Liam Richard Jenkins Sánchez, Lobke Maria Sips, Inge Noëlle Adriënne Van Bogaert
As microbial membranes are naturally impermeable to even the smallest biomolecules, transporter proteins are physiologically essential for normal cell functioning. This makes transporters a key target area for engineering enhanced cell factories. As part of the wider cellular transportome, aquaporins (AQPs) are responsible for transporting small polar solutes, encompassing many compounds which are of great interest for industrial biotechnology, including cell feedstocks, numerous commercially relevant polyols and even weak organic acids. In this review, examples of cell factory engineering by targeting AQPs are presented. These AQP modifications aid in redirecting carbon fluxes and boosting bioconversions either by enhanced feedstock uptake, improved intermediate retention, increasing product export into the media or superior cell viability against stressors with applications in both bacterial and yeast production platforms. Additionally, the future potential for AQP deployment and targeting is discussed, showcasing hurdles and considerations of this strategy as well as recent advances and future directions in the field. By leveraging the natural diversity of AQPs and breakthroughs in channel protein engineering, these transporters are poised to be promising tools capable of enhancing a wide variety of biotechnological processes.
{"title":"Just passing through: Deploying aquaporins in microbial cell factories.","authors":"Liam Richard Jenkins Sánchez, Lobke Maria Sips, Inge Noëlle Adriënne Van Bogaert","doi":"10.1002/btpr.3497","DOIUrl":"https://doi.org/10.1002/btpr.3497","url":null,"abstract":"<p><p>As microbial membranes are naturally impermeable to even the smallest biomolecules, transporter proteins are physiologically essential for normal cell functioning. This makes transporters a key target area for engineering enhanced cell factories. As part of the wider cellular transportome, aquaporins (AQPs) are responsible for transporting small polar solutes, encompassing many compounds which are of great interest for industrial biotechnology, including cell feedstocks, numerous commercially relevant polyols and even weak organic acids. In this review, examples of cell factory engineering by targeting AQPs are presented. These AQP modifications aid in redirecting carbon fluxes and boosting bioconversions either by enhanced feedstock uptake, improved intermediate retention, increasing product export into the media or superior cell viability against stressors with applications in both bacterial and yeast production platforms. Additionally, the future potential for AQP deployment and targeting is discussed, showcasing hurdles and considerations of this strategy as well as recent advances and future directions in the field. By leveraging the natural diversity of AQPs and breakthroughs in channel protein engineering, these transporters are poised to be promising tools capable of enhancing a wide variety of biotechnological processes.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3497"},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiffany Hsu, Mary Jo Talley, Ping Yang, Angela Geiselhoeringer, Cindy Yang, Aditya Gorla, M Julhasur Rahman, Lindsey Silva, Dayue Chen, Bin Yang
It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.
提高药物生产速度,使药物更广泛地供应,这一点非常重要。基于 CHO 的药物释放的一个瓶颈是对未加工的散装药物进行体外病毒 (IVV) 细胞检测。为了提高工艺速度,我们评估了用新一代测序技术(NGS)取代体外病毒细胞检测的适宜性。首先,我们概述了 NGS 目前在制药行业的应用,以及如何将其应用于 CHO 病毒检测。其次,我们研究了 CHO 病毒污染的历史。由于以前的病毒污染物可以在生产生物反应器中复制,我们进行了文献检索,并根据其感染 CHO 细胞的能力将 159 种病毒分为高、中、低或未知风险。总体而言,CHO 生产过程中的病毒污染风险较低。据报道,在过去几十年中,只有六种病毒污染了 CHO 生物工艺,主要是由胎牛血清或细胞培养成分引起的。这些病毒污染事件可通过限制和控制原材料,并结合病毒检测和病毒清除技术加以缓解。CHO 感染性病毒清单为病毒安全风险评估和 NGS 开发提供了一个起始框架。此外,ICH Q5A (R2) 将 NGS 作为一种分子方法用于不定制剂检测,为 CHO 病毒检测的现代化铺平了道路。
{"title":"Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing.","authors":"Tiffany Hsu, Mary Jo Talley, Ping Yang, Angela Geiselhoeringer, Cindy Yang, Aditya Gorla, M Julhasur Rahman, Lindsey Silva, Dayue Chen, Bin Yang","doi":"10.1002/btpr.3485","DOIUrl":"https://doi.org/10.1002/btpr.3485","url":null,"abstract":"<p><p>It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3485"},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transposons are genetic elements capable of cutting and pasting genes of interest via the action of a transposase and offer many advantages over random or targeted integration of DNA in the creation of Chinese hamster ovary (CHO) cell lines for recombinant protein expression. Unique transposases have different recognition sites, allowing multiple transposases to be co-transfected together. They also allow for supertransfection (transfection on a previously transfected pool or cell line) with a second transposase to integrate additional copies of the same gene or an additional gene without disruption of the previously integrated DNA which to our knowledge has not been previously described in literature. Two fluorescent proteins, EGFP and tagRFP657, were either co-transfected or supertransfected into CHO cells using two unique transposases and showed high expression efficiency with similar expression levels (measured as mean fluorescence intensity), regardless of whether the genes were co-transfected or supertransfected onto an existing stable pool. Additionally, dual selection of the genes, both in the absence of L-glutamine and the presence of puromycin, led to higher expression levels than single selection alone. These results demonstrate that supertransfection using unique transposases could be a useful strategy for increasing titers of existing cell lines or for overexpressing helper (non-therapeutic) genes to improve expression and/or product quality of existing pools and cell lines, potentially saving significant time and resources.
