreased following the HFD. The study showed that Raman spectroscopy provided invaluable information at the molecular level for investigating lipid species remodeling and spatial mapping of adipose tissues during HFD.
{"title":"Mapping lipid species remodeling in high fat diet-fed mice: Unveiling adipose tissue dysfunction with Raman microspectroscopy","authors":"Elnaz Sheikh , Qianglin Liu , David Burk , William N. Beavers , Xing Fu , Manas Ranjan Gartia","doi":"10.1016/j.bbalip.2024.159557","DOIUrl":"10.1016/j.bbalip.2024.159557","url":null,"abstract":"<div><p>Dysregulated lipid metabolism in obesity leads to adipose tissue expansion, a major contributor to metabolic dysfunction and chronic disease. Lipid metabolism and fatty acid changes play vital roles in the progression of obesity. In this proof-of-concept study, Raman techniques combined with histochemical imaging methods were utilized to analyze the impact of a high-fat diet (HFD) on different types of adipose tissue in mice, using a small sample size (<em>n</em> = 3 per group). After six weeks of high-fat diet (HFD) feeding, our findings showed hypertrophy, elevated collagen levels, and increased macrophage presence in the adipose tissues of the HFD group compared to the low-fat diet (LFD) group. Statistical analysis of Raman spectra revealed significantly lower unsaturated lipid levels and higher lipid to protein content in different fat pads (brown adipose tissue (BAT), subcutaneous white adipose tissue (SWAT), and visceral white adipose tissue (VWAT)) with HFD. Raman images of adipose tissues were analyzed using Empty modeling and DCLS methods to spatially profile unsaturated and saturated lipid species in the tissues. It revealed elevated levels of ω-3, ω-6, cholesterol, and triacylglycerols in BAT adipose tissues of HFD compared to LFD tissues. These findings indicated that while cholesterol, ω-6/ω-3 ratio, and triacylglycerol levels have risen in the SWAT and VWAT adipose tissues of the HFD group, the levels of ω-3 and ω-6 have decreased following the HFD. The study showed that Raman spectroscopy provided invaluable information at the molecular level for investigating lipid species remodeling and spatial mapping of adipose tissues during HFD.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159557"},"PeriodicalIF":3.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.bbalip.2024.159547
Geordan J. Stukey, Gil-Soo Han, George M. Carman
Phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast Saccharomyces cerevisiae with reference to the homologous enzyme from mammalian cells.
磷脂酰(PA)磷酸酶催化 Mg2+ 依赖性的 PA 去磷酸化,生成二酰甘油,为合成储存脂质三酰甘油以及膜磷脂磷脂酰胆碱和磷脂酰乙醇胺提供了直接前体。控制关键磷脂 PA 的酶在脂质代谢和细胞生理的多个方面也发挥着至关重要的作用。PA 磷酸酶是一种外周膜酶,由其催化功能和亚细胞定位所需的多个结构域/区域组成。在本综述中,我们将参照哺乳动物细胞中的同源酶,讨论来自酿酒酵母的 PA 磷酸酶的结构域/区域。
{"title":"Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions","authors":"Geordan J. Stukey, Gil-Soo Han, George M. Carman","doi":"10.1016/j.bbalip.2024.159547","DOIUrl":"10.1016/j.bbalip.2024.159547","url":null,"abstract":"<div><p>Phosphatidate (PA) phosphatase, which catalyzes the Mg<sup>2+</sup>-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast <em>Saccharomyces cerevisiae</em> with reference to the homologous enzyme from mammalian cells.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159547"},"PeriodicalIF":3.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198124000970/pdfft?md5=c0bad1fd3e0858c472094011213bebc1&pid=1-s2.0-S1388198124000970-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.bbalip.2024.159543
Martin Riecan , Veronika Domanska , Cristina Lupu , Maulin Patel , Michaela Vondrackova , Martin Rossmeisl , Alan Saghatelian , Florea Lupu , Ondrej Kuda
Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of sex and Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to testosterone and Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes, and the role of ADTRP is limited to adipose depots. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex-dependent regulation of human FAHFA metabolism.
