首页 > 最新文献

Biogerontology最新文献

英文 中文
Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome. 持续暴露于高葡萄糖可诱导小鼠巨噬细胞中细胞衰老标记物的差异表达,但会损害对衰老细胞分泌组的免疫监视反应。
IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-08-01 Epub Date: 2024-01-19 DOI: 10.1007/s10522-024-10092-z
Bhawna Diwan, Rahul Yadav, Rohit Goyal, Rohit Sharma

The influence of chronic diseases on various facets of macrophage cellular senescence is poorly understood. This study evaluated the impact of chronic hyperglycemia on the induction of cellular senescence and subsequent immunosurveillance functions in RAW264.7 macrophages. Macrophages were cultured under normal glucose (NG; 5 mM), high glucose (HG; 20 mM), and very high glucose (VHG; 40 mM) conditions and assessed for markers of cellular senescence. Hyperglycemia induced strong upregulation of SA-β-gal activity, and loss of PCNA and Lamin B1 gene expression while markers of cell cycle arrest generally decreased. Non-significant changes in SASP-related proteins were observed while ROS levels slightly decreased and mitochondrial membrane potential increased. Protein concentration on the exosome membrane surface and their stability appeared to increase under hyperglycemic conditions. However, when macrophages were exposed to the secretory media (SM) of senescent preadipocytes, a dramatic increase in the levels of all inflammatory proteins was recorded especially in the VHG group that was also accompanied by upregulation of NF-κB and NLRP3 gene expression. SM treatment to hyperglycemic macrophages activated the TLR-2/Myd88 pathway but decreased the expression of scavenger receptors RAGE, CD36, and Olr-1 while CD44 and CXCL16 expression increased. On exposure to LPS, a strong upregulation in NO, ROS, and inflammatory cytokines was observed. Together, these results suggest that primary markers of cellular senescence are aberrantly expressed under chronic hyperglycemic conditions in macrophages with no significant SASP activation. Nonetheless, hyperglycemia strongly deregulates macrophage functions leading to impaired immunosurveillance of senescent cells and aggravation of inflamm-aging. This work provides novel insights into how hyperglycemia-induced dysfunctions can impact the potency of macrophages to manage senescent cell burden in aging tissues.

人们对慢性疾病对巨噬细胞衰老各方面的影响知之甚少。本研究评估了慢性高血糖对诱导 RAW264.7 巨噬细胞衰老及随后免疫监视功能的影响。在正常葡萄糖(NG;5 mM)、高葡萄糖(HG;20 mM)和极高葡萄糖(VHG;40 mM)条件下培养巨噬细胞,并评估细胞衰老的标志物。高血糖诱导 SA-β-gal 活性强烈上调,PCNA 和 Lamin B1 基因表达减少,而细胞周期停滞的标志物普遍减少。观察到 SASP 相关蛋白无明显变化,而 ROS 水平略有下降,线粒体膜电位升高。在高血糖条件下,外泌体膜表面的蛋白质浓度及其稳定性似乎有所增加。然而,当巨噬细胞暴露于衰老前脂肪细胞的分泌介质(SM)中时,所有炎症蛋白的水平都急剧上升,尤其是在 VHG 组,同时还伴随着 NF-κB 和 NLRP3 基因表达的上调。SM 处理高血糖巨噬细胞激活了 TLR-2/Myd88 通路,但降低了清道夫受体 RAGE、CD36 和 Olr-1 的表达,同时 CD44 和 CXCL16 的表达增加。暴露于 LPS 时,观察到 NO、ROS 和炎症细胞因子的强烈上调。总之,这些结果表明,在长期高血糖条件下,细胞衰老的主要标志物在巨噬细胞中异常表达,而 SASP 并没有明显激活。然而,高血糖会强烈干扰巨噬细胞的功能,导致衰老细胞的免疫监视功能受损,炎症老化加剧。这项工作提供了新的见解,让我们了解高血糖引起的功能障碍如何影响巨噬细胞管理衰老组织中衰老细胞负担的能力。
{"title":"Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome.","authors":"Bhawna Diwan, Rahul Yadav, Rohit Goyal, Rohit Sharma","doi":"10.1007/s10522-024-10092-z","DOIUrl":"10.1007/s10522-024-10092-z","url":null,"abstract":"<p><p>The influence of chronic diseases on various facets of macrophage cellular senescence is poorly understood. This study evaluated the impact of chronic hyperglycemia on the induction of cellular senescence and subsequent immunosurveillance functions in RAW264.7 macrophages. Macrophages were cultured under normal glucose (NG; 5 mM), high glucose (HG; 20 mM), and very high glucose (VHG; 40 mM) conditions and assessed for markers of cellular senescence. Hyperglycemia induced strong upregulation of SA-β-gal activity, and loss of PCNA and Lamin B1 gene expression while markers of cell cycle arrest generally decreased. Non-significant changes in SASP-related proteins were observed while ROS levels slightly decreased and mitochondrial membrane potential increased. Protein concentration on the exosome membrane surface and their stability appeared to increase under hyperglycemic conditions. However, when macrophages were exposed to the secretory media (SM) of senescent preadipocytes, a dramatic increase in the levels of all inflammatory proteins was recorded especially in the VHG group that was also accompanied by upregulation of NF-κB and NLRP3 gene expression. SM treatment to hyperglycemic macrophages activated the TLR-2/Myd88 pathway but decreased the expression of scavenger receptors RAGE, CD36, and Olr-1 while CD44 and CXCL16 expression increased. On exposure to LPS, a strong upregulation in NO, ROS, and inflammatory cytokines was observed. Together, these results suggest that primary markers of cellular senescence are aberrantly expressed under chronic hyperglycemic conditions in macrophages with no significant SASP activation. Nonetheless, hyperglycemia strongly deregulates macrophage functions leading to impaired immunosurveillance of senescent cells and aggravation of inflamm-aging. This work provides novel insights into how hyperglycemia-induced dysfunctions can impact the potency of macrophages to manage senescent cell burden in aging tissues.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive model for the biochemistry of ageing, senescence and longevity. 老化、衰老和长寿的生物化学综合模型。
IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-08-01 Epub Date: 2024-03-05 DOI: 10.1007/s10522-024-10097-8
Hiskias Gerrit Keizer, R Brands, Ronald Sake Oosting, Willem Seinen

Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.

人们提出了各种老化模式,每种模式都侧重于不同的生化和/或细胞途径。这导致对老化的描述复杂而不连贯。在这里,我们描述了一个由三个相互作用的信号枢纽组成的简明而全面的老化生化模型。它们分别是控制先天性免疫系统的核因子卡巴 B 复合物(NFκB)、控制细胞生长的雷帕霉素哺乳动物靶复合物以及控制体内平衡的综合应激反应。这一模型为其他大多数涉及老化的更详细的生化途径提供了一个框架,并解释了为什么老化涉及慢性炎症、细胞衰老和易受环境压力影响,同时以高级糖化终产物的自发形成为起点。这一模型所依据的全部数据表明,AMPK-ISR 的逐渐抑制可能决定了人的最长寿命。根据这一模型,抗衰老药物一般会呈现激素剂量反应曲线。这使得剂量优化过程变得更加复杂。由于其特殊的作用机制,抗衰老药物碱性磷酸酶是一个例外,因为它可能表现出饱和动力学。
{"title":"A comprehensive model for the biochemistry of ageing, senescence and longevity.","authors":"Hiskias Gerrit Keizer, R Brands, Ronald Sake Oosting, Willem Seinen","doi":"10.1007/s10522-024-10097-8","DOIUrl":"10.1007/s10522-024-10097-8","url":null,"abstract":"<p><p>Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piperine improves the health span of Drosophila melanogaster with age- and sex-specific effect. 胡椒碱能改善黑腹果蝇的健康寿命,并具有年龄和性别特异性效应。
IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-08-01 Epub Date: 2024-03-28 DOI: 10.1007/s10522-024-10100-2
Hye-Yeon Lee, Ji-Hyeon Lee, Jisun Baek, Kyung A Cho, Kyung-Jin Min

Piperine, a dietary phytochemical isolated from the Piper species, has been used as a natural medicine for pain, flu, and fever in ancient China and India. Although the health benefits of piperine have been widely studied, research on its effect on aging is limited. This study aimed to determine whether piperine has the potential to mitigate aging-related changes in the fruit fly (Drosophila melanogaster), which is an excellent model organism for studies on aging. The experiments were conducted using the newly eclosed or 30-day-old D. melanogaster wild-type strain Cantonized-white. Piperine was dissolved in 99% ethanol and added to the sucrose-yeast medium at a final concentration of 10, 35, 70, or 100 μM. The study examined the effects of piperine supplementation on the lifespan of D. melanogaster and other physiological functions, such as fecundity, feeding, lipid content, and resistance to environmental stress. Log-rank tests, Shapiro-Wilk test, F-test, t-test, or Wilcoxon rank sum test were used to analyze the data. Piperine failed to change the lifespan and body weight, but increased the fecundity and decreased the feeding rate in one-week-old flies. However, when piperine was fed to 30-day-old flies, it increased the lifespan of male flies and the fecundity and feeding rate of female flies. These results indicate that piperine can improve the health of aged flies. The findings suggest that piperine has age-dependent and sex-specific anti-aging effects in fruit flies.

