首页 > 最新文献

Biotechnology Progress最新文献

英文 中文
Just passing through: Deploying aquaporins in microbial cell factories. 只是经过:在微生物细胞工厂中部署水汽蛋白
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-25 DOI: 10.1002/btpr.3497
Liam Richard Jenkins Sánchez, Lobke Maria Sips, Inge Noëlle Adriënne Van Bogaert

As microbial membranes are naturally impermeable to even the smallest biomolecules, transporter proteins are physiologically essential for normal cell functioning. This makes transporters a key target area for engineering enhanced cell factories. As part of the wider cellular transportome, aquaporins (AQPs) are responsible for transporting small polar solutes, encompassing many compounds which are of great interest for industrial biotechnology, including cell feedstocks, numerous commercially relevant polyols and even weak organic acids. In this review, examples of cell factory engineering by targeting AQPs are presented. These AQP modifications aid in redirecting carbon fluxes and boosting bioconversions either by enhanced feedstock uptake, improved intermediate retention, increasing product export into the media or superior cell viability against stressors with applications in both bacterial and yeast production platforms. Additionally, the future potential for AQP deployment and targeting is discussed, showcasing hurdles and considerations of this strategy as well as recent advances and future directions in the field. By leveraging the natural diversity of AQPs and breakthroughs in channel protein engineering, these transporters are poised to be promising tools capable of enhancing a wide variety of biotechnological processes.

由于微生物膜天生无法渗透最小的生物分子,因此转运蛋白在生理上对细胞的正常运作至关重要。这使得转运体成为工程强化细胞工厂的关键目标领域。作为更广泛的细胞转运体的一部分,水蒸发蛋白(AQPs)负责转运小型极性溶质,其中包括许多对工业生物技术具有重大意义的化合物,包括细胞原料、许多具有商业价值的多元醇甚至弱有机酸。本综述介绍了以 AQPs 为目标的细胞工厂工程实例。这些 AQP 改造有助于重新定向碳通量和促进生物转化,具体方法包括增强原料吸收、改善中间体保留、增加产品向培养基的输出或提高细胞对应激源的存活能力,可应用于细菌和酵母生产平台。此外,还讨论了 AQP 部署和靶向的未来潜力,展示了这一战略的障碍和注意事项,以及该领域的最新进展和未来方向。通过利用 AQPs 的天然多样性和通道蛋白工程学的突破,这些转运体有望成为增强各种生物技术过程的有前途的工具。
{"title":"Just passing through: Deploying aquaporins in microbial cell factories.","authors":"Liam Richard Jenkins Sánchez, Lobke Maria Sips, Inge Noëlle Adriënne Van Bogaert","doi":"10.1002/btpr.3497","DOIUrl":"https://doi.org/10.1002/btpr.3497","url":null,"abstract":"<p><p>As microbial membranes are naturally impermeable to even the smallest biomolecules, transporter proteins are physiologically essential for normal cell functioning. This makes transporters a key target area for engineering enhanced cell factories. As part of the wider cellular transportome, aquaporins (AQPs) are responsible for transporting small polar solutes, encompassing many compounds which are of great interest for industrial biotechnology, including cell feedstocks, numerous commercially relevant polyols and even weak organic acids. In this review, examples of cell factory engineering by targeting AQPs are presented. These AQP modifications aid in redirecting carbon fluxes and boosting bioconversions either by enhanced feedstock uptake, improved intermediate retention, increasing product export into the media or superior cell viability against stressors with applications in both bacterial and yeast production platforms. Additionally, the future potential for AQP deployment and targeting is discussed, showcasing hurdles and considerations of this strategy as well as recent advances and future directions in the field. By leveraging the natural diversity of AQPs and breakthroughs in channel protein engineering, these transporters are poised to be promising tools capable of enhancing a wide variety of biotechnological processes.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3497"},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing. 利用新一代测序技术识别传染性病毒,对未经加工的散装 CHO 进行基于风险的病毒检测。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-25 DOI: 10.1002/btpr.3485
Tiffany Hsu, Mary Jo Talley, Ping Yang, Angela Geiselhoeringer, Cindy Yang, Aditya Gorla, M Julhasur Rahman, Lindsey Silva, Dayue Chen, Bin Yang

It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.

