Abstract. Elucidating the mechanisms underlying microbial methane formation in subsurface environments is essential to understanding the global carbon cycle. This study examined how microbial methane formation (i.e., methanogenesis) occurs in natural-gas-bearing sedimentary aquifers throughout the sediment burial history. Water samples collected from six aquifers of different depths exhibited ascending vertical gradients in salinity from brine to fresh water and in temperature from mesophilic to psychrophilic conditions. Analyses of gas and water isotopic ratios and microbial communities indicated the predominance of methanogenesis via CO2 reduction. However, the hydrogen isotopic ratio of water changed along the depth and salinity gradient, whereas the ratio of methane changed little, suggesting that in situ methanogenesis in shallow sediments does not significantly contribute to methane in the aquifers. The population of methane-producing microorganisms (methanogens) was highest in the deepest saline aquifers, where the water temperature, salinity, and total organic carbon content of the adjacent mud sediments were the highest. Cultivation of the dominant hydrogenotrophic methanogens in the aquifers showed that the methanogenesis rate was maximized at the temperature corresponding to that of the deepest aquifer. These results suggest that high-temperature conditions in deeply buried sediments are associated with enhanced in situ methanogenesis and that methane that forms in the deepest aquifer migrates upward into the shallower aquifers by diffusion.
{"title":"Microbial methane formation in deep aquifers associated with the sediment burial history at a coastal site","authors":"Taiki Katayama, R. Ikawa, M. Koshigai, S. Sakata","doi":"10.5194/bg-20-5199-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5199-2023","url":null,"abstract":"Abstract. Elucidating the mechanisms underlying microbial methane formation in subsurface environments is essential to understanding the global carbon cycle. This study examined how microbial methane formation (i.e., methanogenesis) occurs in natural-gas-bearing sedimentary aquifers throughout the sediment burial history. Water samples collected from six aquifers of different depths exhibited ascending vertical gradients in salinity from brine to fresh water and in temperature from mesophilic to psychrophilic conditions. Analyses of gas and water isotopic ratios and microbial communities indicated the predominance of methanogenesis via CO2 reduction. However, the hydrogen isotopic ratio of water changed along the depth and salinity gradient, whereas the ratio of methane changed little, suggesting that in situ methanogenesis in shallow sediments does not significantly contribute to methane in the aquifers. The population of methane-producing microorganisms (methanogens) was highest in the deepest saline aquifers, where the water temperature, salinity, and total organic carbon content of the adjacent mud sediments were the highest. Cultivation of the dominant hydrogenotrophic methanogens in the aquifers showed that the methanogenesis rate was maximized at the temperature corresponding to that of the deepest aquifer. These results suggest that high-temperature conditions in deeply buried sediments are associated with enhanced in situ methanogenesis and that methane that forms in the deepest aquifer migrates upward into the shallower aquifers by diffusion.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"11 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mavrovic, Oliver Sonnentag, J. Lemmetyinen, C. Voigt, Nick Rutter, Paul J Mann, Jean-Daniel Sylvain, Alexandre Roy
Abstract. The carbon cycle in Arctic–boreal regions (ABRs) is an important component of the planetary carbon balance, with growing concerns about the consequences of ABR warming for the global climate system. The greatest uncertainty in annual carbon dioxide (CO2) budgets exists during winter, primarily due to challenges with data availability and limited spatial coverage in measurements. The goal of this study was to determine the main environmental controls of winter CO2 fluxes in ABRs over a latitudinal gradient (45∘ to 69∘ N) featuring four different ecosystem types: closed-crown coniferous boreal forest, open-crown coniferous boreal forest, erect-shrub tundra, and prostrate-shrub tundra. CO2 fluxes calculated using a snowpack diffusion gradient method (n=560) ranged from 0 to 1.05 g C m2 d−1. To assess the dominant environmental controls governing CO2 fluxes, a random forest machine learning approach was used. We identified soil temperature as the main control of winter CO2 fluxes with 68 % of relative model importance, except when soil liquid water occurred during 0 ∘C curtain conditions (i.e., Tsoil≈0 ∘C and liquid water coexist with ice in soil pores). Under zero-curtain conditions, liquid water content became the main control of CO2 fluxes with 87 % of relative model importance. We observed exponential regressions between CO2 fluxes and soil temperature in fully frozen soils (RMSE=0.024 gCm-2d-1; 70.3 % of mean FCO2) and soils around the freezing point (RMSE=0.286 gCm-2d-1; 112.4 % of mean FCO2). FCO2 increases more rapidly with Tsoil around the freezing point than at Tsoil<5 ∘C. In zero-curtain conditions, the strongest regression was found with soil liquid water content (RMSE=0.137 gCm-2d-1; 49.1 % of mean FCO2). This study shows the role of several variables in the spatio-temporal variability in CO2 fluxes in ABRs during winter and highlights that the complex vegetation–snow–soil interactions in northern environments must be considered when studying what drives the spatial variability in soil carbon emissions during winter.