胡椒碱是从胡椒属植物中分离出来的一种膳食植物化学物质,在古代中国和印度一直被用作治疗疼痛、流感和发烧的天然药物。虽然胡椒碱对健康的益处已被广泛研究,但有关其对衰老的影响的研究却很有限。本研究旨在确定胡椒碱是否有可能缓解果蝇(黑腹果蝇)与衰老有关的变化,果蝇是研究衰老的极佳模式生物。实验使用刚羽化或羽化 30 天的黑腹果蝇野生型品系广白进行。将胡椒碱溶解在 99% 的乙醇中,并以 10、35、70 或 100 μM 的最终浓度添加到蔗糖-酵母培养基中。该研究考察了补充胡椒碱对黑腹蝇蛆寿命及其他生理功能的影响,如繁殖力、摄食、脂质含量和对环境应激的抵抗力。数据分析采用对数秩检验、Shapiro-Wilk检验、F检验、t检验或Wilcoxon秩和检验。胡椒碱未能改变一周龄苍蝇的寿命和体重,但提高了繁殖力并降低了摄食率。然而,给30日龄的苍蝇喂食胡椒碱后,雄蝇的寿命、雌蝇的繁殖力和摄食率都有所提高。这些结果表明,胡椒碱可以改善老龄苍蝇的健康状况。研究结果表明,胡椒碱对果蝇具有年龄依赖性和性别特异性抗衰老作用。
{"title":"Piperine improves the health span of Drosophila melanogaster with age- and sex-specific effect.","authors":"Hye-Yeon Lee, Ji-Hyeon Lee, Jisun Baek, Kyung A Cho, Kyung-Jin Min","doi":"10.1007/s10522-024-10100-2","DOIUrl":"10.1007/s10522-024-10100-2","url":null,"abstract":"<p><p>Piperine, a dietary phytochemical isolated from the Piper species, has been used as a natural medicine for pain, flu, and fever in ancient China and India. Although the health benefits of piperine have been widely studied, research on its effect on aging is limited. This study aimed to determine whether piperine has the potential to mitigate aging-related changes in the fruit fly (Drosophila melanogaster), which is an excellent model organism for studies on aging. The experiments were conducted using the newly eclosed or 30-day-old D. melanogaster wild-type strain Cantonized-white. Piperine was dissolved in 99% ethanol and added to the sucrose-yeast medium at a final concentration of 10, 35, 70, or 100 μM. The study examined the effects of piperine supplementation on the lifespan of D. melanogaster and other physiological functions, such as fecundity, feeding, lipid content, and resistance to environmental stress. Log-rank tests, Shapiro-Wilk test, F-test, t-test, or Wilcoxon rank sum test were used to analyze the data. Piperine failed to change the lifespan and body weight, but increased the fecundity and decreased the feeding rate in one-week-old flies. However, when piperine was fed to 30-day-old flies, it increased the lifespan of male flies and the fecundity and feeding rate of female flies. These results indicate that piperine can improve the health of aged flies. The findings suggest that piperine has age-dependent and sex-specific anti-aging effects in fruit flies.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age and dietary restriction modulate mitochondrial quality in quadriceps femoris muscle of male mice. 年龄和饮食限制可调节雄性小鼠股四头肌线粒体的质量。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-06-01 Epub Date: 2024-01-06 DOI: 10.1007/s10522-023-10086-3
Ting-Rui Zhang, Chun-Hsien Chiang, Tzu-Chieh Hsu, Chih-Yun Wang, Ching-Yi Chen

Dietary restriction (DR) is a potential intervention for ameliorating ageing-related damages. Mitochondrial quality control is the key mechanism for regulating cellular functions in skeletal muscle. This study aimed to explore the effect of age and DR on the homeostasis of mitochondrial quality control in skeletal muscle. To study the effect of age on mitochondrial homeostasis, young (3 months old) male C57BL/6J mice were fed ad libitum (AL) until 7 (Young), 14 (Middle), and 19 months (Aged) of age. For the DR intervention, 60% of AL intake was given to the mice at 3 months of age until they reached 19 months of age (16 months). The quadriceps femoris muscle was collected for further analysis. Significant changes in the skeletal muscle were noticed during the transition between middle age and the elderly stages. An accumulation of collagen was observed in the muscle after middle age. Compared with the Middle muscle, Aged muscle displayed a greater expression of VDAC, and lower expressions of mitochondrial dynamic proteins and OXPHOS proteins. The DR intervention attenuated collagen content and elongated the sarcomere length in the skeletal muscle during ageing. In addition, DR adjusted the abnormalities in mitochondrial morphology in the Aged muscle. DR downregulated VDAC expression, but upregulated OPA1 and DRP1 expressions. Taken together, greater pathological changes were noticed in the skeletal muscle during ageing, especially in the transition between middle age and the elderly, whereas early-onset DR attenuated the muscular ageing via normalising partial functions of mitochondria.