提高药物生产速度,使药物更广泛地供应,这一点非常重要。基于 CHO 的药物释放的一个瓶颈是对未加工的散装药物进行体外病毒 (IVV) 细胞检测。为了提高工艺速度,我们评估了用新一代测序技术(NGS)取代体外病毒细胞检测的适宜性。首先,我们概述了 NGS 目前在制药行业的应用,以及如何将其应用于 CHO 病毒检测。其次,我们研究了 CHO 病毒污染的历史。由于以前的病毒污染物可以在生产生物反应器中复制,我们进行了文献检索,并根据其感染 CHO 细胞的能力将 159 种病毒分为高、中、低或未知风险。总体而言,CHO 生产过程中的病毒污染风险较低。据报道,在过去几十年中,只有六种病毒污染了 CHO 生物工艺,主要是由胎牛血清或细胞培养成分引起的。这些病毒污染事件可通过限制和控制原材料,并结合病毒检测和病毒清除技术加以缓解。CHO 感染性病毒清单为病毒安全风险评估和 NGS 开发提供了一个起始框架。此外,ICH Q5A (R2) 将 NGS 作为一种分子方法用于不定制剂检测,为 CHO 病毒检测的现代化铺平了道路。
{"title":"Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing.","authors":"Tiffany Hsu, Mary Jo Talley, Ping Yang, Angela Geiselhoeringer, Cindy Yang, Aditya Gorla, M Julhasur Rahman, Lindsey Silva, Dayue Chen, Bin Yang","doi":"10.1002/btpr.3485","DOIUrl":"https://doi.org/10.1002/btpr.3485","url":null,"abstract":"<p><p>It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3485"},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of two transposases for improving expression of recombinant proteins in Chinese hamster ovary cell stable pools by co-transfection and supertransfection approaches. 评估两种转座酶通过共转染和超转染方法改善重组蛋白在中国仓鼠卵巢细胞稳定池中的表达。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-17 DOI: 10.1002/btpr.3496
Melina Lenser, Hanh Giai Ngo, Lily Sarrafha, Yashas Rajendra

Transposons are genetic elements capable of cutting and pasting genes of interest via the action of a transposase and offer many advantages over random or targeted integration of DNA in the creation of Chinese hamster ovary (CHO) cell lines for recombinant protein expression. Unique transposases have different recognition sites, allowing multiple transposases to be co-transfected together. They also allow for supertransfection (transfection on a previously transfected pool or cell line) with a second transposase to integrate additional copies of the same gene or an additional gene without disruption of the previously integrated DNA which to our knowledge has not been previously described in literature. Two fluorescent proteins, EGFP and tagRFP657, were either co-transfected or supertransfected into CHO cells using two unique transposases and showed high expression efficiency with similar expression levels (measured as mean fluorescence intensity), regardless of whether the genes were co-transfected or supertransfected onto an existing stable pool. Additionally, dual selection of the genes, both in the absence of L-glutamine and the presence of puromycin, led to higher expression levels than single selection alone. These results demonstrate that supertransfection using unique transposases could be a useful strategy for increasing titers of existing cell lines or for overexpressing helper (non-therapeutic) genes to improve expression and/or product quality of existing pools and cell lines, potentially saving significant time and resources.

