What is learned in perceptual learning? How does perceptual learning change the perceptual system? We investigate these questions using a systems analysis of the perceptual system during the course of perceptual learning using psychophysical methods and models of the observer. Effects of perceptual learning on an observer's performance are characterized by external noise tests within the framework of noisy observer models. We find evidence that two independent mechanisms, external noise exclusion and stimulus enhancement support perceptual learning across a range of tasks. We suggest that both mechanisms may reflect re-weighting of stable early sensory representations.
Perceptual learning is the improvement in perceptual task performance with practice or training. The observation of specificity in perceptual learning has been widely associated with plasticity in early visual cortex representations. Here, we review the evidence supporting the plastic reweighting of readout from stable sensory representations, originally proposed by Dosher & Lu (1998), as an alternative explanation of perceptual learning. A task-analysis that identifies circumstances in which specificity supports representation enhancement and those in which it implies reweighting provides a framework for evaluating the literature; reweighting is broadly consistent with the behavioral results and almost all of the physiological reports. We also consider the evidence that the primary mode of perceptual learning is through augmented Hebbian learning of the reweighted associations, which has implications for the role and importance of feedback. Feedback is not necessary for perceptual learning, but can improve it in some circumstances, and in some cases block feedback is also helpful - all effects that are generally compatible with an augmented Hebbian model (Petrov, Dosher, & Lu, 2005). The two principles of perceptual learning through reweighting evidence from stable sensory representations and of augmented Hebbian learning provide a theoretical structure for the consideration of issues such as task difficulty, task roving, and cuing in perceptual learning.