饮食限制(DR)是一种潜在的干预措施,可改善与衰老相关的损害。线粒体质量控制是调节骨骼肌细胞功能的关键机制。本研究旨在探讨年龄和 DR 对骨骼肌线粒体质量控制平衡的影响。为了研究年龄对线粒体稳态的影响,研究人员给幼年(3 个月大)雄性 C57BL/6J 小鼠自由喂养(AL)至 7 个月大(幼年)、14 个月大(中年)和 19 个月大(老年)。在 DR 干预中,小鼠在 3 月龄时摄入 60% 的 AL,直至 19 月龄(16 个月)。收集股四头肌进行进一步分析。在中年和老年的过渡阶段,骨骼肌发生了显著变化。中年以后,肌肉中的胶原蛋白开始积累。与中年肌肉相比,老年肌肉中 VDAC 的表达量更高,线粒体动态蛋白和 OXPHOS 蛋白的表达量较低。DR干预减少了衰老过程中骨骼肌中胶原蛋白的含量,并延长了肌节长度。此外,DR 还能调整衰老肌肉线粒体形态的异常。DR 下调了 VDAC 的表达,但上调了 OPA1 和 DRP1 的表达。综上所述,骨骼肌在衰老过程中,尤其是在中年和老年之间的过渡时期,发生了更大的病理变化,而早发性DR通过使线粒体的部分功能正常化,减轻了肌肉的衰老。
{"title":"Age and dietary restriction modulate mitochondrial quality in quadriceps femoris muscle of male mice.","authors":"Ting-Rui Zhang, Chun-Hsien Chiang, Tzu-Chieh Hsu, Chih-Yun Wang, Ching-Yi Chen","doi":"10.1007/s10522-023-10086-3","DOIUrl":"10.1007/s10522-023-10086-3","url":null,"abstract":"<p><p>Dietary restriction (DR) is a potential intervention for ameliorating ageing-related damages. Mitochondrial quality control is the key mechanism for regulating cellular functions in skeletal muscle. This study aimed to explore the effect of age and DR on the homeostasis of mitochondrial quality control in skeletal muscle. To study the effect of age on mitochondrial homeostasis, young (3 months old) male C57BL/6J mice were fed ad libitum (AL) until 7 (Young), 14 (Middle), and 19 months (Aged) of age. For the DR intervention, 60% of AL intake was given to the mice at 3 months of age until they reached 19 months of age (16 months). The quadriceps femoris muscle was collected for further analysis. Significant changes in the skeletal muscle were noticed during the transition between middle age and the elderly stages. An accumulation of collagen was observed in the muscle after middle age. Compared with the Middle muscle, Aged muscle displayed a greater expression of VDAC, and lower expressions of mitochondrial dynamic proteins and OXPHOS proteins. The DR intervention attenuated collagen content and elongated the sarcomere length in the skeletal muscle during ageing. In addition, DR adjusted the abnormalities in mitochondrial morphology in the Aged muscle. DR downregulated VDAC expression, but upregulated OPA1 and DRP1 expressions. Taken together, greater pathological changes were noticed in the skeletal muscle during ageing, especially in the transition between middle age and the elderly, whereas early-onset DR attenuated the muscular ageing via normalising partial functions of mitochondria.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of ENPP5, a senescence-associated secretory phenotype factor, prevents skin aging. 调节衰老相关分泌表型因子 ENPP5 可防止皮肤老化。
IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-06-01 Epub Date: 2024-03-04 DOI: 10.1007/s10522-024-10096-9
Kento Takaya, Kazuo Kishi

Aging negatively affects the appearance and texture of the skin owing to the accumulation of senescent fibroblasts within the dermis. Senescent cells undergo abnormal remodeling of collagen and the extracellular matrix through an inflammatory histolytic senescence-associated secretory phenotype (SASP). Therefore, suppression of SASP in senescent cells is essential for the development of effective skin anti-aging therapies. Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5), an extracellular signaling molecule, has been implicated in vascular aging and apoptosis; however, its role in SASP remains unclear. Therefore, this study aimed to investigate the role of ENPP5 in SASP and skin aging using molecular techniques. We investigated the effects of siRNA-mediated ENPP5 knockdown, human recombinant ENPP5 (rENPP5) treatment, and lentiviral overexpression of ENPP5 on SASP and aging in human skin fibroblasts. Additionally, we investigated the effect of siRNA-mediated ENPP5 knockdown on the skin of C57BL/6 mice. We found that ENPP5 was significantly expressed in replication-aged and otherwise DNA-damaged human skin fibroblasts and that treatment with human rENPP5 and lentiviral overexpression of ENPP5 promoted SASP and senescence. By contrast, siRNA-mediated knockdown of ENPP5 suppressed SASP and the expression of skin aging-related factors. Additionally, ENPP5 knockdown in mouse skin ameliorated the age-related reduction of subcutaneous adipose tissue, the panniculus carnosus muscle layer, and thinning of collagen fibers. Conclusively, these findings suggest that age-related changes may be prevented through the regulation of ENPP5 expression to suppress SASP in aging cells, contributing to the development of anti-aging treatments for the skin.