{"title":"Tissue-specific sex-dependent difference in the metabolism of fatty acid esters of hydroxy fatty acids","authors":"Martin Riecan , Veronika Domanska , Cristina Lupu , Maulin Patel , Michaela Vondrackova , Martin Rossmeisl , Alan Saghatelian , Florea Lupu , Ondrej Kuda","doi":"10.1016/j.bbalip.2024.159543","DOIUrl":"10.1016/j.bbalip.2024.159543","url":null,"abstract":"<div><p>Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of sex and Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to testosterone and <em>Adtrp</em> mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. <em>Adtrp</em> deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes, and the role of ADTRP is limited to adipose depots. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex-dependent regulation of human FAHFA metabolism.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159543"},"PeriodicalIF":3.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198124000933/pdfft?md5=bac19cab735d4893ee0e604d66d75410&pid=1-s2.0-S1388198124000933-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity, a global epidemic linked to around 4 million deaths yearly, arises from lifestyle imbalances impacting inflammation-related conditions like non-alcoholic fatty liver disease and gut dysbiosis. But the long-term effects of inflammation caused by lifestyle-related dietary changes remain unexplained. In this study, we used young male C57Bl/6 mice which were fed either an obesogenic diet (OBD) or a control diet (CON) for six months. Later, a group of mice from the OBD group were intervened to the CON diet (OBD-R) for four months, while another OBD group remained on the OBD diet. The OBD induced distinct changes in gut microbial, notably elevating Firmicutes and Actinobacteria, while reducing Bacteroidetes and Tenericutes. OBD-R restored microbial abundance like CON. Analyzing liver, plasma, and fecal samples revealed OBD-induced alterations in various structural and bioactive lipids, which were normalized to CON in the OBD-R, showcasing lipid metabolism flexibility and adaptability to dietary shifts. OBD increased omega 6 fatty acid, Arachidonic Acid (AA) and decreased omega 3-derived lipid mediators in the OBD mimicking non-alcoholic fatty liver disease thus impacting inflammation-resolution pathways. OBD also induced hepatic inflammation via increasing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and proinflammatory markers CCR2, TNF-α, and IL-1β in liver. Transitioning from OBD to CON mitigated inflammatory gene expression and restored lipid and cholesterol networks. This study underscores the intricate interplay between lifestyle-driven dietary changes, gut microbiota, lipid metabolism, and liver health. Notably, it suggests that shift from an OBD (omega-6 enriched) to CON partially alleviates signs of chronic inflammation during aging. Understanding these microbial, lipidomic, and hepatic inflammatory dynamics reveals potential therapeutic avenues for metabolic disorders induced by diet, emphasizing the pivotal role of diet in sustaining metabolic health.
肥胖症是一种全球性流行病,每年导致约 400 万人死亡,其原因是生活方式失衡影响了与炎症相关的疾病,如非酒精性脂肪肝和肠道菌群失调。但是,与生活方式相关的饮食变化所引起的炎症的长期影响仍未得到解释。在这项研究中,我们用年轻的雄性 C57Bl/6 小鼠喂食致肥饮食(OBD)或对照饮食(CON)六个月。之后,一组 OBD 组小鼠改用 CON 组饮食(OBD-R)四个月,另一组 OBD 组小鼠则继续食用 OBD 组饮食。OBD引起了肠道微生物的明显变化,尤其是增加了固着菌和放线菌,同时减少了类杆菌和韧皮部菌。OBD-R恢复了与CON相同的微生物丰度。对肝脏、血浆和粪便样本的分析表明,OBD 引起了各种结构脂质和生物活性脂质的改变,而在 OBD-R 中,这些改变与 CON 相同,这显示了脂质代谢的灵活性和对饮食变化的适应性。OBD增加了欧米伽6脂肪酸和花生四烯酸(AA),减少了欧米伽3衍生脂质介质,从而影响了炎症解决途径。OBD还通过增加丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)水平以及肝脏中的促炎症标志物CCR2、TNF-α和IL-1β诱导肝脏炎症。从 OBD 过渡到 CON 可减轻炎症基因的表达,并恢复脂质和胆固醇网络。这项研究强调了生活方式驱动的饮食变化、肠道微生物群、脂质代谢和肝脏健康之间错综复杂的相互作用。值得注意的是,它表明从 OBD(富含欧米茄-6)到 CON 的转变部分缓解了衰老过程中的慢性炎症迹象。了解这些微生物、脂质组和肝脏炎症的动态变化,可为饮食引起的代谢紊乱提供潜在的治疗途径,从而强调饮食在维持代谢健康中的关键作用。