转座子是一种遗传元件,能够通过转座酶的作用切割和粘贴感兴趣的基因,与随机或定向整合 DNA 相比,它在创建用于重组蛋白质表达的中国仓鼠卵巢(CHO)细胞系方面具有许多优势。独特的转座酶具有不同的识别位点,允许多个转座酶共同转染。它们还允许用第二个转座酶进行超转染(转染到先前转染过的池子或细胞系上),在不破坏先前整合 DNA 的情况下整合同一基因或其他基因的额外拷贝。使用两种独特的转座酶将两种荧光蛋白(EGFP 和 tagRFP657)共转染或超转染到 CHO 细胞中,结果表明,无论基因是共转染还是超转染到现有的稳定池中,它们的表达效率都很高,表达水平(以平均荧光强度衡量)相似。此外,在无 L-谷氨酰胺和有嘌呤霉素的情况下对基因进行双重选择,比单独进行单一选择的表达水平更高。这些结果表明,使用独特的转座酶进行超转染可能是一种有用的策略,可用于提高现有细胞系的滴度或过表达辅助(非治疗)基因,以改善现有池和细胞系的表达和/或产品质量,从而节省大量时间和资源。
{"title":"Evaluation of two transposases for improving expression of recombinant proteins in Chinese hamster ovary cell stable pools by co-transfection and supertransfection approaches.","authors":"Melina Lenser, Hanh Giai Ngo, Lily Sarrafha, Yashas Rajendra","doi":"10.1002/btpr.3496","DOIUrl":"https://doi.org/10.1002/btpr.3496","url":null,"abstract":"<p><p>Transposons are genetic elements capable of cutting and pasting genes of interest via the action of a transposase and offer many advantages over random or targeted integration of DNA in the creation of Chinese hamster ovary (CHO) cell lines for recombinant protein expression. Unique transposases have different recognition sites, allowing multiple transposases to be co-transfected together. They also allow for supertransfection (transfection on a previously transfected pool or cell line) with a second transposase to integrate additional copies of the same gene or an additional gene without disruption of the previously integrated DNA which to our knowledge has not been previously described in literature. Two fluorescent proteins, EGFP and tagRFP657, were either co-transfected or supertransfected into CHO cells using two unique transposases and showed high expression efficiency with similar expression levels (measured as mean fluorescence intensity), regardless of whether the genes were co-transfected or supertransfected onto an existing stable pool. Additionally, dual selection of the genes, both in the absence of L-glutamine and the presence of puromycin, led to higher expression levels than single selection alone. These results demonstrate that supertransfection using unique transposases could be a useful strategy for increasing titers of existing cell lines or for overexpressing helper (non-therapeutic) genes to improve expression and/or product quality of existing pools and cell lines, potentially saving significant time and resources.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3496"},"PeriodicalIF":2.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomics-based method to comprehensively model the removal of host cell protein impurities. 基于蛋白质组学的方法,全面模拟清除宿主细胞蛋白质杂质的过程。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-17 DOI: 10.1002/btpr.3494
Roxana Disela, Daphne Keulen, Eleni Fotou, Tim Neijenhuis, Olivier Le Bussy, Geoffroy Geldhof, Martin Pabst, Marcel Ottens

Mechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively. For a broader coverage of the binding characteristics, large-scale proteomic data and systems level knowledge on protein interactions are key. However, a method for determining binding parameters of the entire host cell proteome to selected chromatography resins is still lacking. In this work, we have developed a method to determine binding parameters of all detected individual host cell proteins in an Escherichia coli harvest sample from large-scale proteomics experiments. The developed method was demonstrated to model abundant and problematic proteins, which are crucial impurities to be removed. For these 15 proteins covering varying concentration ranges, the model predicts the independently measured retention time during the validation gradient well. Finally, we optimized the anion exchange chromatography capture step in silico using the determined isotherm parameters of the persistent host cell protein contaminants. From these results, strategies can be developed to separate abundant and problematic impurities from the target antigen.