由于真皮层中衰老成纤维细胞的积累,衰老会对皮肤的外观和质地产生负面影响。衰老细胞通过炎性组织溶解性衰老相关分泌表型(SASP)对胶原蛋白和细胞外基质进行异常重塑。因此,抑制衰老细胞的 SASP 对于开发有效的皮肤抗衰老疗法至关重要。八核苷酸焦磷酸酶/磷酸二酯酶家族成员 5(ENPP5)是一种细胞外信号分子,与血管衰老和细胞凋亡有关;但它在 SASP 中的作用仍不清楚。因此,本研究旨在利用分子技术研究 ENPP5 在 SASP 和皮肤老化中的作用。我们研究了 siRNA 介导的 ENPP5 敲除、人重组 ENPP5(rENPP5)处理和慢病毒过表达 ENPP5 对人类皮肤成纤维细胞 SASP 和衰老的影响。此外,我们还研究了 siRNA 介导的 ENPP5 基因敲除对 C57BL/6 小鼠皮肤的影响。我们发现,ENPP5 在复制老化和其他 DNA 损伤的人类皮肤成纤维细胞中明显表达,用人类 rENPP5 和慢病毒过表达 ENPP5 可促进 SASP 和衰老。相比之下,siRNA 介导的 ENPP5 敲除抑制了 SASP 和皮肤衰老相关因子的表达。此外,在小鼠皮肤中敲除ENPP5还能改善与年龄相关的皮下脂肪组织减少、肉垂肌层和胶原纤维变细等现象。这些研究结果表明,通过调节ENPP5的表达来抑制衰老细胞中的SASP,可以防止与年龄有关的变化,从而有助于开发皮肤抗衰老疗法。
{"title":"Regulation of ENPP5, a senescence-associated secretory phenotype factor, prevents skin aging.","authors":"Kento Takaya, Kazuo Kishi","doi":"10.1007/s10522-024-10096-9","DOIUrl":"10.1007/s10522-024-10096-9","url":null,"abstract":"<p><p>Aging negatively affects the appearance and texture of the skin owing to the accumulation of senescent fibroblasts within the dermis. Senescent cells undergo abnormal remodeling of collagen and the extracellular matrix through an inflammatory histolytic senescence-associated secretory phenotype (SASP). Therefore, suppression of SASP in senescent cells is essential for the development of effective skin anti-aging therapies. Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5), an extracellular signaling molecule, has been implicated in vascular aging and apoptosis; however, its role in SASP remains unclear. Therefore, this study aimed to investigate the role of ENPP5 in SASP and skin aging using molecular techniques. We investigated the effects of siRNA-mediated ENPP5 knockdown, human recombinant ENPP5 (rENPP5) treatment, and lentiviral overexpression of ENPP5 on SASP and aging in human skin fibroblasts. Additionally, we investigated the effect of siRNA-mediated ENPP5 knockdown on the skin of C57BL/6 mice. We found that ENPP5 was significantly expressed in replication-aged and otherwise DNA-damaged human skin fibroblasts and that treatment with human rENPP5 and lentiviral overexpression of ENPP5 promoted SASP and senescence. By contrast, siRNA-mediated knockdown of ENPP5 suppressed SASP and the expression of skin aging-related factors. Additionally, ENPP5 knockdown in mouse skin ameliorated the age-related reduction of subcutaneous adipose tissue, the panniculus carnosus muscle layer, and thinning of collagen fibers. Conclusively, these findings suggest that age-related changes may be prevented through the regulation of ENPP5 expression to suppress SASP in aging cells, contributing to the development of anti-aging treatments for the skin.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of biological sex in human skeletal muscle transcriptome during ageing. 衰老过程中生物性别对人类骨骼肌转录组的影响。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-06-01 Epub Date: 2023-10-04 DOI: 10.1007/s10522-023-10070-x
Xiaoyu Huang, Mao Chen, Ya Xiao, Fangyi Zhu, Liying Chen, Xiaoyu Tian, Li Hong

Sex is a crucial biological variable, and influence of biological sex on the change of gene expression in ageing skeletal muscle has not yet been fully revealed. In this study, the mRNA expression profiles were obtained from the Gene Expression Omnibus database. Key genes were identified by differential expression analysis and weighted gene co-expression network analysis. The gene set enrichment analysis software and Molecular Signatures Database were used for functional and enrichment analysis. A protein-protein interaction network was constructed using STRING and visualized in Cytoscape. The results were compared between female and male subgroups. Differentially expressed genes and enriched pathways in different sex subgroups shared only limited similarities. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The muscle myosin filament pathways were downregulated in the both aged female and male samples whereas transforming growth factor beta pathway and extracellular matrix-related pathways were upregulated. With muscle ageing, the metabolism-related pathways, protein synthesis and degradation pathways, results of predicted immune cell infiltration, and gene cluster associated with slow-type myofibers drastically different between the female and male subgroups. This finding may indicate that changes in muscle type with ageing may differ between the sexes in vastus lateralis muscle.