{"title":"Targeted and untargeted lipidomics with integration of liver dynamics and microbiome after dietary reversal of obesogenic diet targeting inflammation-resolution signaling in aging mice","authors":"Gunjan Upadhyay , Siddabasave Gowda B. Gowda , Sidharth P. Mishra , Lipsa Rani Nath , Adewale James , Alisha Kulkarni , Yuktee Srikant , Rohitram Upendram , MathanKumar Marimuthu , Shu-Ping Hui , Shalini Jain , Kain Vasundhara , Hariom Yadav , Ganesh V. Halade","doi":"10.1016/j.bbalip.2024.159542","DOIUrl":"10.1016/j.bbalip.2024.159542","url":null,"abstract":"<div><p>Obesity, a global epidemic linked to around 4 million deaths yearly, arises from lifestyle imbalances impacting inflammation-related conditions like non-alcoholic fatty liver disease and gut dysbiosis. But the long-term effects of inflammation caused by lifestyle-related dietary changes remain unexplained. In this study, we used young male C57Bl/6 mice which were fed either an obesogenic diet (OBD) or a control diet (CON) for six months. Later, a group of mice from the OBD group were intervened to the CON diet (OBD-R) for four months, while another OBD group remained on the OBD diet. The OBD induced distinct changes in gut microbial, notably elevating Firmicutes and Actinobacteria, while reducing Bacteroidetes and Tenericutes. OBD-R restored microbial abundance like CON. Analyzing liver, plasma, and fecal samples revealed OBD-induced alterations in various structural and bioactive lipids, which were normalized to CON in the OBD-R, showcasing lipid metabolism flexibility and adaptability to dietary shifts. OBD increased omega 6 fatty acid, Arachidonic Acid (AA) and decreased omega 3-derived lipid mediators in the OBD mimicking non-alcoholic fatty liver disease thus impacting inflammation-resolution pathways. OBD also induced hepatic inflammation via increasing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and proinflammatory markers CCR2, TNF-α, and IL-1β in liver. Transitioning from OBD to CON mitigated inflammatory gene expression and restored lipid and cholesterol networks. This study underscores the intricate interplay between lifestyle-driven dietary changes, gut microbiota, lipid metabolism, and liver health. Notably, it suggests that shift from an OBD (omega-6 enriched) to CON partially alleviates signs of chronic inflammation during aging. Understanding these microbial, lipidomic, and hepatic inflammatory dynamics reveals potential therapeutic avenues for metabolic disorders induced by diet, emphasizing the pivotal role of diet in sustaining metabolic health.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159542"},"PeriodicalIF":3.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.bbalip.2024.159541
Ralph Menzel, Kevin Tobias, Tugce Fidan, Alexandra Rietz, Liliane Ruess
It is becoming increasingly clear that not only unicellular, photoautotrophic eukaryotes, plants, and fungi, but also invertebrates are capable of synthesizing ω3 long-chain polyunsaturated fatty acids (LC-PUFA) de novo. However, the distribution of this anabolic capacity among different invertebrate groups and its implementation at the gene and protein level are often still unknown. This study investigated the PUFA pathways in common soil fauna, i.e. two nematode and two Collembola species. Of these, one species each (Panagrellus redivivus, Folsomia candida) was assumed to produce ω3 LC-PUFA de novo, while the others (Acrobeloides bodenheimeri, Isotoma caerulea) were supposed to be unable to do so. A highly labeled oleic acid (99 % 13C) was supplemented and the isotopic signal was used to trace its metabolic path. All species followed the main pathway of lipid biosynthesis. However, in A. bodenheimeri this terminated at arachidonic acid (ω6 PUFA), whereas the other three species continued the pathway to eicosapentaenoic acid (ω3 PUFA), including I. caerulea. For the nematode P. redivivus the identification and functional characterization of four new fatty acid desaturase (FAD) genes was performed. These genes encode the FAD activities Δ9, Δ6, and Δ5, respectively. Additionally, the Δ12 desaturase was analyzed, yet the observed activity of an ω3 FAD could not be attributed to a coding gene. In the Collembola F. candida, 11 potential first desaturases (Δ9) and 13 front-end desaturases (Δ6 or Δ5 FADs) have been found. Further sequence analysis indicates the presence of omega FADs, specifically Δ12, which are likely derived from Δ9 FADs.