{"title":"Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments","authors":"A. Mavrovic, Oliver Sonnentag, J. Lemmetyinen, C. Voigt, Nick Rutter, Paul J Mann, Jean-Daniel Sylvain, Alexandre Roy","doi":"10.5194/bg-20-5087-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5087-2023","url":null,"abstract":"Abstract. The carbon cycle in Arctic–boreal regions (ABRs) is an important component of the planetary carbon balance, with growing concerns about the consequences of ABR warming for the global climate system. The greatest uncertainty in annual carbon dioxide (CO2) budgets exists during winter, primarily due to challenges with data availability and limited spatial coverage in measurements. The goal of this study was to determine the main environmental controls of winter CO2 fluxes in ABRs over a latitudinal gradient (45∘ to 69∘ N) featuring four different ecosystem types: closed-crown coniferous boreal forest, open-crown coniferous boreal forest, erect-shrub tundra, and prostrate-shrub tundra. CO2 fluxes calculated using a snowpack diffusion gradient method (n=560) ranged from 0 to 1.05 g C m2 d−1. To assess the dominant environmental controls governing CO2 fluxes, a random forest machine learning approach was used. We identified soil temperature as the main control of winter CO2 fluxes with 68 % of relative model importance, except when soil liquid water occurred during 0 ∘C curtain conditions (i.e., Tsoil≈0 ∘C and liquid water coexist with ice in soil pores). Under zero-curtain conditions, liquid water content became the main control of CO2 fluxes with 87 % of relative model importance. We observed exponential regressions between CO2 fluxes and soil temperature in fully frozen soils (RMSE=0.024 gCm-2d-1; 70.3 % of mean FCO2) and soils around the freezing point (RMSE=0.286 gCm-2d-1; 112.4 % of mean FCO2). FCO2 increases more rapidly with Tsoil around the freezing point than at Tsoil<5 ∘C. In zero-curtain conditions, the strongest regression was found with soil liquid water content (RMSE=0.137 gCm-2d-1; 49.1 % of mean FCO2). This study shows the role of several variables in the spatio-temporal variability in CO2 fluxes in ABRs during winter and highlights that the complex vegetation–snow–soil interactions in northern environments must be considered when studying what drives the spatial variability in soil carbon emissions during winter.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"112 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138954011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanxiao Wang, Zhifei Liu, Jiaying Li, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, H. Song, Wenzhuo Wang
Abstract. The sinking of zooplankton fecal pellets is a key process in the marine biological carbon pump, facilitating the export of particulate organic carbon (POC). Here, we analyzed zooplankton fecal pellets collected by two time-series sediment traps deployed on mooring TJ-A1B in the northern South China Sea (SCS) from May 2021 to May 2022. The results show a seasonal variability in both fecal pellet numerical (FPN) flux and fecal pellet carbon (FPC) flux, with peaks in November to April and June to August. It implies that the fecal pellet flux is largely regulated by the East Asian monsoon system. Vertical analysis further shows that FPN and FPC fluxes are higher at 1970 than at 500 m water depth, with larger pellets occurring in the deeper water, indicating a significant influence of mesopelagic and bathypelagic zooplankton community and lateral transport on deep-sea FPC export. However, the biovolume of amorphous pellets decreases significantly from 500 to 1970 m water depth, implying that these fecal pellets are broken and fragmented during the sinking process, possibly due to zooplankton grazing and disturbance by deep-sea currents. The contribution of fecal pellets to total POC export in the northern SCS is on average 3.4 % and 1.9 % at 500 and 1970 m water depth, respectively. This study highlights that the sinking fate of fecal pellets is regulated by marine primary productivity, deep-sea-dwelling zooplankton communities, and deep-sea currents in the tropical marginal sea, thus providing a new perspective for exploring the carbon cycle in the world ocean.
{"title":"Sinking fate and carbon export of zooplankton fecal pellets: insights from time-series sediment trap observations in the northern South China Sea","authors":"Hanxiao Wang, Zhifei Liu, Jiaying Li, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, H. Song, Wenzhuo Wang","doi":"10.5194/bg-20-5109-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5109-2023","url":null,"abstract":"Abstract. The sinking of zooplankton fecal pellets is a key process in the marine biological carbon pump, facilitating the export of particulate organic carbon (POC). Here, we analyzed zooplankton fecal pellets collected by two time-series sediment traps deployed on mooring TJ-A1B in the northern South China Sea (SCS) from May 2021 to May 2022. The results show a seasonal variability in both fecal pellet numerical (FPN) flux and fecal pellet carbon (FPC) flux, with peaks in November to April and June to August. It implies that the fecal pellet flux is largely regulated by the East Asian monsoon system. Vertical analysis further shows that FPN and FPC fluxes are higher at 1970 than at 500 m water depth, with larger pellets occurring in the deeper water, indicating a significant influence of mesopelagic and bathypelagic zooplankton community and lateral transport on deep-sea FPC export. However, the biovolume of amorphous pellets decreases significantly from 500 to 1970 m water depth, implying that these fecal pellets are broken and fragmented during the sinking process, possibly due to zooplankton grazing and disturbance by deep-sea currents. The contribution of fecal pellets to total POC export in the northern SCS is on average 3.4 % and 1.9 % at 500 and 1970 m water depth, respectively. This study highlights that the sinking fate of fecal pellets is regulated by marine primary productivity, deep-sea-dwelling zooplankton communities, and deep-sea currents in the tropical marginal sea, thus providing a new perspective for exploring the carbon cycle in the world ocean.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"117 41","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138958436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Ntirugulirwa, E. Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, D. Nsabimana, J. Uddling, Göran Wallin
Abstract. The response of tropical trees and tree communities to climate change is crucial for the carbon storage and biodiversity of the terrestrial biosphere. Trees in tropical montane rain forests (TMFs) are considered particularly vulnerable to climate change, but this hypothesis remains poorly evaluated due to data scarcity. To reduce the knowledge gap in the response of TMF trees to warming, we established a field experiment along a 1300–2400 m elevation gradient as a proxy for warming in Rwanda. Seedling-size trees of 20 species native to montane forests in eastern and central Africa were planted in multi-species plots at three sites along the gradient. They have overlapping distributions but primarily occur in either transitional rain forests (∼ 1600–2000 ma.s.l.) or mid-elevation TMFs (∼ 2000–3000 ma.s.l.), with both early- (ES) and late-successional (LS) species represented in each elevation origin group. Tree growth (diameter and height) and survival were monitored regularly over 2 years. We found that ES species, especially from lower elevations, grew faster at warmer sites, while several of the LS species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species. ES species with transitional rain forest origin strongly increased proportional to stand basal area at warmer sites, while TMF species declined, suggesting that lower-elevation ES species will have an advantage over higher-elevation species in a warming climate. The risk of higher-elevation and LS species of becoming outcompeted by lower-elevation and ES species due to a thermophilisation response in a warmer climate has important implications for biodiversity and carbon storage of Afromontane forests.