性别是一个重要的生物学变量,生物性别对衰老骨骼肌基因表达变化的影响尚未完全揭示。在本研究中,mRNA表达谱是从基因表达综合数据库中获得的。通过差异表达分析和加权基因共表达网络分析鉴定关键基因。基因集富集分析软件和分子特征数据库用于功能和富集分析。使用STRING构建蛋白质-蛋白质相互作用网络,并在Cytoscape中可视化。将结果在女性和男性亚组之间进行比较。不同性别亚群中差异表达的基因和富集的途径只有有限的相似性。在不考虑性别差异的情况下,女性亚组富集的途径与老年组富集的通路更相似。在不考虑性别差异的情况下,女性亚组富集的途径与老年组富集的通路更相似。在老年女性和男性样本中,肌肉肌球蛋白丝通路下调,而转化生长因子β通路和细胞外基质相关通路上调。随着肌肉衰老,代谢相关途径、蛋白质合成和降解途径、预测的免疫细胞浸润结果以及与慢型肌纤维相关的基因簇在女性和男性亚组之间存在显著差异。这一发现可能表明,随着年龄的增长,股外侧肌肌肉类型的变化可能因性别而异。
{"title":"The influence of biological sex in human skeletal muscle transcriptome during ageing.","authors":"Xiaoyu Huang, Mao Chen, Ya Xiao, Fangyi Zhu, Liying Chen, Xiaoyu Tian, Li Hong","doi":"10.1007/s10522-023-10070-x","DOIUrl":"10.1007/s10522-023-10070-x","url":null,"abstract":"<p><p>Sex is a crucial biological variable, and influence of biological sex on the change of gene expression in ageing skeletal muscle has not yet been fully revealed. In this study, the mRNA expression profiles were obtained from the Gene Expression Omnibus database. Key genes were identified by differential expression analysis and weighted gene co-expression network analysis. The gene set enrichment analysis software and Molecular Signatures Database were used for functional and enrichment analysis. A protein-protein interaction network was constructed using STRING and visualized in Cytoscape. The results were compared between female and male subgroups. Differentially expressed genes and enriched pathways in different sex subgroups shared only limited similarities. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The muscle myosin filament pathways were downregulated in the both aged female and male samples whereas transforming growth factor beta pathway and extracellular matrix-related pathways were upregulated. With muscle ageing, the metabolism-related pathways, protein synthesis and degradation pathways, results of predicted immune cell infiltration, and gene cluster associated with slow-type myofibers drastically different between the female and male subgroups. This finding may indicate that changes in muscle type with ageing may differ between the sexes in vastus lateralis muscle.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41095566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Berberis vulgaris L. extract supplementation exerts regulatory effects on the lifespan and healthspan of Drosophila through its antioxidant activity depending on the sex. 补充小檗提取物可通过其抗氧化活性对果蝇的寿命和健康寿命产生调节作用,这取决于果蝇的性别。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-06-01 Epub Date: 2023-12-27 DOI: 10.1007/s10522-023-10083-6
Denis Golubev, Elena Platonova, Nadezhda Zemskaya, Oksana Shevchenko, Mikhail Shaposhnikov, Polina Nekrasova, Sergey Patov, Umida Ibragimova, Nikita Valuisky, Alexander Borisov, Xenia Zhukova, Svetlana Sorokina, Roman Litvinov, Alexey Moskalev

Worldwide the aging population continues to increase, so the concept of healthy longevity medicine has become increasingly significant in modern society. Berberis vulgaris L. fruits serve as a functional food supplement with a high concentration of bioactive compounds, which offer numerous health-promoting benefits. The goal of this study was to investigate the geroprotective effect of Berberis vulgaris L. extract. Here we show that extract of Berberis vulgaris L. can, depending on concentrate, increases lifespan up to 6%, promote healthspan (stress resistance up to 35%, locomotor activity up to 25%, integrity of the intestinal barrier up to 12%, metabolic rate up to 5%) of Drosophila melanogaster (in vitro) and exhibits antioxidant (using red blood cell tests) and antiglycation activity (using glycation of bovine serum albumin) (in vitro). In addition to this, the extract does not exhibit cytotoxic properties in vitro, unlike the well-known polyphenolic compound quercetin. qRT-PCR has revealed the involvement of metabolic, heat shock response and lipid metabolism genes in the observed effects.

在全球范围内,老龄人口持续增加,因此健康长寿医学的概念在现代社会变得越来越重要。小檗果实是一种功能性食品补充剂,含有高浓度的生物活性化合物,具有多种促进健康的功效。本研究的目的是研究小檗提取物的老年保护作用。我们在此表明,根据浓缩物的不同,小檗提取物可延长黑腹果蝇的寿命达 6%,促进其健康(抗压力达 35%,运动活性达 25%,肠道屏障完整性达 12%,新陈代谢率达 5%)(体外),并具有抗氧化(使用红细胞测试)和抗糖化活性(使用牛血清白蛋白的糖化)(体外)。此外,与众所周知的多酚类化合物槲皮素不同,该提取物在体外并不表现出细胞毒性。
{"title":"Berberis vulgaris L. extract supplementation exerts regulatory effects on the lifespan and healthspan of Drosophila through its antioxidant activity depending on the sex.","authors":"Denis Golubev, Elena Platonova, Nadezhda Zemskaya, Oksana Shevchenko, Mikhail Shaposhnikov, Polina Nekrasova, Sergey Patov, Umida Ibragimova, Nikita Valuisky, Alexander Borisov, Xenia Zhukova, Svetlana Sorokina, Roman Litvinov, Alexey Moskalev","doi":"10.1007/s10522-023-10083-6","DOIUrl":"10.1007/s10522-023-10083-6","url":null,"abstract":"<p><p>Worldwide the aging population continues to increase, so the concept of healthy longevity medicine has become increasingly significant in modern society. Berberis vulgaris L. fruits serve as a functional food supplement with a high concentration of bioactive compounds, which offer numerous health-promoting benefits. The goal of this study was to investigate the geroprotective effect of Berberis vulgaris L. extract. Here we show that extract of Berberis vulgaris L. can, depending on concentrate, increases lifespan up to 6%, promote healthspan (stress resistance up to 35%, locomotor activity up to 25%, integrity of the intestinal barrier up to 12%, metabolic rate up to 5%) of Drosophila melanogaster (in vitro) and exhibits antioxidant (using red blood cell tests) and antiglycation activity (using glycation of bovine serum albumin) (in vitro). In addition to this, the extract does not exhibit cytotoxic properties in vitro, unlike the well-known polyphenolic compound quercetin. qRT-PCR has revealed the involvement of metabolic, heat shock response and lipid metabolism genes in the observed effects.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-type specific and differential expression of LINC-RSAS long noncoding RNA declines in the testes during ageing of the rat. 在大鼠衰老过程中,睾丸中 LINC-RSAS 长非编码 RNA 的细胞特异性和差异性表达下降。
IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-06-01 Epub Date: 2024-02-14 DOI: 10.1007/s10522-023-10088-1
Ajay Kumar Danga, Sukhleen Kour, Anita Kumari, Pramod C Rath