{"title":"Dissection of the synthesis of polyunsaturated fatty acids in nematodes and Collembola of the soil fauna","authors":"Ralph Menzel, Kevin Tobias, Tugce Fidan, Alexandra Rietz, Liliane Ruess","doi":"10.1016/j.bbalip.2024.159541","DOIUrl":"10.1016/j.bbalip.2024.159541","url":null,"abstract":"<div><p>It is becoming increasingly clear that not only unicellular, photoautotrophic eukaryotes, plants, and fungi, but also invertebrates are capable of synthesizing ω3 long-chain polyunsaturated fatty acids (LC-PUFA) <em>de novo</em>. However, the distribution of this anabolic capacity among different invertebrate groups and its implementation at the gene and protein level are often still unknown. This study investigated the PUFA pathways in common soil fauna, <em>i.e.</em> two nematode and two Collembola species. Of these, one species each (<em>Panagrellus redivivus</em>, <em>Folsomia candida</em>) was assumed to produce ω3 LC-PUFA <em>de novo</em>, while the others (<em>Acrobeloides bodenheimeri</em>, <em>Isotoma caerulea</em>) were supposed to be unable to do so. A highly labeled oleic acid (99 % <sup>13</sup>C) was supplemented and the isotopic signal was used to trace its metabolic path. All species followed the main pathway of lipid biosynthesis. However, in <em>A. bodenheimeri</em> this terminated at arachidonic acid (ω6 PUFA), whereas the other three species continued the pathway to eicosapentaenoic acid (ω3 PUFA), including <em>I. caerulea</em>. For the nematode <em>P. redivivus</em> the identification and functional characterization of four new fatty acid desaturase (FAD) genes was performed. These genes encode the FAD activities Δ9, Δ6, and Δ5, respectively. Additionally, the Δ12 desaturase was analyzed, yet the observed activity of an ω3 FAD could not be attributed to a coding gene. In the Collembola <em>F. candida</em>, 11 potential first desaturases (Δ9) and 13 front-end desaturases (Δ6 or Δ5 FADs) have been found. Further sequence analysis indicates the presence of omega FADs, specifically Δ12, which are likely derived from Δ9 FADs.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159541"},"PeriodicalIF":3.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138819812400091X/pdfft?md5=852b2d3d54b5dc7d19b88e2d92a23770&pid=1-s2.0-S138819812400091X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABCA1 plays an essential role in the formation of high-density lipoprotein (HDL), and its mutations cause Tangier disease (TD), a familial HDL deficiency. In addition to the disappearance of HDL, TD patients exhibit cholesterol deposition in peripheral tissues through a mechanism poorly understood, which may contribute to the development of premature atherosclerosis. We and others previously showed that ABCA1 deficiency causes hyperactivation of the SREBP2 pathway in vitro. Here, we show using Abca1 knockout mice that ABCA1 deficiency leads to tissue-specific dysregulation of SREBP2 activity in a nutritional status-dependent manner, which may underlie the pathophysiology of TD.