机理模型大多侧重于目标蛋白质和一些选定的过程或产品相关杂质。然而,为了更好地理解工艺,最好也能描述再次出现的宿主细胞蛋白质杂质。在生物制药的纯化过程中,宿主细胞蛋白与色谱树脂的结合远未得到全面描述。要想更广泛地了解结合特性,大规模蛋白质组数据和系统级蛋白质相互作用知识是关键。然而,目前仍缺乏一种方法来确定整个宿主细胞蛋白质组与选定色谱树脂的结合参数。在这项工作中,我们开发了一种方法来确定大规模蛋白质组学实验中大肠杆菌收获样本中所有检测到的单个宿主细胞蛋白质的结合参数。实验证明,所开发的方法可以模拟丰富的问题蛋白质,这些蛋白质是需要去除的关键杂质。对于这 15 种不同浓度范围的蛋白质,模型预测了验证梯度井中独立测量的保留时间。最后,我们利用确定的宿主细胞蛋白质污染物等温线参数,对阴离子交换色谱捕获步骤进行了优化。根据这些结果,我们可以制定出从目标抗原中分离大量杂质和问题杂质的策略。
{"title":"Proteomics-based method to comprehensively model the removal of host cell protein impurities.","authors":"Roxana Disela, Daphne Keulen, Eleni Fotou, Tim Neijenhuis, Olivier Le Bussy, Geoffroy Geldhof, Martin Pabst, Marcel Ottens","doi":"10.1002/btpr.3494","DOIUrl":"https://doi.org/10.1002/btpr.3494","url":null,"abstract":"<p><p>Mechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively. For a broader coverage of the binding characteristics, large-scale proteomic data and systems level knowledge on protein interactions are key. However, a method for determining binding parameters of the entire host cell proteome to selected chromatography resins is still lacking. In this work, we have developed a method to determine binding parameters of all detected individual host cell proteins in an Escherichia coli harvest sample from large-scale proteomics experiments. The developed method was demonstrated to model abundant and problematic proteins, which are crucial impurities to be removed. For these 15 proteins covering varying concentration ranges, the model predicts the independently measured retention time during the validation gradient well. Finally, we optimized the anion exchange chromatography capture step in silico using the determined isotherm parameters of the persistent host cell protein contaminants. From these results, strategies can be developed to separate abundant and problematic impurities from the target antigen.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3494"},"PeriodicalIF":2.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison of different intensified upstream processes highlighting the advantage of WuXi Biologics' Ultra-high Productivity platform (WuXiUPTM) in improved product quality and purification yield. 不同强化上游工艺的比较,凸显药明康德超高生产率平台(WuXiUPTM)在提高产品质量和纯化率方面的优势。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-09 DOI: 10.1002/btpr.3487
Xiang Zheng, Mingyue Fang, Yanling Zou, Shuo Wang, Weichang Zhou, Hang Zhou

WuXiUPTM, WuXi Biologics' Ultra-high Productivity platform, is an intensified and integrated continuous bioprocess platform developed for production of various biologics including monoclonal antibodies, fusion proteins, and bispecific antibodies. This process technology platform has manifested its remarkable capability in boosting the volumetric productivity of various biologics and has been implemented for large-scale clinical material productions. In this paper, case studies of the production of different pharmaceutical proteins using two high-producing and intensified culture modes of WuXiUPTM and the concentrated fed-batch (CFB), as