转座子是一种遗传元件,能够通过转座酶的作用切割和粘贴感兴趣的基因,与随机或定向整合 DNA 相比,它在创建用于重组蛋白质表达的中国仓鼠卵巢(CHO)细胞系方面具有许多优势。独特的转座酶具有不同的识别位点,允许多个转座酶共同转染。它们还允许用第二个转座酶进行超转染(转染到先前转染过的池子或细胞系上),在不破坏先前整合 DNA 的情况下整合同一基因或其他基因的额外拷贝。使用两种独特的转座酶将两种荧光蛋白(EGFP 和 tagRFP657)共转染或超转染到 CHO 细胞中,结果表明,无论基因是共转染还是超转染到现有的稳定池中,它们的表达效率都很高,表达水平(以平均荧光强度衡量)相似。此外,在无 L-谷氨酰胺和有嘌呤霉素的情况下对基因进行双重选择,比单独进行单一选择的表达水平更高。这些结果表明,使用独特的转座酶进行超转染可能是一种有用的策略,可用于提高现有细胞系的滴度或过表达辅助(非治疗)基因,以改善现有池和细胞系的表达和/或产品质量,从而节省大量时间和资源。
{"title":"Evaluation of two transposases for improving expression of recombinant proteins in Chinese hamster ovary cell stable pools by co-transfection and supertransfection approaches.","authors":"Melina Lenser, Hanh Giai Ngo, Lily Sarrafha, Yashas Rajendra","doi":"10.1002/btpr.3496","DOIUrl":"https://doi.org/10.1002/btpr.3496","url":null,"abstract":"<p><p>Transposons are genetic elements capable of cutting and pasting genes of interest via the action of a transposase and offer many advantages over random or targeted integration of DNA in the creation of Chinese hamster ovary (CHO) cell lines for recombinant protein expression. Unique transposases have different recognition sites, allowing multiple transposases to be co-transfected together. They also allow for supertransfection (transfection on a previously transfected pool or cell line) with a second transposase to integrate additional copies of the same gene or an additional gene without disruption of the previously integrated DNA which to our knowledge has not been previously described in literature. Two fluorescent proteins, EGFP and tagRFP657, were either co-transfected or supertransfected into CHO cells using two unique transposases and showed high expression efficiency with similar expression levels (measured as mean fluorescence intensity), regardless of whether the genes were co-transfected or supertransfected onto an existing stable pool. Additionally, dual selection of the genes, both in the absence of L-glutamine and the presence of puromycin, led to higher expression levels than single selection alone. These results demonstrate that supertransfection using unique transposases could be a useful strategy for increasing titers of existing cell lines or for overexpressing helper (non-therapeutic) genes to improve expression and/or product quality of existing pools and cell lines, potentially saving significant time and resources.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3496"},"PeriodicalIF":2.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roxana Disela, Daphne Keulen, Eleni Fotou, Tim Neijenhuis, Olivier Le Bussy, Geoffroy Geldhof, Martin Pabst, Marcel Ottens
Mechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively. For a broader coverage of the binding characteristics, large-scale proteomic data and systems level knowledge on protein interactions are key. However, a method for determining binding parameters of the entire host cell proteome to selected chromatography resins is still lacking. In this work, we have developed a method to determine binding parameters of all detected individual host cell proteins in an Escherichia coli harvest sample from large-scale proteomics experiments. The developed method was demonstrated to model abundant and problematic proteins, which are crucial impurities to be removed. For these 15 proteins covering varying concentration ranges, the model predicts the independently measured retention time during the validation gradient well. Finally, we optimized the anion exchange chromatography capture step in silico using the determined isotherm parameters of the persistent host cell protein contaminants. From these results, strategies can be developed to separate abundant and problematic impurities from the target antigen.
