Pub Date : 2024-11-01Epub Date: 2024-09-26DOI: 10.1007/s10522-024-10141-7
Huimin Zheng, Tiantian Li, Ziyun Hu, Qi Zheng, Junsong Wang
Aging is one of the most significant factors affecting cardiovascular health, with cellular senescence being a central hallmark. Senescent cells (SCs) secrete a specific set of signaling molecules known as the senescence-associated secretory phenotype (SASP). The SASP has a remarkable impact on age-associated diseases, particularly cardiovascular diseases (CVD). Targeting SCs through anti-aging therapies represents a novel strategy to effectively retard senescence and attenuate disease progression. Accumulating evidence demonstrates that the flavonoids, widely presented in fruits and vegetables worldwide, can delay or treat CVD via selectively eliminating SCs (senolytics) and modulating SASPs (senomorphics). Nevertheless, only sporadic research has illustrated the application of flavonoids in targeting SCs for CVD, which requires further exploration. This review recapitulates the hallmarks and key molecular mechanisms involved in cellular senescence, then summarizes senescence of different types of cardiac cells and describes the mechanisms by which cellular senescence affects CVD development. The discussion culminates with the potential use of flavonoids via exerting their biological effects on cellular senescence to reduce CVD incidence. This summary will provide valuable insights for cardiovascular drug design, development and clinical applications leveraging flavonoids.
{"title":"The potential of flavonoids to mitigate cellular senescence in cardiovascular disease.","authors":"Huimin Zheng, Tiantian Li, Ziyun Hu, Qi Zheng, Junsong Wang","doi":"10.1007/s10522-024-10141-7","DOIUrl":"10.1007/s10522-024-10141-7","url":null,"abstract":"<p><p>Aging is one of the most significant factors affecting cardiovascular health, with cellular senescence being a central hallmark. Senescent cells (SCs) secrete a specific set of signaling molecules known as the senescence-associated secretory phenotype (SASP). The SASP has a remarkable impact on age-associated diseases, particularly cardiovascular diseases (CVD). Targeting SCs through anti-aging therapies represents a novel strategy to effectively retard senescence and attenuate disease progression. Accumulating evidence demonstrates that the flavonoids, widely presented in fruits and vegetables worldwide, can delay or treat CVD via selectively eliminating SCs (senolytics) and modulating SASPs (senomorphics). Nevertheless, only sporadic research has illustrated the application of flavonoids in targeting SCs for CVD, which requires further exploration. This review recapitulates the hallmarks and key molecular mechanisms involved in cellular senescence, then summarizes senescence of different types of cardiac cells and describes the mechanisms by which cellular senescence affects CVD development. The discussion culminates with the potential use of flavonoids via exerting their biological effects on cellular senescence to reduce CVD incidence. This summary will provide valuable insights for cardiovascular drug design, development and clinical applications leveraging flavonoids.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"985-1010"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-24DOI: 10.1007/s10522-024-10124-8
Debarati Chattopadhyay, Susan Mary Philip, Grace Prabhakar, Madappa Machamada Bheemaiah
Consumption of a high-fat diet is accompanied by the risks of obesity and early onset of age-associated complications for which dietary interventions are imperative to combat. α-lipoic acid has been shown to hinder diet-induced obesity and induce lifespan-extending efficacy in model organisms. In this study, α-lipoic acid was investigated for its efficacy in improving lifespan and stress resistance in the Canton-S strain of Drosophila melanogaster fed with a high-fat diet. Furthermore, as mating status significantly impacts survival in fruit flies, flies were reared in two experimental groups-group one, in which males and females were bred together, and group two, in which males and females were bred separately. In group one, α-lipoic acid improved the mean lifespan, reduced the fecundity of females, and reduced the mean body weight of flies at a dose range of 2-2.5 mM, respectively. In group two, α-lipoic acid improved the mean lifespan, reduced the fecundity of females, and reduced the mean body weight of flies at a dose range of 1-2.5 mM, respectively. Improved climbing efficiency was observed with α-lipoic acid at the dose range of 1.5-2.5 mM in flies of group one and 1-2.5 mM in flies of group two, respectively. Administration of α-lipoic acid improved resistance to oxidative stress in only female flies of group one at 2.5 mM, whereas in group two, both male and female flies exhibited enhanced resistance to oxidative stress with α-lipoic acid at a dose range of 2-2.5 mM, respectively. Male and female flies of only group one showed improved resistance to heat shock stress with α-lipoic acid at a dose range of 2-2.5 mM. Only female flies of group two exhibited a slight improvement in recovery time following cold shock with α-lipoic acid only at 2.5 mM. No significant change in resistance to starvation stress was observed with any dose of α-lipoic acid in either group of flies. To summarize, data from this study suggested a probable dose and gender-dependent efficacy of α-lipoic acid in flies fed with a high-fat diet, which was significantly influenced by the mating status of flies due to varied rearing conditions.