well as the traditional fed-batch (TFB) are discussed from the perspectives of cell growth, productivity, and protein quality. Both WuXiUPTM and CFB outperformed TFB regarding volumetric productivity. Additionally, distinctive advantages in product quality profiles in the WuXiUPTM process, such as reduced acidic charge variants and fragmentation, are revealed. Therefore, a simplified downstream purification process with only two chromatographic steps can be developed to deliver the target product at a satisfactory purity and an extremely-high yield.

药明康德超高生产率平台(WuXiUPTM)是针对单克隆抗体、融合蛋白、双特异性抗体等多种生物制剂生产而开发的集约化、一体化连续生物工艺平台。该工艺技术平台在提高各种生物制剂的容积生产率方面表现出卓越的能力,并已用于大规模临床材料生产。本文从细胞生长、生产率和蛋白质质量的角度,讨论了采用药明康德和浓缩喂料批次(CFB)两种高产强化培养模式以及传统喂料批次(TFB)生产不同药物蛋白的案例研究。在体积生产率方面,药明康德和 CFB 均优于 TFB。此外,还发现了药明康德工艺在产品质量方面的独特优势,如减少了酸性电荷变异和碎片。因此,只需开发两个色谱步骤的简化下游纯化工艺,就能以令人满意的纯度和极高的收率提供目标产品。
{"title":"A comparison of different intensified upstream processes highlighting the advantage of WuXi Biologics' Ultra-high Productivity platform (WuXiUP<sup>TM</sup>) in improved product quality and purification yield.","authors":"Xiang Zheng, Mingyue Fang, Yanling Zou, Shuo Wang, Weichang Zhou, Hang Zhou","doi":"10.1002/btpr.3487","DOIUrl":"https://doi.org/10.1002/btpr.3487","url":null,"abstract":"<p><p>WuXiUP<sup>TM</sup>, WuXi Biologics' Ultra-high Productivity platform, is an intensified and integrated continuous bioprocess platform developed for production of various biologics including monoclonal antibodies, fusion proteins, and bispecific antibodies. This process technology platform has manifested its remarkable capability in boosting the volumetric productivity of various biologics and has been implemented for large-scale clinical material productions. In this paper, case studies of the production of different pharmaceutical proteins using two high-producing and intensified culture modes of WuXiUP<sup>TM</sup> and the concentrated fed-batch (CFB), as well as the traditional fed-batch (TFB) are discussed from the perspectives of cell growth, productivity, and protein quality. Both WuXiUP<sup>TM</sup> and CFB outperformed TFB regarding volumetric productivity. Additionally, distinctive advantages in product quality profiles in the WuXiUP<sup>TM</sup> process, such as reduced acidic charge variants and fragmentation, are revealed. Therefore, a simplified downstream purification process with only two chromatographic steps can be developed to deliver the target product at a satisfactory purity and an extremely-high yield.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3487"},"PeriodicalIF":2.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid total sialic acid monitoring during cell culture process using a machine learning model based soft sensor. 利用基于机器学习模型的软传感器在细胞培养过程中快速监测总硅酸。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-02 DOI: 10.1002/btpr.3493
Amir M Behdani, Yuxiang Zhao, Grace Yao, Dhanuka Wasalathanthri, Eric Hodgman, Michael Borys, Gloria Li, Anurag Khetan, Dayanjan Wijesinghe, Anthony Leone