{"title":"ABCA1 deficiency causes tissue-specific dysregulation of the SREBP2 pathway in mice","authors":"Yoshio Yamauchi , Sumiko Abe-Dohmae , Noriyuki Iwamoto , Ryuichiro Sato , Shinji Yokoyama","doi":"10.1016/j.bbalip.2024.159546","DOIUrl":"10.1016/j.bbalip.2024.159546","url":null,"abstract":"<div><p>ABCA1 plays an essential role in the formation of high-density lipoprotein (HDL), and its mutations cause Tangier disease (TD), a familial HDL deficiency. In addition to the disappearance of HDL, TD patients exhibit cholesterol deposition in peripheral tissues through a mechanism poorly understood, which may contribute to the development of premature atherosclerosis. We and others previously showed that ABCA1 deficiency causes hyperactivation of the SREBP2 pathway in vitro. Here, we show using <em>Abca1</em> knockout mice that ABCA1 deficiency leads to tissue-specific dysregulation of SREBP2 activity in a nutritional status-dependent manner, which may underlie the pathophysiology of TD.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159546"},"PeriodicalIF":3.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198124000969/pdfft?md5=16064d504a2ac0c2f886d60d538609a0&pid=1-s2.0-S1388198124000969-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases.
Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
{"title":"A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse","authors":"Jyoti Gautam , Hobby Aggarwal, Deepika Kumari, Sonu Kumar Gupta, Yashwant Kumar, Madhu Dikshit","doi":"10.1016/j.bbalip.2024.159545","DOIUrl":"10.1016/j.bbalip.2024.159545","url":null,"abstract":"<div><p>The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases.</p><p>Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159545"},"PeriodicalIF":3.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.bbalip.2024.159544
Taylor Carmon, Na'Taja Hill, Venkateswara R. Sripathi, Zachary B. Gossett, Stylianos Fakas
Yarrowia lipolytica is a model oleaginous yeast with a strong capacity for lipid accumulation, yet its lipid metabolic pathways and regulatory mechanisms remain largely unexplored. The PAH1-encoded phosphatidate (PA) phosphatase governs lipid biosynthesis by its enzymatic activity and regulating the transcription of genes involved in phospholipid biosynthesis. In this work, we examined the effect of the loss of Pah1 (i.e., pah1Δ) on cell metabolism in cells growing in low- and high-glucose media. Multi-omics analyses revealed the global effect of the pah1Δ mutation on lipid and central carbon metabolism. Lipidomics analyses showed that the pah1Δ mutation caused a massive decrease in the masses of triacylglycerol (TAG) and diacylglycerol (DAG), and these effects were independent of glucose concentration in the media. Conversely, phospholipid levels declined in low-glucose media but increased in high-glucose media. The loss of Pah1 affected the expression of genes involved in key pathways of glucose metabolism, such as glycolysis, citric acid cycle, oxidative phosphorylation, and the pentose phosphate pathway, and these effects were more pronounced in high-glucose media. In lipid biosynthesis, the genes catalyzing phosphatidylcholine (PC) synthesis from phosphatidylethanolamine (PE) were upregulated within the CDP-DAG pathway. In contrast, PC synthesis through the Kennedy pathway was downregulated. The ethanolamine branch of the Kennedy pathway that synthesizes PE was also upregulated in pah1Δ. Interestingly, we noted a massive increase in the levels of lysophospholipids, consistent with the upregulation of genes involved in lipid turnover. Overall, this work identified novel regulatory roles of Pah1 in lipid biosynthesis and gene expression.