α-硫辛酸已被证明能抑制饮食引起的肥胖,并能延长模式生物的寿命。本研究调查了α-硫辛酸在以高脂肪饮食喂养的黑腹果蝇Canton-S品系中改善寿命和抗应激能力的功效。此外,由于交配状况对果蝇的存活率有很大影响,因此将果蝇分为两个实验组进行饲养--第一组雌雄果蝇一起饲养,第二组雌雄果蝇分开饲养。在第一组中,α-硫辛酸在 2-2.5 毫摩尔的剂量范围内分别提高了雌蝇的平均寿命、降低了雌蝇的受精率、减少了雌蝇的平均体重。在第二组中,在 1-2.5 mM 的剂量范围内,α-硫辛酸分别提高了苍蝇的平均寿命、降低了雌蝇的受精率和平均体重。在α-硫辛酸的剂量范围为1.5-2.5 mM和1-2.5 mM时,第一组苍蝇和第二组苍蝇的爬行效率分别有所提高。α-硫辛酸的剂量为2.5 mM时,第一组中只有雌蝇对氧化应激的抵抗力有所提高;而在第二组中,α-硫辛酸的剂量为2-2.5 mM时,雌雄蝇对氧化应激的抵抗力都有所提高。只有第一组的雄蝇和雌蝇在α-硫辛酸的剂量范围为2-2.5 mM时表现出更好的抗热休克应激能力。只有第二组的雌蝇在使用 2.5 mM 的α-硫辛酸后,冷休克后的恢复时间略有改善。在任何剂量的α-硫辛酸下,两组苍蝇对饥饿应激的抵抗力都没有明显变化。总之,本研究的数据表明,α-硫辛酸对喂食高脂肪食物的苍蝇的疗效可能与剂量和性别有关,由于饲养条件不同,α-硫辛酸的疗效受到苍蝇交配状况的显著影响。
{"title":"Influence of α-lipoic acid on longevity and stress resistance in Drosophila melanogaster fed with a high-fat diet.","authors":"Debarati Chattopadhyay, Susan Mary Philip, Grace Prabhakar, Madappa Machamada Bheemaiah","doi":"10.1007/s10522-024-10124-8","DOIUrl":"10.1007/s10522-024-10124-8","url":null,"abstract":"<p><p>Consumption of a high-fat diet is accompanied by the risks of obesity and early onset of age-associated complications for which dietary interventions are imperative to combat. α-lipoic acid has been shown to hinder diet-induced obesity and induce lifespan-extending efficacy in model organisms. In this study, α-lipoic acid was investigated for its efficacy in improving lifespan and stress resistance in the Canton-S strain of Drosophila melanogaster fed with a high-fat diet. Furthermore, as mating status significantly impacts survival in fruit flies, flies were reared in two experimental groups-group one, in which males and females were bred together, and group two, in which males and females were bred separately. In group one, α-lipoic acid improved the mean lifespan, reduced the fecundity of females, and reduced the mean body weight of flies at a dose range of 2-2.5 mM, respectively. In group two, α-lipoic acid improved the mean lifespan, reduced the fecundity of females, and reduced the mean body weight of flies at a dose range of 1-2.5 mM, respectively. Improved climbing efficiency was observed with α-lipoic acid at the dose range of 1.5-2.5 mM in flies of group one and 1-2.5 mM in flies of group two, respectively. Administration of α-lipoic acid improved resistance to oxidative stress in only female flies of group one at 2.5 mM, whereas in group two, both male and female flies exhibited enhanced resistance to oxidative stress with α-lipoic acid at a dose range of 2-2.5 mM, respectively. Male and female flies of only group one showed improved resistance to heat shock stress with α-lipoic acid at a dose range of 2-2.5 mM. Only female flies of group two exhibited a slight improvement in recovery time following cold shock with α-lipoic acid only at 2.5 mM. No significant change in resistance to starvation stress was observed with any dose of α-lipoic acid in either group of flies. To summarize, data from this study suggested a probable dose and gender-dependent efficacy of α-lipoic acid in flies fed with a high-fat diet, which was significantly influenced by the mating status of flies due to varied rearing conditions.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"1097-1114"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.