摘要热带树木和树木群落对气候变化的反应对陆地生物圈的碳储存和生物多样性至关重要。热带山地雨林(TMFs)中的树木被认为特别容易受到气候变化的影响,但由于数据匮乏,对这一假设的评估仍然不足。为了缩小热带山地雨林树木对气候变暖反应的知识差距,我们在卢旺达沿 1300-2400 米的海拔梯度建立了一个野外实验,作为气候变暖的替代。我们在沿梯度的三个地点的多树种小区内种植了原产于非洲东部和中部山地森林的 20 个树种的幼苗大小的树木。这些树种的分布有重叠,但主要分布在过渡雨林(1600-2000ma.s.l.)或中海拔 TMF(2000-3000ma.s.l.),每个海拔起源组都有早演性(ES)和晚演性(LS)树种。我们对树木的生长(直径和高度)和存活率进行了为期两年的定期监测。我们发现,早期演替(ES)树种,尤其是海拔较低的树种,在温度较高的地方生长较快,而晚期演替(LS)树种,尤其是海拔较高的树种,则没有反应或生长较慢。此外,气候变暖增加了LS物种的树木死亡率,但ES物种的死亡率并不高。在气候变暖的地区,起源于过渡雨林的 ES 树种与林分基部面积的比例大幅增加,而 TMF 树种则有所减少,这表明在气候变暖的情况下,低海拔 ES 树种将比高海拔树种更具优势。在气候变暖的情况下,由于嗜热反应,海拔较高的物种和LS物种有可能被海拔较低的物种和ES物种淘汰,这对非洲蒙地森林的生物多样性和碳储存具有重要影响。
{"title":"Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment","authors":"B. Ntirugulirwa, E. Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, D. Nsabimana, J. Uddling, Göran Wallin","doi":"10.5194/bg-20-5125-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5125-2023","url":null,"abstract":"Abstract. The response of tropical trees and tree communities to climate change is crucial for the carbon storage and biodiversity of the terrestrial biosphere. Trees in tropical montane rain forests (TMFs) are considered particularly vulnerable to climate change, but this hypothesis remains poorly evaluated due to data scarcity. To reduce the knowledge gap in the response of TMF trees to warming, we established a field experiment along a 1300–2400 m elevation gradient as a proxy for warming in Rwanda. Seedling-size trees of 20 species native to montane forests in eastern and central Africa were planted in multi-species plots at three sites along the gradient. They have overlapping distributions but primarily occur in either transitional rain forests (∼ 1600–2000 ma.s.l.) or mid-elevation TMFs (∼ 2000–3000 ma.s.l.), with both early- (ES) and late-successional (LS) species represented in each elevation origin group. Tree growth (diameter and height) and survival were monitored regularly over 2 years. We found that ES species, especially from lower elevations, grew faster at warmer sites, while several of the LS species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species. ES species with transitional rain forest origin strongly increased proportional to stand basal area at warmer sites, while TMF species declined, suggesting that lower-elevation ES species will have an advantage over higher-elevation species in a warming climate. The risk of higher-elevation and LS species of becoming outcompeted by lower-elevation and ES species due to a thermophilisation response in a warmer climate has important implications for biodiversity and carbon storage of Afromontane forests.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"111 32","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138958425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Feurdean, R. Vachula, Diana Hanganu, A. Stobbe, Maren Gumnior
Abstract. Recent developments in morphological and morphometric analyses of charcoal particles have improved our ability to discern characteristics of burnt plant fuel and interpret fire-type changes. However, burning experiments linking known plants to these metrics are limited, particularly in open ecosystems. This study presents novel analyses of laboratory-produced charcoal of 22 plant species from the steppe regions of Eurasia (Romania and Russia), along with selected samples from three Holocene charcoal and pollen records from the same areas. We characterise charcoal production, morphologies and morphometrics in these grass-dominated environments, thereby enabling more robust interpretations of fuel sources and fire types for palaeofire research. Our experiments demonstrate that fire temperature can introduce biases in charcoal produced among species. Grass charcoal production was significantly lower and decreased more strongly with fire temperature compared to forbs. This suggests an underrepresentation of terrestrial graminoids in sedimentary charcoal assemblages. Morphometric analyses revealed that graminoid charcoal particles were more elongated (length-to-width ratio L/W=4) and narrower (width-to-length ratio W/L=0.38) than forbs (L/W=3.1 and W/L=0.42, respectively), in agreement with a global compilation for graminoids (L/W=4.3 for grass 5.4 grass and wetland graminoids) and forbs (L/W=2.9). However, overlapping L/W values present a challenge for establishing cut-off values for fuel type identification in charcoal assemblages with mixed fuel sources. Based on our analyses and compiled datasets from experimental burns, L/W values above 3.0 may indicate predominantly herbaceous morphologies in temperate grassland-dominated ecosystems, though values are likely to be higher for grass than forb-dominated grasslands. Notably, terrestrial grasses exhibit shorter aspect ratios (L/W=4.3) than wetland graminoids (L/W=6.4), highlighting that the aspect ratio needs tailoring to the specific environment of its application, i.e. wetland vs. terrestrial ecosystems. The long forms of graminoid charcoal particles also suggest their potential for atmospheric longer-distance transport compared to more spherical particles, meaning they likely provide insights into regional fire history. An important finding is that charcoal of herbaceous plants closely corresponded to the pollen record, highlighting a solid link between the dominant vegetation and fuel burnt in grassland-dominated environments. However, the relationship between woody charcoal and tree pollen may be more complex, as tree pollen can travel atmospherically longer distances compared to woody charcoal. Our results also highlight the complex interplay between local vegetation and charcoal composition with human fire use that needs to be considered when interpreting charcoal morphological records. A critical takeaway from this study is the importance of not assuming the universality of previous