{"title":"Proteomics-based method to comprehensively model the removal of host cell protein impurities.","authors":"Roxana Disela, Daphne Keulen, Eleni Fotou, Tim Neijenhuis, Olivier Le Bussy, Geoffroy Geldhof, Martin Pabst, Marcel Ottens","doi":"10.1002/btpr.3494","DOIUrl":"https://doi.org/10.1002/btpr.3494","url":null,"abstract":"<p><p>Mechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively. For a broader coverage of the binding characteristics, large-scale proteomic data and systems level knowledge on protein interactions are key. However, a method for determining binding parameters of the entire host cell proteome to selected chromatography resins is still lacking. In this work, we have developed a method to determine binding parameters of all detected individual host cell proteins in an Escherichia coli harvest sample from large-scale proteomics experiments. The developed method was demonstrated to model abundant and problematic proteins, which are crucial impurities to be removed. For these 15 proteins covering varying concentration ranges, the model predicts the independently measured retention time during the validation gradient well. Finally, we optimized the anion exchange chromatography capture step in silico using the determined isotherm parameters of the persistent host cell protein contaminants. From these results, strategies can be developed to separate abundant and problematic impurities from the target antigen.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3494"},"PeriodicalIF":2.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WuXiUPTM, WuXi Biologics' Ultra-high Productivity platform, is an intensified and integrated continuous bioprocess platform developed for production of various biologics including monoclonal antibodies, fusion proteins, and bispecific antibodies. This process technology platform has manifested its remarkable capability in boosting the volumetric productivity of various biologics and has been implemented for large-scale clinical material productions. In this paper, case studies of the production of different pharmaceutical proteins using two high-producing and intensified culture modes of WuXiUPTM and the concentrated fed-batch (CFB), as well as the traditional fed-batch (TFB) are discussed from the perspectives of cell growth, productivity, and protein quality. Both WuXiUPTM and CFB outperformed TFB regarding volumetric productivity. Additionally, distinctive advantages in product quality profiles in the WuXiUPTM process, such as reduced acidic charge variants and fragmentation, are revealed. Therefore, a simplified downstream purification process with only two chromatographic steps can be developed to deliver the target product at a satisfactory purity and an extremely-high yield.
{"title":"A comparison of different intensified upstream processes highlighting the advantage of WuXi Biologics' Ultra-high Productivity platform (WuXiUP<sup>TM</sup>) in improved product quality and purification yield.","authors":"Xiang Zheng, Mingyue Fang, Yanling Zou, Shuo Wang, Weichang Zhou, Hang Zhou","doi":"10.1002/btpr.3487","DOIUrl":"https://doi.org/10.1002/btpr.3487","url":null,"abstract":"<p><p>WuXiUP<sup>TM</sup>, WuXi Biologics' Ultra-high Productivity platform, is an intensified and integrated continuous bioprocess platform developed for production of various biologics including monoclonal antibodies, fusion proteins, and bispecific antibodies. This process technology platform has manifested its remarkable capability in boosting the volumetric productivity of various biologics and has been implemented for large-scale clinical material productions. In this paper, case studies of the production of different pharmaceutical proteins using two high-producing and intensified culture modes of WuXiUP<sup>TM</sup> and the concentrated fed-batch (CFB), as well as the traditional fed-batch (TFB) are discussed from the perspectives of cell growth, productivity, and protein quality. Both WuXiUP<sup>TM</sup> and CFB outperformed TFB regarding volumetric productivity. Additionally, distinctive advantages in product quality profiles in the WuXiUP<sup>TM</sup> process, such as reduced acidic charge variants and fragmentation, are revealed. Therefore, a simplified downstream purification process with only two chromatographic steps can be developed to deliver the target product at a satisfactory purity and an extremely-high yield.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3487"},"PeriodicalIF":2.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir M Behdani, Yuxiang Zhao, Grace Yao, Dhanuka Wasalathanthri, Eric Hodgman, Michael Borys, Gloria Li, Anurag Khetan, Dayanjan Wijesinghe, Anthony Leone
Total sialic acid content (TSA) in biotherapeutic proteins is often a critical quality attribute as it impacts the drug efficacy. Traditional wet chemical assays to quantify TSA in biotherapeutic proteins during cell culture typically takes several hours or longer due to the complexity of the assay which involves isolation of sialic acid from the protein of interest, followed by sample preparation and chromatographic based separation for analysis. Here, we developed a machine learning model-based technology to rapidly predict TSA during cell culture by using typically measured process parameters. The technology features a user interface, where the users only have to upload cell culture process parameters as input variables and TSA values are instantly displayed on a dashboard platform based on the model predictions. In this study, multiple machine learning algorithms were assessed on our dataset, with the Random Forest model being identified as the most promising model. Feature importance analysis from the Random Forest model revealed that attributes like viable cell density (VCD), glutamate, ammonium, phosphate, and basal medium type are critical for predictions. Notably, while the model demonstrated strong predictability by Day 14 of observation, challenges remain in forecasting TSA values at the edges of the calibration range. This research not only emphasizes the transformative power of machine learning and soft sensors in bioprocessing but also introduces a rapid and efficient tool for sialic acid prediction, signaling significant advancements in bioprocessing. Future endeavors may focus on data augmentation to further enhance model precision and exploration of process control capabilities.