Total sialic acid content (TSA) in biotherapeutic proteins is often a critical quality attribute as it impacts the drug efficacy. Traditional wet chemical assays to quantify TSA in biotherapeutic proteins during cell culture typically takes several hours or longer due to the complexity of the assay which involves isolation of sialic acid from the protein of interest, followed by sample preparation and chromatographic based separation for analysis. Here, we developed a machine learning model-based technology to rapidly predict TSA during cell culture by using typically measured process parameters. The technology features a user interface, where the users only have to upload cell culture process parameters as input variables and TSA values are instantly displayed on a dashboard platform based on the model predictions. In this study, multiple machine learning algorithms were assessed on our dataset, with the Random Forest model being identified as the most promising model. Feature importance analysis from the Random Forest model revealed that attributes like viable cell density (VCD), glutamate, ammonium, phosphate, and basal medium type are critical for predictions. Notably, while the model demonstrated strong predictability by Day 14 of observation, challenges remain in forecasting TSA values at the edges of the calibration range. This research not only emphasizes the transformative power of machine learning and soft sensors in bioprocessing but also introduces a rapid and efficient tool for sialic acid prediction, signaling significant advancements in bioprocessing. Future endeavors may focus on data augmentation to further enhance model precision and exploration of process control capabilities.

生物治疗蛋白质中的总硅酸含量(TSA)通常是影响药物疗效的关键质量属性。传统的湿化学分析方法是在细胞培养过程中量化生物治疗蛋白质中的 TSA,由于该方法非常复杂,需要从相关蛋白质中分离出硅酸,然后进行样品制备和色谱分离分析,因此通常需要几个小时或更长时间。在此,我们开发了一种基于机器学习模型的技术,利用通常测量的过程参数快速预测细胞培养过程中的 TSA。该技术拥有一个用户界面,用户只需上传细胞培养过程参数作为输入变量,TSA 值就会根据模型预测结果即时显示在仪表板平台上。在这项研究中,我们对数据集上的多种机器学习算法进行了评估,发现随机森林模型是最有前途的模型。随机森林模型的特征重要性分析表明,活力细胞密度(VCD)、谷氨酸、铵、磷酸盐和基础培养基类型等属性对预测至关重要。值得注意的是,虽然该模型在第 14 天的观测中表现出很强的可预测性,但在预测校准范围边缘的 TSA 值方面仍然存在挑战。这项研究不仅强调了机器学习和软传感器在生物处理中的变革能力,还为硅酸预测引入了一种快速高效的工具,标志着生物处理领域的重大进步。未来的工作可能会侧重于数据增强,以进一步提高模型精度和探索过程控制能力。
{"title":"Rapid total sialic acid monitoring during cell culture process using a machine learning model based soft sensor.","authors":"Amir M Behdani, Yuxiang Zhao, Grace Yao, Dhanuka Wasalathanthri, Eric Hodgman, Michael Borys, Gloria Li, Anurag Khetan, Dayanjan Wijesinghe, Anthony Leone","doi":"10.1002/btpr.3493","DOIUrl":"https://doi.org/10.1002/btpr.3493","url":null,"abstract":"<p><p>Total sialic acid content (TSA) in biotherapeutic proteins is often a critical quality attribute as it impacts the drug efficacy. Traditional wet chemical assays to quantify TSA in biotherapeutic proteins during cell culture typically takes several hours or longer due to the complexity of the assay which involves isolation of sialic acid from the protein of interest, followed by sample preparation and chromatographic based separation for analysis. Here, we developed a machine learning model-based technology to rapidly predict TSA during cell culture by using typically measured process parameters. The technology features a user interface, where the users only have to upload cell culture process parameters as input variables and TSA values are instantly displayed on a dashboard platform based on the model predictions. In this study, multiple machine learning algorithms were assessed on our dataset, with the Random Forest model being identified as the most promising model. Feature importance analysis from the Random Forest model revealed that attributes like viable cell density (VCD), glutamate, ammonium, phosphate, and basal medium type are critical for predictions. Notably, while the model demonstrated strong predictability by Day 14 of observation, challenges remain in forecasting TSA values at the edges of the calibration range. This research not only emphasizes the transformative power of machine learning and soft sensors in bioprocessing but also introduces a rapid and efficient tool for sialic acid prediction, signaling significant advancements in bioprocessing. Future endeavors may focus on data augmentation to further enhance model precision and exploration of process control capabilities.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3493"},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotechnological potential of yeast cell wall: An overview. 酵母细胞壁的生物技术潜力:综述。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-27 DOI: 10.1002/btpr.3491
Fanny Machado Jofre, Sarah de Souza Queiroz, Diana Alva Sanchez, Priscila Vaz Arruda, Júlio César Dos Santos, Maria das Graças de Almeida Felipe

The yeast cell wall is a complex structure whose main function is to protect the cell from physical and chemical damage, providing it with rigidity. It is composed of a matrix of covalently linked polysaccharides and proteins, including β-glucans, mannoproteins, and chitin, whose proportion can vary according to the yeast species and environmental conditions. The main components of the yeast cell wall have relevant properties that expand the possibilities of use in different industrial sectors, such as pharmaceutical, food, medical, veterinary, and cosmetic. Some applications include bioremediation, enzyme immobilization, animal feed, wine production, and hydrogel production. In the literature it is the description of the cell wall composition of model species like Saccharomyces cerevisiae and Candida albicans, however, it is important to know that this composition can vary according to the species or the culture medium conditions. Thus, understanding the structural composition of different species holds promise as an alternative to expanding the utilization of residual yeast from different bioprocesses. In the context of a circular economy, the conversion of residual yeast into valuable products is an attractive prospect for researchers aiming to develop sustainable technologies. This review provides an overview of yeast cell wall composition and its significance in biotechnological applications, considering prospects to increase the diversification of these compounds in industry.