{"title":"Charcoal morphologies and morphometrics of a Eurasian grass-dominated system for robust interpretation of past fuel and fire type","authors":"A. Feurdean, R. Vachula, Diana Hanganu, A. Stobbe, Maren Gumnior","doi":"10.5194/bg-20-5069-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5069-2023","url":null,"abstract":"Abstract. Recent developments in morphological and morphometric analyses of charcoal particles have improved our ability to discern characteristics of burnt plant fuel and interpret fire-type changes. However, burning experiments linking known plants to these metrics are limited, particularly in open ecosystems. This study presents novel analyses of laboratory-produced charcoal of 22 plant species from the steppe regions of Eurasia (Romania and Russia), along with selected samples from three Holocene charcoal and pollen records from the same areas. We characterise charcoal production, morphologies and morphometrics in these grass-dominated environments, thereby enabling more robust interpretations of fuel sources and fire types for palaeofire research. Our experiments demonstrate that fire temperature can introduce biases in charcoal produced among species. Grass charcoal production was significantly lower and decreased more strongly with fire temperature compared to forbs. This suggests an underrepresentation of terrestrial graminoids in sedimentary charcoal assemblages. Morphometric analyses revealed that graminoid charcoal particles were more elongated (length-to-width ratio L/W=4) and narrower (width-to-length ratio W/L=0.38) than forbs (L/W=3.1 and W/L=0.42, respectively), in agreement with a global compilation for graminoids (L/W=4.3 for grass 5.4 grass and wetland graminoids) and forbs (L/W=2.9). However, overlapping L/W values present a challenge for establishing cut-off values for fuel type identification in charcoal assemblages with mixed fuel sources. Based on our analyses and compiled datasets from experimental burns, L/W values above 3.0 may indicate predominantly herbaceous morphologies in temperate grassland-dominated ecosystems, though values are likely to be higher for grass than forb-dominated grasslands. Notably, terrestrial grasses exhibit shorter aspect ratios (L/W=4.3) than wetland graminoids (L/W=6.4), highlighting that the aspect ratio needs tailoring to the specific environment of its application, i.e. wetland vs. terrestrial ecosystems. The long forms of graminoid charcoal particles also suggest their potential for atmospheric longer-distance transport compared to more spherical particles, meaning they likely provide insights into regional fire history. An important finding is that charcoal of herbaceous plants closely corresponded to the pollen record, highlighting a solid link between the dominant vegetation and fuel burnt in grassland-dominated environments. However, the relationship between woody charcoal and tree pollen may be more complex, as tree pollen can travel atmospherically longer distances compared to woody charcoal. Our results also highlight the complex interplay between local vegetation and charcoal composition with human fire use that needs to be considered when interpreting charcoal morphological records. A critical takeaway from this study is the importance of not assuming the universality of previous","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":" 44","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Paul, Martijn Hermans, S. Jokinen, I. Brinkmann, H. Filipsson, T. Jilbert
Abstract. Sedimentary molybdenum (Mo) and uranium (U) enrichments are often used as redox proxies to reconstruct bottom water redox changes. However, these redox proxies may not be equally reliable across a range of coastal settings due to varying depositional environments. Fjords vary greatly in their depositional conditions, due to their unique bathymetry and hydrography, and are highly vulnerable to anthropogenic and climatic pressures. Currently, it is unknown to what extent Mo and U sequestration is affected by variable depositional conditions in fjords. Here, we use pore water and sequential extraction data to investigate Mo and U enrichment pathways in sediments of two sill fjords on the Swedish west coast with contrasting depositional environments and bottom water redox conditions. Our data suggest that sedimentary authigenic Mo and U pools differ between the two fjords. At the (ir)regularly dysoxic (oxygen = 0.2–2 mL L−1) Gullmar Fjord, authigenic Mo largely binds to manganese (Mn) oxides and to a lesser extent to iron (Fe) oxides; Mo sulfides do not play a major role due to low sulfate reduction rates, which limits the rate of Mo burial. Authigenic U largely resides in carbonates. At the (ir)regularly euxinic (oxygen = 0 mL L−1; total hydrogen sulfide ≥ 0 mL L−1) Koljö Fjord, authigenic Mo is significantly higher due to binding with more refractory organic matter complexes and Mo-Fe-sulfide phases. Uranium is moderately enriched and largely bound to organic matter. We found no direct evidence for temporal changes in bottom water redox conditions reflected in Mo and U enrichments at either Gullmar Fjord or Koljö Fjord. While sulfidic bottom waters favor Mo sequestration at Koljö Fjord, enrichment maxima reflect a combination of depositional conditions rather than short-term low-oxygen events. Our data demonstrate that secondary pre- and post-depositional factors control Mo and U sequestration in fjords to such an extent that bottom water redox conditions are either not being systematically recorded or overprinted. This explains the large variability in trace metal enrichments observed in fjords and has implications for applying Mo and U as proxies for environmental redox reconstructions in such systems.
