Pub Date : 2021-01-01DOI: 10.14233/ajomc.2021.ajomc-p325
T. Patil, S. Amrutkar, Amol S. Jagdale
Benzimidazole containing mercapto group at the 2nd position is attractive nucleus for the modification with wider pharmacological activities. The aim of this study is to design benzofused nitrogen containing heterocyclic derivatives of mercapto benzimidazole using molecular docking. Using an effective procedure, N-substituted mercapto benzimidazole derivatives was synthesized. The antimicrobial activity of all the synthesized compounds was tested against four different organisms viz. E. coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Molecular docking of mercapto benzimidazole derivatives against DNA gyrase subunit B PDB: 5l3j and Staphylococcus aureus tyrosyltRNA synthetase PDB:1jij was performed using docking protocol. The compound binds to the active site of DNA gyrase subunit B (1KZN) in a docking study, indicating that it may have antimicrobial activity. Compounds MB3 and MB5 have good antimicrobial capacity whereas compound MB4 has the high activity against Candida albicans.
{"title":"Design, in silico Analysis, Synthesis and Evaluation of Novel Benzofused Nitrogen Containing\u0000Heterocyclic N-Substituted Mercaptobenzimidazole Derivatives as Potential Antimicrobial Agent","authors":"T. Patil, S. Amrutkar, Amol S. Jagdale","doi":"10.14233/ajomc.2021.ajomc-p325","DOIUrl":"https://doi.org/10.14233/ajomc.2021.ajomc-p325","url":null,"abstract":"Benzimidazole containing mercapto group at the 2nd position is attractive nucleus for the modification with wider pharmacological activities. The aim of this study is to design benzofused nitrogen containing heterocyclic derivatives of mercapto benzimidazole using molecular docking. Using an effective procedure, N-substituted mercapto benzimidazole derivatives was synthesized. The antimicrobial activity of all the synthesized compounds was tested against four different organisms viz. E. coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Molecular docking of mercapto benzimidazole derivatives against DNA gyrase subunit B PDB: 5l3j and Staphylococcus aureus tyrosyltRNA synthetase PDB:1jij was performed using docking protocol. The compound binds to the active site of DNA gyrase subunit B (1KZN) in a docking study, indicating that it may have antimicrobial activity. Compounds MB3 and MB5 have good antimicrobial capacity whereas compound MB4 has the high activity against Candida albicans.","PeriodicalId":8846,"journal":{"name":"Asian Journal of Organic & Medicinal Chemistry","volume":"88 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81176533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}