肠道微生物群(GM)产生各种分子,通过肠道-大脑轴(GBA)调节大脑的生理功能。研究表明,肠脑轴的改变可能会导致各种神经功能障碍的发生和发展。此外,衰老也是导致肠脑轴改变的主要原因之一。随着年龄的增长,GM 的种群规模和微生物种类发生变化,导致其分泌的代谢物发生变化。这些变化还会阻碍 HPA(下丘脑-垂体-肾上腺)、ENS(肠道神经系统)和 ANS(自主神经系统)之间的交流。卡路里限制(CR)是近来在改善健康和维持肠道与大脑之间沟通方面备受关注的一种治疗干预措施,它在自噬和神经发生过程中也发挥着至关重要的作用。然而,其严格的制度和终身承诺带来了挑战。我们需要在不严格遵守卡路里限制的前提下,产生与卡路里限制类似的有益效果。因此,人们开始探索卡路里限制模拟物(CRMs),这种模拟物可以在不限制饮食的情况下模拟 CR 的功能,从而提供长期的健康益处。卡路里限制模拟物通过肠道细菌及其代谢产物(即短链脂肪酸、胆汁酸和神经递质)确保 GBA 的有效运作。这对老年人尤其有益,因为随着年龄的增长,基因改造会恶化,人体消化有毒物质的能力也会下降。在这篇综述中,我们探讨了 CRMs 通过增强有益细菌及其对代谢物产生、生理状况和神经功能紊乱(包括神经退行性疾病)的影响,在延长寿命方面的有益作用。
{"title":"Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders.","authors":"Ishika Singh, Shashi Anand, Deepashree J Gowda, Amitha Kamath, Abhishek Kumar Singh","doi":"10.1007/s10522-024-10128-4","DOIUrl":"10.1007/s10522-024-10128-4","url":null,"abstract":"<p><p>The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"899-922"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.
{"title":"Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging.","authors":"Shiqian Zheng, Rongrong Deng, Gengjiu Huang, Zhiwen Ou, Zhibin Shen","doi":"10.1007/s10522-024-10125-7","DOIUrl":"10.1007/s10522-024-10125-7","url":null,"abstract":"<p><p>The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"1115-1143"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxidative stress-induced neuronal apoptosis is primarily involved in brain aging and impaired hippocampal neurogenesis. Long-term D-galactose administration increases oxidative stress related to brain aging. Chrysin, a subtype of flavonoids, exhibits neuroprotective effects, particularly its antioxidant properties. To elucidate the neuroprotection of chrysin on neuronal apoptosis and an impaired hippocampal neurogenesis relevant to oxidative damage in D-galactose-induced brain aging, male Sprague Dawley rats were allocated into vehicle control, D-galactose, chrysin, and cotreated rats. The rats received their respective treatments daily for 8 weeks. The reactions of scavenging enzymes, protein regulating endogenous antioxidant defense, and anti-apoptotic protein expression were significantly reduced in the hippocampus and prefrontal cortex of the animals receiving D-galactose. Conversely, product of oxidative damage and apoptotic protein expressions were significantly elevated in both cortical areas of the D-galactose group. In hippocampal neurogenesis, significant upregulation of cell cycle arrest and decrease in differentiated protein expression were detected after D-galactose administration. Nevertheless, chrysin supplementation significantly mitigated all negative effects in animals receiving D-galactose. This study demonstrates that chrysin likely attenuates brain aging induced by D-galactose by enhancing scavenging enzyme activities and reducing oxidative stress, neuronal apoptosis, and the impaired hippocampal neurogenesis.