摘要。沉积钼(Mo)和铀(U)富集度通常被用作氧化还原代用指标,以重建底层水氧化还原变化。然而,由于沉积环境的不同,这些氧化还原代用指标在不同的沿岸环境中可能并不同样可靠。峡湾由于其独特的水深和水文地理环境,沉积条件差异很大,极易受到人为和气候压力的影响。目前,钼和铀的固碳在多大程度上受到峡湾多变沉积条件的影响还不得而知。在这里,我们利用孔隙水和连续萃取数据研究了瑞典西海岸两个峡湾沉积物中钼和铀的富集途径,这两个峡湾的沉积环境和底水氧化还原条件截然不同。我们的数据表明,两个峡湾的沉积自生钼和铀池各不相同。在(非)经常缺氧(氧=0.2-2 mL L-1)的古尔马峡湾,自生钼主要与锰(Mn)氧化物结合,其次与铁(Fe)氧化物结合;由于硫酸盐还原率低,钼硫化物不起主要作用,这限制了钼的埋藏速度。自生铀主要存在于碳酸盐中。在(非)规则富氧(氧= 0 mL L-1;总硫化氢≥ 0 mL L-1)的科尔约峡湾,由于与较难分解的有机物复合物和钼-铁-硫化物相结合,自生钼含量明显较高。铀的富集程度适中,主要与有机物结合。在古尔马峡湾和科尔约峡湾,我们都没有发现底层水氧化还原条件随时间发生变化的直接证据,这反映在钼和铀的富集程度上。虽然硫酸底水有利于钼在科尔约峡湾的固着,但富集的最大值反映了沉积条件的综合变化,而不是短期的低氧事件。我们的数据表明,沉积前和沉积后的次要因素控制着峡湾中钼和铀的螯合,以至于底层水氧化还原条件要么未被系统记录,要么被覆盖。这就解释了在峡湾中观察到的痕量金属富集的巨大差异,并对在这类系统中应用钼和铀作为环境氧化还原重建的代用指标产生了影响。
{"title":"Revisiting the applicability and constraints of molybdenum- and uranium-based paleo redox proxies: comparing two contrasting sill fjords","authors":"K. Paul, Martijn Hermans, S. Jokinen, I. Brinkmann, H. Filipsson, T. Jilbert","doi":"10.5194/bg-20-5003-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5003-2023","url":null,"abstract":"Abstract. Sedimentary molybdenum (Mo) and uranium (U) enrichments are often used as redox proxies to reconstruct bottom water redox changes. However, these redox proxies may not be equally reliable across a range of coastal settings due to varying depositional environments. Fjords vary greatly in their depositional conditions, due to their unique bathymetry and hydrography, and are highly vulnerable to anthropogenic and climatic pressures. Currently, it is unknown to what extent Mo and U sequestration is affected by variable depositional conditions in fjords. Here, we use pore water and sequential extraction data to investigate Mo and U enrichment pathways in sediments of two sill fjords on the Swedish west coast with contrasting depositional environments and bottom water redox conditions. Our data suggest that sedimentary authigenic Mo and U pools differ between the two fjords. At the (ir)regularly dysoxic (oxygen = 0.2–2 mL L−1) Gullmar Fjord, authigenic Mo largely binds to manganese (Mn) oxides and to a lesser extent to iron (Fe) oxides; Mo sulfides do not play a major role due to low sulfate reduction rates, which limits the rate of Mo burial. Authigenic U largely resides in carbonates. At the (ir)regularly euxinic (oxygen = 0 mL L−1; total hydrogen sulfide ≥ 0 mL L−1) Koljö Fjord, authigenic Mo is significantly higher due to binding with more refractory organic matter complexes and Mo-Fe-sulfide phases. Uranium is moderately enriched and largely bound to organic matter. We found no direct evidence for temporal changes in bottom water redox conditions reflected in Mo and U enrichments at either Gullmar Fjord or Koljö Fjord. While sulfidic bottom waters favor Mo sequestration at Koljö Fjord, enrichment maxima reflect a combination of depositional conditions rather than short-term low-oxygen events. Our data demonstrate that secondary pre- and post-depositional factors control Mo and U sequestration in fjords to such an extent that bottom water redox conditions are either not being systematically recorded or overprinted. This explains the large variability in trace metal enrichments observed in fjords and has implications for applying Mo and U as proxies for environmental redox reconstructions in such systems.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":" 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138962404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, T. Houska, D. Kraus, G. Gettel, R. Kiese, Lutz Breuer, K. Butterbach‐Bahl
Abstract. Upscaling chamber measurements of soil greenhouse gas (GHG) fluxes from point scale to landscape scale remain challenging due to the high variability in the fluxes in space and time. This study measured GHG fluxes and soil parameters at selected point locations (n=268), thereby implementing a stratified sampling approach on a mixed-land-use landscape (∼5.8 km2). Based on these field-based measurements and remotely sensed data on landscape and vegetation properties, we used random forest (RF) models to predict GHG fluxes at a landscape scale (1 m resolution) in summer and autumn. The RF models, combining field-measured soil parameters and remotely sensed data, outperformed those with field-measured predictors or remotely sensed data alone. Available satellite data products from Sentinel-2 on vegetation cover and water content played a more significant role than those attributes derived from a digital elevation model, possibly due to their ability to capture both spatial and seasonal changes in the ecosystem parameters within the landscape. Similar seasonal patterns of higher soil/ecosystem respiration (SR/ER–CO2) and nitrous oxide (N2O) fluxes in summer and higher methane (CH4) uptake in autumn were observed in both the measured and predicted landscape fluxes. Based on the upscaled fluxes, we also assessed the contribution of hot spots to the total landscape fluxes. The identified emission hot spots occupied a small landscape area (7 % to 16 %) but accounted for up to 42 % of the landscape GHG fluxes. Our study showed that combining remotely sensed data with chamber measurements and soil properties is a promising approach for identifying spatial patterns and hot spots of GHG fluxes across heterogeneous landscapes. Such information may be used to inform targeted mitigation strategies at the landscape scale.