{"title":"Rapid total sialic acid monitoring during cell culture process using a machine learning model based soft sensor.","authors":"Amir M Behdani, Yuxiang Zhao, Grace Yao, Dhanuka Wasalathanthri, Eric Hodgman, Michael Borys, Gloria Li, Anurag Khetan, Dayanjan Wijesinghe, Anthony Leone","doi":"10.1002/btpr.3493","DOIUrl":"https://doi.org/10.1002/btpr.3493","url":null,"abstract":"<p><p>Total sialic acid content (TSA) in biotherapeutic proteins is often a critical quality attribute as it impacts the drug efficacy. Traditional wet chemical assays to quantify TSA in biotherapeutic proteins during cell culture typically takes several hours or longer due to the complexity of the assay which involves isolation of sialic acid from the protein of interest, followed by sample preparation and chromatographic based separation for analysis. Here, we developed a machine learning model-based technology to rapidly predict TSA during cell culture by using typically measured process parameters. The technology features a user interface, where the users only have to upload cell culture process parameters as input variables and TSA values are instantly displayed on a dashboard platform based on the model predictions. In this study, multiple machine learning algorithms were assessed on our dataset, with the Random Forest model being identified as the most promising model. Feature importance analysis from the Random Forest model revealed that attributes like viable cell density (VCD), glutamate, ammonium, phosphate, and basal medium type are critical for predictions. Notably, while the model demonstrated strong predictability by Day 14 of observation, challenges remain in forecasting TSA values at the edges of the calibration range. This research not only emphasizes the transformative power of machine learning and soft sensors in bioprocessing but also introduces a rapid and efficient tool for sialic acid prediction, signaling significant advancements in bioprocessing. Future endeavors may focus on data augmentation to further enhance model precision and exploration of process control capabilities.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3493"},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fanny Machado Jofre, Sarah de Souza Queiroz, Diana Alva Sanchez, Priscila Vaz Arruda, Júlio César Dos Santos, Maria das Graças de Almeida Felipe
The yeast cell wall is a complex structure whose main function is to protect the cell from physical and chemical damage, providing it with rigidity. It is composed of a matrix of covalently linked polysaccharides and proteins, including β-glucans, mannoproteins, and chitin, whose proportion can vary according to the yeast species and environmental conditions. The main components of the yeast cell wall have relevant properties that expand the possibilities of use in different industrial sectors, such as pharmaceutical, food, medical, veterinary, and cosmetic. Some applications include bioremediation, enzyme immobilization, animal feed, wine production, and hydrogel production. In the literature it is the description of the cell wall composition of model species like Saccharomyces cerevisiae and Candida albicans, however, it is important to know that this composition can vary according to the species or the culture medium conditions. Thus, understanding the structural composition of different species holds promise as an alternative to expanding the utilization of residual yeast from different bioprocesses. In the context of a circular economy, the conversion of residual yeast into valuable products is an attractive prospect for researchers aiming to develop sustainable technologies. This review provides an overview of yeast cell wall composition and its significance in biotechnological applications, considering prospects to increase the diversification of these compounds in industry.