{"title":"Chrysin mitigates neuronal apoptosis and impaired hippocampal neurogenesis in male rats subjected to D-galactose-induced brain aging.","authors":"Ram Prajit, Rasa Saenno, Kornrawee Suwannakot, Soraya Kaewngam, Tanaporn Anosri, Nataya Sritawan, Anusara Aranarochana, Apiwat Sirichoat, Wanassanun Pannangrong, Peter Wigmore, Jariya Umka Welbat","doi":"10.1007/s10522-024-10140-8","DOIUrl":"10.1007/s10522-024-10140-8","url":null,"abstract":"<p><p>Oxidative stress-induced neuronal apoptosis is primarily involved in brain aging and impaired hippocampal neurogenesis. Long-term D-galactose administration increases oxidative stress related to brain aging. Chrysin, a subtype of flavonoids, exhibits neuroprotective effects, particularly its antioxidant properties. To elucidate the neuroprotection of chrysin on neuronal apoptosis and an impaired hippocampal neurogenesis relevant to oxidative damage in D-galactose-induced brain aging, male Sprague Dawley rats were allocated into vehicle control, D-galactose, chrysin, and cotreated rats. The rats received their respective treatments daily for 8 weeks. The reactions of scavenging enzymes, protein regulating endogenous antioxidant defense, and anti-apoptotic protein expression were significantly reduced in the hippocampus and prefrontal cortex of the animals receiving D-galactose. Conversely, product of oxidative damage and apoptotic protein expressions were significantly elevated in both cortical areas of the D-galactose group. In hippocampal neurogenesis, significant upregulation of cell cycle arrest and decrease in differentiated protein expression were detected after D-galactose administration. Nevertheless, chrysin supplementation significantly mitigated all negative effects in animals receiving D-galactose. This study demonstrates that chrysin likely attenuates brain aging induced by D-galactose by enhancing scavenging enzyme activities and reducing oxidative stress, neuronal apoptosis, and the impaired hippocampal neurogenesis.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"1275-1284"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
{"title":"Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity.","authors":"Somayeh Ahmadi, Alka Hasani, Aytak Khabbaz, Vahdat Poortahmasbe, Samaneh Hosseini, Mohammad Yasdchi, Elham Mehdizadehfar, Zahra Mousavi, Roqaiyeh Hasani, Edris Nabizadeh, Javad Nezhadi","doi":"10.1007/s10522-024-10136-4","DOIUrl":"10.1007/s10522-024-10136-4","url":null,"abstract":"<p><p>The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"957-983"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-20DOI: 10.1007/s10522-024-10126-6
Samael Olascoaga, Jorge I Castañeda-Sánchez, Mina Königsberg, Humberto Gutierrez, Norma Edith López-Diazguerrero
Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H2O2-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H2O2. Additionally, the collective expression of these H2O2-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H2O2-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.
{"title":"Oxidative stress-induced gene expression changes in prostate epithelial cells in vitro reveal a robust signature of normal prostatic senescence and aging.","authors":"Samael Olascoaga, Jorge I Castañeda-Sánchez, Mina Königsberg, Humberto Gutierrez, Norma Edith López-Diazguerrero","doi":"10.1007/s10522-024-10126-6","DOIUrl":"10.1007/s10522-024-10126-6","url":null,"abstract":"<p><p>Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H<sub>2</sub>O<sub>2</sub>. Additionally, the collective expression of these H<sub>2</sub>O<sub>2</sub>-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H<sub>2</sub>O<sub>2</sub>-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"1145-1169"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-06DOI: 10.1007/s10522-024-10118-6
Shaojun Wang, Hong Yang
The intestinal barrier weakens and chronic gut inflammation occurs in old age, causing age-related illnesses. Recent research shows that low-molecular-weight heparin (LMWH), besides anticoagulation, also has anti-inflammatory and anti-apoptotic effects, protecting the intestinal barrier. This study aims to analyze the effect of LMWH on the intestinal barrier of old male rodents. This study assigned Sprague-Dawley male rats to four groups: young (3 months), young + LMWH, old (20 months), and old + LMWH. The LMWH groups received 1 mg/kg LMWH via subcutaneous injection for 7 days. Optical and transmission electron microscopy (TEM) were used to examine morphological changes in intestinal mucosa due to aging. Intestinal permeability was measured using fluorescein isothiocyanate (FITC)-dextran. ELISA kits were used to measure serum levels of IL-6 and IL-1β, while Quantitative RT-PCR detected their mRNA levels in intestinal tissues. Western blotting and immunohistochemistry (IHC) evaluated the tight junction (TJ) protein levels such as occludin, zonula occludens-1 (ZO-1), and claudin-2. Western blotting assessed the expression of the apoptosis marker cleaved caspase 3, while IHC was used to detect LGR5+ intestinal stem cells. The intestinal permeability of aged rats was significantly higher than that of young rats, indicating significant differences. With age, the protein levels of occludin and ZO-1 decreased significantly, while the level of claudin-2 increased significantly. Meanwhile, our study found that the levels of IL-1β and IL-6 increased significantly with age. LMWH intervention effectively alleviated age-related intestinal barrier dysfunction. In aged rats treated with LMWH, the expression of occludin and ZO-1 proteins in the intestine increased, while the expression of claudin-2 decreased. Furthermore, LMWH administration in aged rats resulted in a decrease in IL-1β and IL-6 levels. LMWH also reduced age-related cleaved caspase3 expression, but IHC showed no difference in LGR5+ intestinal stem cells between groups. Research suggests that LMWH could potentially be a favorable therapeutic choice for age-related diseases associated with intestinal barrier dysfunction, by protecting TJ proteins, reducing inflammation, and apoptosis.