{"title":"Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data","authors":"Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, T. Houska, D. Kraus, G. Gettel, R. Kiese, Lutz Breuer, K. Butterbach‐Bahl","doi":"10.5194/bg-20-5029-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5029-2023","url":null,"abstract":"Abstract. Upscaling chamber measurements of soil greenhouse gas (GHG) fluxes from point scale to landscape scale remain challenging due to the high variability in the fluxes in space and time. This study measured GHG fluxes and soil parameters at selected point locations (n=268), thereby implementing a stratified sampling approach on a mixed-land-use landscape (∼5.8 km2). Based on these field-based measurements and remotely sensed data on landscape and vegetation properties, we used random forest (RF) models to predict GHG fluxes at a landscape scale (1 m resolution) in summer and autumn. The RF models, combining field-measured soil parameters and remotely sensed data, outperformed those with field-measured predictors or remotely sensed data alone. Available satellite data products from Sentinel-2 on vegetation cover and water content played a more significant role than those attributes derived from a digital elevation model, possibly due to their ability to capture both spatial and seasonal changes in the ecosystem parameters within the landscape. Similar seasonal patterns of higher soil/ecosystem respiration (SR/ER–CO2) and nitrous oxide (N2O) fluxes in summer and higher methane (CH4) uptake in autumn were observed in both the measured and predicted landscape fluxes. Based on the upscaled fluxes, we also assessed the contribution of hot spots to the total landscape fluxes. The identified emission hot spots occupied a small landscape area (7 % to 16 %) but accounted for up to 42 % of the landscape GHG fluxes. Our study showed that combining remotely sensed data with chamber measurements and soil properties is a promising approach for identifying spatial patterns and hot spots of GHG fluxes across heterogeneous landscapes. Such information may be used to inform targeted mitigation strategies at the landscape scale.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"120 24","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138959388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah Sharpe, M. Gosselin, Catherine Lalande, Alexandre Normandeau, Jean‐Carlos Montero‐Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, A. Limoges
Abstract. Submarine canyons enhance shelf–slope sediment exchange and influence hydrodynamic processes, with consequences for biogeochemical cycles. This work documents variations in the vertical export of biogenic matter on the northern shore of the lower St. Lawrence Estuary (LSLE, Quebec, eastern Canada), which is characterized by the presence of an active submarine canyon system. A total of three moorings were deployed from November 2020 to September 2021. One nearshore mooring (PDMc) was deployed in the main axis of the Pointe-des-Monts (PDM) canyon system and was equipped with an acoustic Doppler current profiler (ADCP), and two moorings equipped with sediment traps were deployed in the distal PDM canyon system (PDM-154, PDM-224) and offshore Baie-Comeau (BC-133). The ADCP data revealed the occurrence of a minor sediment remobilization event (December 2020) and a small turbidity current (February 2021) in the canyon. Concurrent elevated fluxes of total particulate matter, particulate organic carbon, particulate nitrogen, and chloropigments showed that these events left a signature in sediment traps PDM-154 and PDM-224 located > 2.6 km further offshore by enhancing lateral dispersion of resuspended sediments. The composition of diatom and dinoflagellate assemblages was similar in the canyon system and offshore BC, but the diatom bloom occurred 2 weeks earlier (in mid-April) at the PDM site. A bloom of the potentially toxic diatom Pseudo-nitzschia seriata was also observed during the second half of September 2021 at the BC site. Annual diatom and dinoflagellate fluxes were almost 2 times lower at the PDM site than at the BC site, possibly due to differences in riverine input and the structure of the water column, as well as increased sediment input and resuspension at the PDM site, leading to limited light availability. This study notably helps identify the relationship between near-bed canyon processes and biogenic matter export in the water column, thereby directly influencing the ecosystem offshore PDM. The study period further covered an anomalously nearly ice-free winter, and thus, in the context of climate change, it provides valuable insight into future trends of biogenic matter export in the LSLE.