{"title":"Biotechnological potential of yeast cell wall: An overview.","authors":"Fanny Machado Jofre, Sarah de Souza Queiroz, Diana Alva Sanchez, Priscila Vaz Arruda, Júlio César Dos Santos, Maria das Graças de Almeida Felipe","doi":"10.1002/btpr.3491","DOIUrl":"https://doi.org/10.1002/btpr.3491","url":null,"abstract":"<p><p>The yeast cell wall is a complex structure whose main function is to protect the cell from physical and chemical damage, providing it with rigidity. It is composed of a matrix of covalently linked polysaccharides and proteins, including β-glucans, mannoproteins, and chitin, whose proportion can vary according to the yeast species and environmental conditions. The main components of the yeast cell wall have relevant properties that expand the possibilities of use in different industrial sectors, such as pharmaceutical, food, medical, veterinary, and cosmetic. Some applications include bioremediation, enzyme immobilization, animal feed, wine production, and hydrogel production. In the literature it is the description of the cell wall composition of model species like Saccharomyces cerevisiae and Candida albicans, however, it is important to know that this composition can vary according to the species or the culture medium conditions. Thus, understanding the structural composition of different species holds promise as an alternative to expanding the utilization of residual yeast from different bioprocesses. In the context of a circular economy, the conversion of residual yeast into valuable products is an attractive prospect for researchers aiming to develop sustainable technologies. This review provides an overview of yeast cell wall composition and its significance in biotechnological applications, considering prospects to increase the diversification of these compounds in industry.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3491"},"PeriodicalIF":2.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kozue Okamura, Sara Badr, Yusuke Ichida, Akira Yamada, Hirokazu Sugiyama
Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.
对单克隆抗体(mAbs)的需求正在迅速增长。为了实现更高的生产率,细胞系、操作模式、培养基和培养条件都有了改进。需要有代表性的数学模型来缩小日益增多的工艺选择范围。以往的研究提出了一些机理模型来描述细胞新陈代谢的转变(如乳酸的产生到消耗)。然而,这些模型尚未完全纳入某些操作条件变化的影响。本文提供了一种新的机理模型,考虑了溶解氧和谷氨酰胺耗竭对细胞代谢的影响,并将其应用于一种新型的中国仓鼠卵巢(CHO)细胞系。为搅拌罐和摇床反应器制定了乳酸盐产生、谷氨酰胺消耗和 mAb 生产的特定速率表达式。在不同的实验条件组合下,对乳酸盐代谢转变有了更深入的了解。在溶解氧较高、谷氨酰胺浓度较低的条件下,乳酸消耗更为明显。该模型提供了有助于设计先进运行策略的机理见解。它可用于设计空间生成和工艺优化,以提高生产率和产品质量。
{"title":"Modeling of cell cultivation for monoclonal antibody production processes considering lactate metabolic shifts.","authors":"Kozue Okamura, Sara Badr, Yusuke Ichida, Akira Yamada, Hirokazu Sugiyama","doi":"10.1002/btpr.3486","DOIUrl":"https://doi.org/10.1002/btpr.3486","url":null,"abstract":"<p><p>Demand for monoclonal antibodies (mAbs) is rapidly increasing. To achieve higher productivity, there have been improvements to cell lines, operating modes, media, and cultivation conditions. Representative mathematical models are needed to narrow down the growing number of process alternatives. Previous studies have proposed mechanistic models to depict cell metabolic shifts (e.g., lactate production to consumption). However, the impacts of variations of some operating conditions have not yet been fully incorporated in such models. This paper offers a new mechanistic model considering variations in dissolved oxygen and glutamine depletion on cell metabolism applied to a novel Chinese hamster ovary (CHO) cell line. Expressions for the specific rates of lactate production, glutamine consumption, and mAb production were formulated for stirred and shaken-tank reactors. A deeper understanding of lactate metabolic shifts was obtained under different combinations of experimental conditions. Lactate consumption was more pronounced in conditions with higher DO and low glutamine concentrations. The model offers mechanistic insights that are useful for designing advanced operation strategies. It can be used in design space generation and process optimization for better productivity and product quality.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3486"},"PeriodicalIF":2.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Li, Patricia Rose, Patricia Rowicki, Collette Cutler, Jeffrey T. McPhee, Claudia Frey, Linda Lemieux, Gerald Pelette, Joo Kok Ang, Ren Liu, Douglas D. Richardson
The cover image is based on the Research Article Advancing multiproduct resin reuse for development and clinical manufacturing of an antibody-based therapeutic by Hong Li et al., https://doi.org/10.1002/btpr.3434