脂溶性亚罗酵母(Yarrowia lipolytica)是一种典型的含油酵母,具有很强的脂质积累能力,但其脂质代谢途径和调控机制在很大程度上仍未得到探索。PAH1编码的磷脂酸(PA)磷酸酶通过其酶活性和调节参与磷脂生物合成的基因转录来控制脂质的生物合成。在这项工作中,我们研究了在低糖和高糖培养基中生长的细胞中缺失 Pah1(即 pah1Δ)对细胞代谢的影响。多组学分析揭示了 pah1Δ 突变对脂质和中心碳代谢的整体影响。脂质组学分析表明,pah1Δ突变导致三酰甘油(TAG)和二酰甘油(DAG)的质量大幅下降,而这些影响与培养基中的葡萄糖浓度无关。相反,磷脂水平在低糖培养基中下降,但在高糖培养基中上升。Pah1 的缺失影响了参与糖代谢关键途径(如糖酵解、柠檬酸循环、氧化磷酸化和磷酸戊糖途径)的基因的表达,这些影响在高糖培养基中更为明显。在脂质生物合成方面,催化磷脂酰胆碱(PC)与磷脂酰乙醇胺(PE)合成的基因在 CDP-DAG 途径中上调。相反,通过肯尼迪途径合成 PC 的基因则出现下调。在 pah1Δ 中,肯尼迪途径中合成 PE 的乙醇胺分支也被上调。有趣的是,我们注意到溶血磷脂的水平大幅上升,这与参与脂质周转的基因上调是一致的。总之,这项研究发现了 Pah1 在脂质生物合成和基因表达中的新的调控作用。
{"title":"The PAH1-encoded phosphatidate phosphatase of Yarrowia lipolytica differentially affects gene expression and lipid biosynthesis","authors":"Taylor Carmon, Na'Taja Hill, Venkateswara R. Sripathi, Zachary B. Gossett, Stylianos Fakas","doi":"10.1016/j.bbalip.2024.159544","DOIUrl":"10.1016/j.bbalip.2024.159544","url":null,"abstract":"<div><p><em>Yarrowia lipolytica</em> is a model oleaginous yeast with a strong capacity for lipid accumulation, yet its lipid metabolic pathways and regulatory mechanisms remain largely unexplored. The <em>PAH1</em>-encoded phosphatidate (PA) phosphatase governs lipid biosynthesis by its enzymatic activity and regulating the transcription of genes involved in phospholipid biosynthesis. In this work, we examined the effect of the loss of Pah1 (i.e., <em>pah1</em>Δ) on cell metabolism in cells growing in low- and high-glucose media. Multi-omics analyses revealed the global effect of the <em>pah1</em>Δ mutation on lipid and central carbon metabolism. Lipidomics analyses showed that the <em>pah1</em>Δ mutation caused a massive decrease in the masses of triacylglycerol (TAG) and diacylglycerol (DAG), and these effects were independent of glucose concentration in the media. Conversely, phospholipid levels declined in low-glucose media but increased in high-glucose media. The loss of Pah1 affected the expression of genes involved in key pathways of glucose metabolism, such as glycolysis, citric acid cycle, oxidative phosphorylation, and the pentose phosphate pathway, and these effects were more pronounced in high-glucose media. In lipid biosynthesis, the genes catalyzing phosphatidylcholine (PC) synthesis from phosphatidylethanolamine (PE) were upregulated within the CDP-DAG pathway. In contrast, PC synthesis through the Kennedy pathway was downregulated. The ethanolamine branch of the Kennedy pathway that synthesizes PE was also upregulated in <em>pah1</em>Δ. Interestingly, we noted a massive increase in the levels of lysophospholipids, consistent with the upregulation of genes involved in lipid turnover. Overall, this work identified novel regulatory roles of Pah1 in lipid biosynthesis and gene expression.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159544"},"PeriodicalIF":3.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.bbalip.2024.159539
Delphine Vergoz , Annick Schaumann , Isabelle Schmitz , Carlos Afonso , Emmanuelle Dé , Corinne Loutelier-Bourhis , Stéphane Alexandre
Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.
{"title":"Lipidome of Acinetobacter baumannii antibiotic persister cells","authors":"Delphine Vergoz , Annick Schaumann , Isabelle Schmitz , Carlos Afonso , Emmanuelle Dé , Corinne Loutelier-Bourhis , Stéphane Alexandre","doi":"10.1016/j.bbalip.2024.159539","DOIUrl":"10.1016/j.bbalip.2024.159539","url":null,"abstract":"<div><p>Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of <em>Acinetobacter baumannii</em> ATCC 19606<sup>T</sup> persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that <em>A. baumannii</em> persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 7","pages":"Article 159539"},"PeriodicalIF":3.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}