{"title":"Influence of a small submarine canyon on biogenic matter export flux in the lower St. Lawrence Estuary, eastern Canada","authors":"Hannah Sharpe, M. Gosselin, Catherine Lalande, Alexandre Normandeau, Jean‐Carlos Montero‐Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, A. Limoges","doi":"10.5194/bg-20-4981-2023","DOIUrl":"https://doi.org/10.5194/bg-20-4981-2023","url":null,"abstract":"Abstract. Submarine canyons enhance shelf–slope sediment exchange and influence hydrodynamic processes, with consequences for biogeochemical cycles. This work documents variations in the vertical export of biogenic matter on the northern shore of the lower St. Lawrence Estuary (LSLE, Quebec, eastern Canada), which is characterized by the presence of an active submarine canyon system. A total of three moorings were deployed from November 2020 to September 2021. One nearshore mooring (PDMc) was deployed in the main axis of the Pointe-des-Monts (PDM) canyon system and was equipped with an acoustic Doppler current profiler (ADCP), and two moorings equipped with sediment traps were deployed in the distal PDM canyon system (PDM-154, PDM-224) and offshore Baie-Comeau (BC-133). The ADCP data revealed the occurrence of a minor sediment remobilization event (December 2020) and a small turbidity current (February 2021) in the canyon. Concurrent elevated fluxes of total particulate matter, particulate organic carbon, particulate nitrogen, and chloropigments showed that these events left a signature in sediment traps PDM-154 and PDM-224 located > 2.6 km further offshore by enhancing lateral dispersion of resuspended sediments. The composition of diatom and dinoflagellate assemblages was similar in the canyon system and offshore BC, but the diatom bloom occurred 2 weeks earlier (in mid-April) at the PDM site. A bloom of the potentially toxic diatom Pseudo-nitzschia seriata was also observed during the second half of September 2021 at the BC site. Annual diatom and dinoflagellate fluxes were almost 2 times lower at the PDM site than at the BC site, possibly due to differences in riverine input and the structure of the water column, as well as increased sediment input and resuspension at the PDM site, leading to limited light availability. This study notably helps identify the relationship between near-bed canyon processes and biogenic matter export in the water column, thereby directly influencing the ecosystem offshore PDM. The study period further covered an anomalously nearly ice-free winter, and thus, in the context of climate change, it provides valuable insight into future trends of biogenic matter export in the LSLE.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"34 S130","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138965221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active organic aerosols (OAs), which can act as primary biological aerosol particles (PBAPs). To elucidate the origin and formation of secondary fatty alcohols (SFAs) in atmospheric aerosols, their mass size distribution in aerosol samples obtained from a deciduous forest canopy was measured in spring, summer and autumn. The SFAs showed the highest concentration in spring (growing season), with n-nonacosan-10-ol being the most abundant. In spring and summer, the size peak of n-nonacosan-10-ol was in the particle size range >10.0 µm, whereas it was in the 1.9–3.0 µm range in autumn. The size distribution of n-nonacosan-10-ol did not show any significant correlation with that of the known biogenic tracers of pollen, soil and fungal spores in spring and summer. The overall results, together with SFAs measured in plant leaves, as well as the literature, suggest that SFAs originate mostly from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the possible sources of PBAPs and their effects on the ice nucleation activity of aerosols based on seasonal changes in particle size.