Long noncoding RNAs (lncRNAs) have emerged as major regulators of gene expression, chromatin structure, epigenetic changes, post-transcriptional processing of RNAs, translation of mRNAs into proteins as well as contributing to the process of ageing. Ageing is a universal, slow, progressive change in almost all physiological processes of organisms after attaining reproductive maturity and often associated with age-related diseases. Mammalian testes contain various cell-types, vast reservoir of transcriptome complexity, produce haploid male gametes for reproduction and testosterone for development and maintenance of male sexual characters as well as contribute genetic variation to the species. We report age-related decline in expression and cellular localization of Long intergenic noncoding repeat-rich sense-antisense (LINC-RSAS) RNA in the testes and its major cell-types such as primary spermatocytes, Leydig cells and Sertoli cells during ageing of the rat. LINC-RSAS expression in testes increased from immature (4-weeks) to adult (16- and 44-weeks) and declined from adult (44-weeks) to nearly-old (70-weeks) rats. Genomic DNA methylation in the testes showed a similar pattern. Cell-type specific higher expression of LINC-RSAS was observed in primary spermatocytes (pachytene cells), Leydig cells and Sertoli cells of testes of adult rats. Over-expression of LINC-RSAS in cultured human cell lines revealed its possible role in cell-cycle control and apoptosis. We propose that LINC-RSAS expression is involved in molecular physiology of primary spermatocytes, Leydig cells and Sertoli cells of adult testes and its decline is associated with diminishing function of testes during ageing of the rat.

长非编码 RNA(lncRNA)已成为基因表达、染色质结构、表观遗传变化、RNA 转录后处理、mRNA 翻译成蛋白质以及老化过程的主要调控因子。衰老是生物体达到生殖成熟后几乎所有生理过程的一种普遍、缓慢、渐进的变化,通常与年龄相关的疾病有关。哺乳动物的睾丸包含各种细胞类型、大量复杂的转录组,产生用于繁殖的单倍体雄性配子和用于发育和维持雄性性征的睾酮,并为物种的遗传变异做出贡献。我们报告了大鼠睾丸及其主要细胞类型(如初级精母细胞、Leydig 细胞和 Sertoli 细胞)中富含长基因间非编码重复的有义反义(LINC-RSAS)RNA 在衰老过程中与年龄相关的表达下降和细胞定位。睾丸中的LINC-RSAS表达量从未成年大鼠(4周龄)增加到成年大鼠(16周龄和44周龄),从成年大鼠(44周龄)下降到接近老龄大鼠(70周龄)。睾丸的基因组 DNA 甲基化也呈现出类似的模式。在成年大鼠睾丸的初级精母细胞(pachytene 细胞)、Leydig 细胞和 Sertoli 细胞中,观察到 LINC-RSAS 在细胞类型特异性的较高表达。在培养的人类细胞系中过度表达 LINC-RSAS 揭示了它可能在细胞周期控制和细胞凋亡中的作用。我们认为,LINC-RSAS 的表达参与了成年大鼠睾丸的原始精母细胞、Leydig 细胞和 Sertoli 细胞的分子生理学过程,其表达的减少与大鼠睾丸在衰老过程中功能的减弱有关。
{"title":"Cell-type specific and differential expression of LINC-RSAS long noncoding RNA declines in the testes during ageing of the rat.","authors":"Ajay Kumar Danga, Sukhleen Kour, Anita Kumari, Pramod C Rath","doi":"10.1007/s10522-023-10088-1","DOIUrl":"10.1007/s10522-023-10088-1","url":null,"abstract":"<p><p>Long noncoding RNAs (lncRNAs) have emerged as major regulators of gene expression, chromatin structure, epigenetic changes, post-transcriptional processing of RNAs, translation of mRNAs into proteins as well as contributing to the process of ageing. Ageing is a universal, slow, progressive change in almost all physiological processes of organisms after attaining reproductive maturity and often associated with age-related diseases. Mammalian testes contain various cell-types, vast reservoir of transcriptome complexity, produce haploid male gametes for reproduction and testosterone for development and maintenance of male sexual characters as well as contribute genetic variation to the species. We report age-related decline in expression and cellular localization of Long intergenic noncoding repeat-rich sense-antisense (LINC-RSAS) RNA in the testes and its major cell-types such as primary spermatocytes, Leydig cells and Sertoli cells during ageing of the rat. LINC-RSAS expression in testes increased from immature (4-weeks) to adult (16- and 44-weeks) and declined from adult (44-weeks) to nearly-old (70-weeks) rats. Genomic DNA methylation in the testes showed a similar pattern. Cell-type specific higher expression of LINC-RSAS was observed in primary spermatocytes (pachytene cells), Leydig cells and Sertoli cells of testes of adult rats. Over-expression of LINC-RSAS in cultured human cell lines revealed its possible role in cell-cycle control and apoptosis. We propose that LINC-RSAS expression is involved in molecular physiology of primary spermatocytes, Leydig cells and Sertoli cells of adult testes and its decline is associated with diminishing function of testes during ageing of the rat.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Slight chemical damage due to drinking modest amount of sake, might induce beneficial effects" as a form of hormesis: an interview with Professor Sataro Goto. “适量饮用清酒会造成轻微的化学损伤,可能会产生有益的效果”,这是一种兴奋症:对后藤佐太郎教授的采访。
IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-06-01 Epub Date: 2023-10-26 DOI: 10.1007/s10522-023-10069-4
Zsolt Radak

