The extent of an ischemic insult is less in brain regions enriched in astrocytes suggesting that astrocytes maintain function and buffer glutamate during ischemia. Astrocytes express a wide variety of potassium channels to support their functions including TREK-2 channels which are regulated by polyunsaturated fatty acids, intracellular acidosis and swelling; conditions that pertain to ischemia. The present study investigated the possible involvement of TREK-2 channels in cultured cortical astrocytes during experimental ischemia (anoxia/hypoglycemia) by examining TREK-2 protein levels, channel activity and ability to clear glutamate. We found that TREK-2 protein levels were increased rapidly within 2 hrs of the onset of simulated ischemia. This increase corresponded to an increase in temperature-sensitive TREK-2-like channel conductance and the ability of astrocytes to buffer extracellular glutamate even during ischemia. Together, these data suggest that up-regulation of TREK-2 channels may help rescue astrocyte function and lower extracellular glutamate during ischemia.
Redox factor-1 (Ref-1), also known as HAP1, APE or APEX, is a multifunctional protein that regulates gene transcription as well as the response to oxidative stress. By interacting with transcription factors such as AP-1, NF-kappaB and p53, and directly participating in the cleavage of apurininic/apyrimidinic DNA lesions, Ref-1 plays crucial roles in both cell death signaling pathways and DNA repair, respectively. Oxidative stress induced by aggregated beta-amyloid (Abeta) peptide, altered DNA repair and transcriptional activation of cell death pathways have been implicated in the pathophysiology of Alzheimer's disease (AD). Here we show that varying concentrations of Abeta(1-42) differentially regulate Ref-1 expression, Ref-1 function and neuronal survival in vitro. Abeta (5.0 muM) caused a relatively rapid decrease in Ref-1 expression and activity associated with extensive DNA damage and neuronal degeneration. In contrast, Ref-1 induction occurred in cells exposed to Abeta (1.0 muM) without significant neuronal cell death. Abeta-induced attenuation of Ref-1 expression and endonuclease activity, and neuronal cell death were prevented by the anti-oxidant, catalase. Similar differential effects on Ref-1 expression and cell viability were observed in N2A neuroblastoma cells treated with either high or low dose hydrogen peroxide. These findings demonstrate the differential regulation of Ref-1 expression by varying degrees of oxidative stress. Parallels between the Ref-1 response to Abeta and H(2)O(2) suggest similarities between DNA repair pathways activated by different inducers of oxidative stress. In AD brain, colocalization of Ref-1 and Abeta the absence of significant DNA damage are consistent with the cell culture results and suggests that Ref-1 may play a more neuroprotective role under these conditions. Modulation of Ref-1 expression and activity by local variations in Abeta concentration may be an important determinant of neuronal vulnerability to oxidative stress in AD.
Dendritic spines are actin-rich protrusions that comprise the postsynaptic sites of synapses and receive the majority of excitatory synaptic inputs in the central nervous system. These structures are central to cognitive processes, and alterations in their number, size, and morphology are associated with many neurological disorders. Although the actin cytoskeleton is thought to govern spine formation, morphology, and synaptic functions, we are only beginning to understand how modulation of actin reorganization by actin-binding proteins (ABPs) contributes to the function of dendritic spines and synapses. In this review, we discuss what is currently known about the role of ABPs in regulating the formation, morphology, motility, and plasticity of dendritic spines and synapses.
Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines.
Dendritic spines are specialized, micron-sized post-synaptic compartments that support synaptic function. These actin-based protrusions push the post-synaptic membrane, establish contact with the presynaptic membrane and undergo dynamic changes in morphology during development, as well as in response to synaptic neurotransmission. These processes are propelled by active remodeling of the actin cytoskeleton, which includes polymerization, filament disassembly, and organization of the actin in supramolecular arrays, such as branched networks or bundles. Dendritic spines contain a plethora of adhesion and synaptic receptors, signaling, and cytoskeletal proteins that regulate their formation, maturation and removal. Whereas many of the molecules involved in dendritic spine formation have been identified, their actual roles in spine formation, removal and maturation are not well understood. Using parallels between migrating fibroblasts and dendritic spines, we point to potential mechanisms and approaches for understanding spine development and dynamics.
Recent advances in 2-photon fluorescence lifetime imaging microscopy (2pFLIM) in combination with 2-photon photochemistry have enabled the visualization of neuronal signaling during synaptic plasticity at the level of single dendritic spines in light scattering tissue. Using these techniques, the activity of Ca(2+)/Calmodulin-dependent kinase II (CaMKII) and Ras have been imaged in single spines during synaptic plasticity and associated spine enlargement. These provide two contrasting examples of spatiotemporal regulation of spine signaling: Ras signaling is diffusive and spread over ~10 μm along the dendrites, while CaMKII activation is restricted to the spine undergoing plasticity. In this review, we will discuss the mechanisms and roles of the different spatiotemporal regulation of signaling in neurons, and the impact of the spine structure upon these biochemical signaling processes.