{"title":"Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions","authors":"Yuhao Cui, E. Tachibana, K. Kawamura, Y. Miyazaki","doi":"10.5194/bg-20-4969-2023","DOIUrl":"https://doi.org/10.5194/bg-20-4969-2023","url":null,"abstract":"Abstract. Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active organic aerosols (OAs), which can act as primary biological aerosol particles (PBAPs). To elucidate the origin and formation of secondary fatty alcohols (SFAs) in atmospheric aerosols, their mass size distribution in aerosol samples obtained from a deciduous forest canopy was measured in spring, summer and autumn. The SFAs showed the highest concentration in spring (growing season), with n-nonacosan-10-ol being the most abundant. In spring and summer, the size peak of n-nonacosan-10-ol was in the particle size range >10.0 µm, whereas it was in the 1.9–3.0 µm range in autumn. The size distribution of n-nonacosan-10-ol did not show any significant correlation with that of the known biogenic tracers of pollen, soil and fungal spores in spring and summer. The overall results, together with SFAs measured in plant leaves, as well as the literature, suggest that SFAs originate mostly from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the possible sources of PBAPs and their effects on the ice nucleation activity of aerosols based on seasonal changes in particle size.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"51 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuai Chen, J. Zhong, L. Ran, Y. Yi, Wanfa Wang, Zelong Yan, Si-liang Li, K. M. Mostofa
Abstract. Mountainous rivers are critical in transporting dissolved organic carbon (DOC) from terrestrial environments to downstream ecosystems. However, how geomorphologic factors and anthropogenic impacts control the composition and export of DOC in mountainous rivers remains largely unclear. Here, we explore DOC dynamics in three subtropical mountainous catchments (i.e., the Yinjiang, Shiqian, and Yuqing catchments) in southwest China, which are heavily influenced by anthropogenic activities. Water chemistry, stable and radioactive carbon isotopes of DOC (δ13CDOC and Δ14CDOC), and optical properties (UV absorbance and fluorescence spectra) were employed to assess the biogeochemical processes and controlling factors on riverine DOC. The radiocarbon ages of DOC in the Yinjiang River varied widely from 928 years BP to the present. Stepwise multiple regression analyses and partial least square path models revealed that geomorphology and anthropogenic activities were the major drivers controlling DOC concentrations and DOM characteristics. Catchments with higher catchment slope gradients were characterized by lower DOC concentrations, enriched δ13CDOC and Δ14CDOC, and more aromatic dissolved organic matter (DOM), which were opposite to catchments with gentle catchment slopes. Variabilities in DOC concentrations were also regulated by land use, with higher DOC concentrations in urban and agricultural areas. Furthermore, DOM in catchments with a higher proportion of urban and agricultural land uses was less aromatic, less recently produced, and exhibited a higher degree of humification and more autochthonous humic-like DOM. This research highlights the significance of incorporating geomorphologic controls on DOC sources and anthropogenic impacts on DOM composition into the understanding of DOC dynamics and the quality of DOM in mountainous rivers, which are globally abundant.
摘要山区河流是将溶解有机碳(DOC)从陆地环境输送到下游生态系统的关键。然而,地貌因素和人为影响如何控制山区河流中溶解有机碳的组成和输出在很大程度上仍不清楚。在此,我们探讨了受人为活动影响较大的中国西南部三个亚热带山区集水区(即印江、石阡和余庆集水区)的 DOC 动态变化。采用水化学、DOC的稳定碳同位素和放射性碳同位素(δ13CDOC和δ14CDOC)以及光学性质(紫外吸收光谱和荧光光谱)来评估河流DOC的生物地球化学过程和控制因素。结果表明,从公元前 928 年到现在,印江 DOC 的放射性碳年代差异很大。逐步多元回归分析和偏最小二乘法路径模型显示,地貌和人类活动是控制 DOC 浓度和 DOM 特征的主要驱动因素。集水坡度较大的集水区 DOC 浓度较低,δ13CDOC 和 Δ14CDOC富集,芳香族溶解有机物(DOM)较多,这与集水坡度较缓的集水区相反。溶解有机物浓度的变化也受土地利用的影响,城市和农业区的溶解有机物浓度较高。此外,在城市和农业用地比例较高的集水区,DOM 的芳香度较低,产生时间较短,腐殖化程度较高,自生腐殖样 DOM 较多。这项研究强调了将地貌对 DOC 来源的控制和人类活动对 DOM 组成的影响纳入对 DOC 动态和全球山区河流 DOM 质量的理解中的重要意义。
{"title":"Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes","authors":"Shuai Chen, J. Zhong, L. Ran, Y. Yi, Wanfa Wang, Zelong Yan, Si-liang Li, K. M. Mostofa","doi":"10.5194/bg-20-4949-2023","DOIUrl":"https://doi.org/10.5194/bg-20-4949-2023","url":null,"abstract":"Abstract. Mountainous rivers are critical in transporting dissolved organic carbon (DOC) from terrestrial environments to downstream ecosystems. However, how geomorphologic factors and anthropogenic impacts control the composition and export of DOC in mountainous rivers remains largely unclear. Here, we explore DOC dynamics in three subtropical mountainous catchments (i.e., the Yinjiang, Shiqian, and Yuqing catchments) in southwest China, which are heavily influenced by anthropogenic activities. Water chemistry, stable and radioactive carbon isotopes of DOC (δ13CDOC and Δ14CDOC), and optical properties (UV absorbance and fluorescence spectra) were employed to assess the biogeochemical processes and controlling factors on riverine DOC. The radiocarbon ages of DOC in the Yinjiang River varied widely from 928 years BP to the present. Stepwise multiple regression analyses and partial least square path models revealed that geomorphology and anthropogenic activities were the major drivers controlling DOC concentrations and DOM characteristics. Catchments with higher catchment slope gradients were characterized by lower DOC concentrations, enriched δ13CDOC and Δ14CDOC, and more aromatic dissolved organic matter (DOM), which were opposite to catchments with gentle catchment slopes. Variabilities in DOC concentrations were also regulated by land use, with higher DOC concentrations in urban and agricultural areas. Furthermore, DOM in catchments with a higher proportion of urban and agricultural land uses was less aromatic, less recently produced, and exhibited a higher degree of humification and more autochthonous humic-like DOM. This research highlights the significance of incorporating geomorphologic controls on DOC sources and anthropogenic impacts on DOM composition into the understanding of DOC dynamics and the quality of DOM in mountainous rivers, which are globally abundant.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"11 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138970580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}