Professor Sataro Goto is one of the pioneers of biological aging research in Japan. He is renowned for his work on the role of protein errors and modifications, the accumulation of abnormal proteins due to reduced protein turnover, and the modulation of aging and lifespan by adult-onset dietary restriction and regular exercise. Professor Goto is a remarkably intelligent, visionary, empathetic, humble, and wise man, who kindly agreed to this interview that I (Zsolt Radak) made with him during one of my frequent visits to his labs, in February 2023.

后藤佐太郎教授是日本生物衰老研究的先驱之一。他以研究蛋白质错误和修饰的作用、蛋白质周转减少导致的异常蛋白质积累以及成年人开始的饮食限制和定期锻炼对衰老和寿命的调节而闻名。后藤教授是一个非常聪明、有远见、有同理心、谦逊和智慧的人,他欣然同意我(兹索尔特·拉达克饰)在2023年2月频繁访问他的实验室时对他的采访。
{"title":"\"Slight chemical damage due to drinking modest amount of sake, might induce beneficial effects\" as a form of hormesis: an interview with Professor Sataro Goto.","authors":"Zsolt Radak","doi":"10.1007/s10522-023-10069-4","DOIUrl":"10.1007/s10522-023-10069-4","url":null,"abstract":"<p><p>Professor Sataro Goto is one of the pioneers of biological aging research in Japan. He is renowned for his work on the role of protein errors and modifications, the accumulation of abnormal proteins due to reduced protein turnover, and the modulation of aging and lifespan by adult-onset dietary restriction and regular exercise. Professor Goto is a remarkably intelligent, visionary, empathetic, humble, and wise man, who kindly agreed to this interview that I (Zsolt Radak) made with him during one of my frequent visits to his labs, in February 2023.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of anti-aging and anti-infection properties of Jingfang Granules using the Caenorhabditis elegans model. 利用秀丽隐杆线虫模型研究京芳颗粒的抗衰老和抗感染特性
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-06-01 Epub Date: 2023-08-12 DOI: 10.1007/s10522-023-10058-7
Xin Yin, Yiwei Meng, Chenghong Sun, Yanqiu Zhao, Weitao Wang, Peipei Zhao, Mengmeng Wang, Jingli Ren, Jingchun Yao, Lixin Zhang, Xuekui Xia

Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.

经方颗粒(JFG)是一种传统中药,临床上经常用于治疗感染性疾病。然而,JFG 的抗衰老和抗感染作用仍不确定。本研究以秀丽隐杆线虫(Caenorhabditis elegans,C. elegans)N2为模型生物,对其抗衰老和抗感染作用进行了评估。结果表明,在剂量为 10 毫克/毫升时,JFG 能显著延长秀丽隐杆线虫 31.2% 的中位寿命,且没有任何明显的不良反应,如改变咽抽速或线虫的运动能力。此外,JFG 还显著增加了 11.3% 的产卵量。随后的研究发现,JFG 通过降低活性氧水平增强了秀丽隐杆线虫的抗氧化能力,并显著提高了线虫感染铜绿假单胞菌 ATCC 9027 后的存活率。这些研究结果表明,JFG 可延缓秀丽隐杆线虫的生殖衰老,保护它们免受氧化应激,从而延长它们的寿命。此外,JFG 还能提高受绿脓杆菌感染的线虫的存活率。因此,JFG 具有开发抗衰老和抗感染功能药物的潜力。
{"title":"Investigation of anti-aging and anti-infection properties of Jingfang Granules using the Caenorhabditis elegans model.","authors":"Xin Yin, Yiwei Meng, Chenghong Sun, Yanqiu Zhao, Weitao Wang, Peipei Zhao, Mengmeng Wang, Jingli Ren, Jingchun Yao, Lixin Zhang, Xuekui Xia","doi":"10.1007/s10522-023-10058-7","DOIUrl":"10.1007/s10522-023-10058-7","url":null,"abstract":"<p><p>Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9981966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biogerontology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1