Based on the concept that the tumorogenesis in chronic lymphocytic leukaemia comprises both an initial, inherited mutation and subsequent somatic mutations, the pleiotypic diversity of familial chronic lymphocytic leukaemia and related malignant lymphoproliferative disorders is generally explained by a repertoire of monoallelic polygenes in the initial mutation. Epigenetic genomic imprinting is a likely mechanism behind of the asynchroneous replicating monoallelic polygenes which is discussed in the light of pleiotrophy and birth order effect. Furthermore, it is discussed that one possible mechanism available for the epigenetic transfer of these genes could be the physiological pregnancy-related microchimerism between mother and fetus.
Tumor formation results from alterations in the normal control of cell proliferation. In the past decade, much attention in cancer research has been focused on the function of proto-oncogenes and tumor suppressors. Prohibitin is a potential tumor suppressor which was originally identified because of its anti-proliferative activities. Subsequent investigations led to the discovery of prohibitin mutations in sporadic breast cancers. Recent studies established that prohibitin directly regulates E2F-mediated transcription and growth suppression Prohibitin further attracted the attention of the translational cancer research community when it was recently connected to the regulation of estrogen receptor and androgen receptor activity. Prohibitin was shown to be required for the growth suppression of breast cancer cells induced by estrogen antagonists, and for therapeutic responses to androgen antagonists in prostate cancer. Through the application of new molecular technologies, additional novel functions of prohibitin have been revealed, demonstrating diverse and essential roles of this highly-conserved protein in regulating cell growth.
Xeroderma pigmentosum (XP) is a genetic disorder characterised by hypo-/hyperpigmentation, increased sensitivity to ultraviolet (UV)-radiation and an up to 2000-fold increased skin cancer risk. Cells from XP-patients are defective in nucleotide excision repair (NER) responsible for repair of UV-induced DNA damage. This defect accounts for their mutator phenotype but does not predict their increased skin cancer risk. Therefore, we carried out array analysis to measure the expression of more than 1000 genes after UVB-irradiation in XP cells from three complementation groups with different clinical severity (XP-A, XP-D, XP-F) as well as from patients with normal DNA repair but increased skin cancer risk (≥2 basal or squamous cell carcinoma at age <40yrs). Of 144 genes investigated, 20 showed differential expression with p < 0.05 after irradiation of cells with 100 mJ/cm(2) of UVB. A subset of six genes showed a direct association of expression levels with clinical severity of XP in genes affecting carcinogenesis relevant pathways. Genes identified in XP cells could be confirmed in cells from patients with no known DNA repair defects but increased skin cancer risk. Thus, it is possible to identify a small gene subset associated with clinical severity of XP patients also applicable to individuals with no known DNA repair defects.
The myelodysplastic syndromes (MDS) are clonal stem cell disorders, characterized by ineffective and dysplastic hematopoiesis. The genetic and epigenetic pathways that determine disease stage and progression are largely unknown. In the current study we used gene expression microarray methodology to examine the gene expression differences between normal hematopoietic cells and hematopoietic cells from patients with MDS at different disease stages, using both unselected and CD34+ selected cells. Significant differences between normal and MDS hematopoietic cells were observed for several genes and pathways. Several genes promoting or opposing apoptosis were dysregulated in MDS cases, most notably MCL1 and EPOR. Progression from RA to RAEB(T) was associated with increased expression of several histone genes. In addition, the RAR-RXR pathway, critical for maintaining a balance between self-renewal and differentiation of hematopoietic stem cells, was found to be deregulated in hematopoietic cells from patients with advanced MDS compared to patients with refractory anemia. These findings provide new insights into the understanding of the pathophysiology and progression of MDS, and may guide to new targets for therapy. Taken together with previous published data, the present results also underscore the considerable complexity of the regulation of gene expression in MDS.
Basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors that play critical roles in many physiological processes including cellular differentiation, cell cycle arrest and apoptosis. Based on structural and phylogenetic analysis, mammalian bHLH-Orange (bHLH-O) proteins, which constitute the repressor family of bHLH factors, can be grouped into four subfamilies: Hes, Hey, Helt and Stra13/Dec. In addition to the bHLH domain that mediates DNA-binding and protein dimerization, all members of this family are characterized by a distinctive motif called the "Orange domain" which is present exclusively in these factors. Genetic studies using targeted mutagenesis in mice have revealed essential roles for many bHLH-O genes in embryonic development, cell fate decisions, differentiation of a number of cell types and in apoptosis. Furthermore, growing evidence of crosstalk between bHLH-O proteins with the tumor suppressors p53 and hypoxia-inducible factor, have started to shed light on their possible roles in oncogenesis. Consistently, deregulated expression of several bHLH-O factors is associated with various human cancers. Here, we review the structure and biological functions of bHLH-O factors, and discuss recent studies that suggest a potential role for these factors in tumorigenesis and tumor progression.
Gliomas frequently display constitutive activation of the transcription factor STAT3, a protein that is known to be able to mediate neoplastic transformation. STAT3 regulates genes that play a central role in cellular survival, proliferation, self-renewal, and invasion, and a cohort of STAT3 target genes have been found that are commonly coexpressed in human cancers. Thus, these genes likely subserve the transforming ability of constitutively activated STAT3. To determine whether the coordinated expression of STAT3 target genes is present in a subset of human gliomas, and whether this changes the biology of these tumors in patients, gene expression analysis was performed in four distinct human glioma data sets for which patient survival information was available. Coordinate expression of STAT3 targets was significantly associated with poor patient outcome in each data set. Specifically, patients with tumors displaying high expression of STAT3 targets had a shorter median survival time compared to patients whose tumors had low expression of STAT3 targets. These data suggest that constitutively activated STAT3 in gliomas can alter the biology of these tumors, and that development of targeted STAT3 inhibitors would likely be of particular benefit in treatment of this disease.
Urokinase-type plasminogen activator (uPA) is associated with cancer recurrence where the most evidence comes from studies in breast cancer. According to the European Organization for Research and Treatment of Cancer, uPA is considered one of the most prominent biomarkers for cancer recurrence and therefore new agents are needed to inhibit it. Whether uPA is also expressed in pediatric cancers is yet unknown. If it is then uPA inhibitors might also help children with recurrent cancers. In this study, we addressed whether the integrin-linked kinase inhibitor (ILK), QLT0267, could suppress uPA. We previously showed that uPA expression is maximally inhibited when both the Akt and MAP kinase pathways were blocked which we anticipated can be achieved via QLT0267. In MDA-MB-231 breast cancer cells, QLT0267 blocked signaling through Akt and MAP kinase with a correlative decrease in uPA protein and mRNA, which corresponded to an inhibition of c-Jun phosphorylation. Consistent with these findings, cellular invasion was inhibited with either QLT0267 or with small interfering RNA against ILK. We then questioned whether uPA was commonly expressed in childhood sarcomas and if QLT0267 might be effective in this setting. We determined for the first time that uPA was highly expressed in rhabdomyosarcomas (RMS), but not Ewings sarcomas by screening cell lines (n = 31) and patient samples (n = 200) using Affymetrix microarrays. In alveolar RMS (ARMS) cell lines, QLT0267 blocked cell signaling, uPA production, invasion and ultimately survival. We concluded that QLT0267 blocks the production of uPA providing a new target for the management of recurrent cancers.
The oncogene MCTS1, discovered as an amplified product in a subset of T-cell lymphoma lines, has been implicated in cell cycle progression and conferring a growth advantage in lymphomas and breast cancer. Recent research shows that it modulates the MAPK pathway and acts as a translational activator both in vivo and in vitro. In breast cancer cells, expression of MCTS1 confers aggressive properties and inhibits apoptosis. This article will review these data and its implications on our understanding of cancer.