酵母细胞壁是一种复杂的结构,其主要功能是保护细胞免受物理和化学损伤,并为细胞提供刚性。它由共价连接的多糖和蛋白质组成,包括β-葡聚糖、甘露蛋白和几丁质,其比例会因酵母种类和环境条件而异。酵母细胞壁的主要成分具有相关特性,这些特性扩大了其在制药、食品、医疗、兽医和化妆品等不同工业领域的应用可能性。一些应用包括生物修复、酶固定化、动物饲料、葡萄酒生产和水凝胶生产。文献中描述了葡萄酿酒酵母和白色念珠菌等模式物种的细胞壁组成,但重要的是要知道,这种组成会因物种或培养基条件的不同而变化。因此,了解不同物种的结构组成有望成为扩大利用不同生物工艺中残留酵母的另一种选择。在循环经济的背景下,将残留酵母转化为有价值的产品,对于旨在开发可持续技术的研究人员来说是一个极具吸引力的前景。本综述概述了酵母细胞壁的组成及其在生物技术应用中的重要性,并探讨了提高这些化合物在工业中的多样性的前景。
{"title":"Biotechnological potential of yeast cell wall: An overview.","authors":"Fanny Machado Jofre, Sarah de Souza Queiroz, Diana Alva Sanchez, Priscila Vaz Arruda, Júlio César Dos Santos, Maria das Graças de Almeida Felipe","doi":"10.1002/btpr.3491","DOIUrl":"https://doi.org/10.1002/btpr.3491","url":null,"abstract":"<p><p>The yeast cell wall is a complex structure whose main function is to protect the cell from physical and chemical damage, providing it with rigidity. It is composed of a matrix of covalently linked polysaccharides and proteins, including β-glucans, mannoproteins, and chitin, whose proportion can vary according to the yeast species and environmental conditions. The main components of the yeast cell wall have relevant properties that expand the possibilities of use in different industrial sectors, such as pharmaceutical, food, medical, veterinary, and cosmetic. Some applications include bioremediation, enzyme immobilization, animal feed, wine production, and hydrogel production. In the literature it is the description of the cell wall composition of model species like Saccharomyces cerevisiae and Candida albicans, however, it is important to know that this composition can vary according to the species or the culture medium conditions. Thus, understanding the structural composition of different species holds promise as an alternative to expanding the utilization of residual yeast from different bioprocesses. In the context of a circular economy, the conversion of residual yeast into valuable products is an attractive prospect for researchers aiming to develop sustainable technologies. This review provides an overview of yeast cell wall composition and its significance in biotechnological applications, considering prospects to increase the diversification of these compounds in industry.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3491"},"PeriodicalIF":2.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of cell cultivation for monoclonal antibody production processes considering lactate metabolic shifts. 考虑乳酸代谢转变的单克隆抗体生产过程的细胞培养模型。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-24 DOI: 10.1002/btpr.3486
Kozue Okamura, Sara Badr, Yusuke Ichida, Akira Yamada, Hirokazu Sugiyama

Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.

对单克隆抗体(mAbs)的需求正在迅速增长。为了实现更高的生产率,细胞系、操作模式、培养基和培养条件都有了改进。需要有代表性的数学模型来缩小日益增多的工艺选择范围。以往的研究提出了一些机理模型来描述细胞新陈代谢的转变(如乳酸的产生到消耗)。然而,这些模型尚未完全纳入某些操作条件变化的影响。本文提供了一种新的机理模型,考虑了溶解氧和谷氨酰胺耗竭对细胞代谢的影响,并将其应用于一种新型的中国仓鼠卵巢(CHO)细胞系。为搅拌罐和摇床反应器制定了乳酸盐产生、谷氨酰胺消耗和 mAb 生产的特定速率表达式。在不同的实验条件组合下,对乳酸盐代谢转变有了更深入的了解。在溶解氧较高、谷氨酰胺浓度较低的条件下,乳酸消耗更为明显。该模型提供了有助于设计先进运行策略的机理见解。它可用于设计空间生成和工艺优化,以提高生产率和产品质量。
{"title":"Modeling of cell cultivation for monoclonal antibody production processes considering lactate metabolic shifts.","authors":"Kozue Okamura, Sara Badr, Yusuke Ichida, Akira Yamada, Hirokazu Sugiyama","doi":"10.1002/btpr.3486","DOIUrl":"https://doi.org/10.1002/btpr.3486","url":null,"abstract":"<p><p>Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3486"},"PeriodicalIF":2.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover 封面
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-24 DOI: 10.1002/btpr.3488
Hong Li, Patricia Rose, Patricia Rowicki, Collette Cutler, Jeffrey T. McPhee, Claudia Frey, Linda Lemieux, Gerald Pelette, Joo Kok Ang, Ren Liu, Douglas D. Richardson

The cover image is based on the Research Article Advancing multiproduct resin reuse for development and clinical manufacturing of an antibody-based therapeutic by Hong Li et al., https://doi.org/10.1002/btpr.3434

Cover illustration created by Laura Maaske.

封面图片基于李红等人的研究文章《推进多产品树脂再利用,促进抗体疗法的开发和临床生产》,https://doi.org/10.1002/btpr.3434Cover 插图由 Laura Maaske 绘制。
{"title":"Cover","authors":"Hong Li,&nbsp;Patricia Rose,&nbsp;Patricia Rowicki,&nbsp;Collette Cutler,&nbsp;Jeffrey T. McPhee,&nbsp;Claudia Frey,&nbsp;Linda Lemieux,&nbsp;Gerald Pelette,&nbsp;Joo Kok Ang,&nbsp;Ren Liu,&nbsp;Douglas D. Richardson","doi":"10.1002/btpr.3488","DOIUrl":"https://doi.org/10.1002/btpr.3488","url":null,"abstract":"<p>The cover image is based on the Research Article <i>Advancing multiproduct resin reuse for development and clinical manufacturing of an antibody-based therapeutic</i> by Hong Li et al., https://doi.org/10.1002/btpr.3434</p><p>Cover illustration created by Laura Maaske.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"40 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3488","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary clarification of mammalian cell culture fluid using enhanced sedimentation on inclined surfaces inside the single-use disposable Sudhin BioSettler150. 利用一次性使用的 Sudhin BioSettler150 内倾斜表面上的增强沉降功能,对哺乳动物细胞培养液进行初级澄清。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-19 DOI: 10.1002/btpr.3489
Christopher B Glascock, Dhinakar S Kompala

The first downstream processing step in the purification of a biopharmaceutical protein secreted into mammalian cell culture fluid is the primary clarification of the culture fluid. As cell densities in the fed-batch and increasingly more common perfusion bioreactors have increased over last two decades through intensified upstream bioreactor production processes, the traditional primary clarification unit operations of centrifugation and/or microfiltration become more challenging with issues like frequent desludging, cell disruption due to shear damage and quick fouling of membranes. We have developed a novel compact cell settler device exploiting the enhanced sedimentation on inclined surfaces and demonstrated that this settler device can be adapted easily to remove and contain cells or cell clumps from the clarified supernatant collected via the top effluent of the settler. In this work, we present high product recovery results during primary clarification of mammalian cell culture supernatant using our novel single-use disposable BioSettler150 while processing about 10 L of cell culture broth within short processing times of about 4 h.

纯化分泌到哺乳动物细胞培养液中的生物制药蛋白质的第一个下游处理步骤是对培养液进行初级澄清。在过去二十年里,随着上游生物反应器生产工艺的加强,喂料式生物反应器和越来越常见的灌流式生物反应器中的细胞密度不断增加,离心和/或微过滤等传统的初级澄清装置操作变得更具挑战性,例如频繁清淤、剪切力损伤导致的细胞破坏以及膜的快速堵塞等问题。我们开发了一种新型的紧凑型细胞沉淀器装置,利用倾斜表面上增强的沉淀作用,并证明这种沉淀器装置可以很容易地从通过沉淀器顶部流出的澄清上清液中去除并包含细胞或细胞团块。在这项工作中,我们展示了使用新型一次性 BioSettler150 对哺乳动物细胞培养上清液进行初级澄清时的高产品回收率,同时在短短约 4 小时的处理时间内处理了约 10 升细胞培养液。
{"title":"Primary clarification of mammalian cell culture fluid using enhanced sedimentation on inclined surfaces inside the single-use disposable Sudhin BioSettler150.","authors":"Christopher B Glascock, Dhinakar S Kompala","doi":"10.1002/btpr.3489","DOIUrl":"10.1002/btpr.3489","url":null,"abstract":"<p><p>The first downstream processing step in the purification of a biopharmaceutical protein secreted into mammalian cell culture fluid is the primary clarification of the culture fluid. As cell densities in the fed-batch and increasingly more common perfusion bioreactors have increased over last two decades through intensified upstream bioreactor production processes, the traditional primary clarification unit operations of centrifugation and/or microfiltration become more challenging with issues like frequent desludging, cell disruption due to shear damage and quick fouling of membranes. We have developed a novel compact cell settler device exploiting the enhanced sedimentation on inclined surfaces and demonstrated that this settler device can be adapted easily to remove and contain cells or cell clumps from the clarified supernatant collected via the top effluent of the settler. In this work, we present high product recovery results during primary clarification of mammalian cell culture supernatant using our novel single-use disposable BioSettler150 while processing about 10 L of cell culture broth within short processing times of about 4 h.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3489"},"PeriodicalIF":2.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biotechnology Progress
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1