{"title":"Low-molecular-weight heparin ameliorates intestinal barrier dysfunction in aged male rats via protection of tight junction proteins.","authors":"Shaojun Wang, Hong Yang","doi":"10.1007/s10522-024-10118-6","DOIUrl":"10.1007/s10522-024-10118-6","url":null,"abstract":"<p><p>The intestinal barrier weakens and chronic gut inflammation occurs in old age, causing age-related illnesses. Recent research shows that low-molecular-weight heparin (LMWH), besides anticoagulation, also has anti-inflammatory and anti-apoptotic effects, protecting the intestinal barrier. This study aims to analyze the effect of LMWH on the intestinal barrier of old male rodents. This study assigned Sprague-Dawley male rats to four groups: young (3 months), young + LMWH, old (20 months), and old + LMWH. The LMWH groups received 1 mg/kg LMWH via subcutaneous injection for 7 days. Optical and transmission electron microscopy (TEM) were used to examine morphological changes in intestinal mucosa due to aging. Intestinal permeability was measured using fluorescein isothiocyanate (FITC)-dextran. ELISA kits were used to measure serum levels of IL-6 and IL-1β, while Quantitative RT-PCR detected their mRNA levels in intestinal tissues. Western blotting and immunohistochemistry (IHC) evaluated the tight junction (TJ) protein levels such as occludin, zonula occludens-1 (ZO-1), and claudin-2. Western blotting assessed the expression of the apoptosis marker cleaved caspase 3, while IHC was used to detect LGR5+ intestinal stem cells. The intestinal permeability of aged rats was significantly higher than that of young rats, indicating significant differences. With age, the protein levels of occludin and ZO-1 decreased significantly, while the level of claudin-2 increased significantly. Meanwhile, our study found that the levels of IL-1β and IL-6 increased significantly with age. LMWH intervention effectively alleviated age-related intestinal barrier dysfunction. In aged rats treated with LMWH, the expression of occludin and ZO-1 proteins in the intestine increased, while the expression of claudin-2 decreased. Furthermore, LMWH administration in aged rats resulted in a decrease in IL-1β and IL-6 levels. LMWH also reduced age-related cleaved caspase3 expression, but IHC showed no difference in LGR5+ intestinal stem cells between groups. Research suggests that LMWH could potentially be a favorable therapeutic choice for age-related diseases associated with intestinal barrier dysfunction, by protecting TJ proteins, reducing inflammation, and apoptosis.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"1039-1051"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-21DOI: 10.1007/s10522-024-10131-9
Brecht Driesschaert, Lucas Mergan, Cristiano Lucci, Caroline Simon, Dulce Santos, Lies De Groef, Liesbet Temmerman
While the main role of phagocytic scavenger cells consists of the neutralization and elimination of pathogens, they also keep the body fluids clean by taking up and breaking down waste material. Since a build-up of waste is thought to contribute to the aging process, these cells become particularly pertinent in the research field of aging. Nevertheless, a direct link between their scavenging functions and the aging process has yet to be established. Integrative approaches involving various model organisms hold promise to elucidate this potential, but are lagging behind since the diversity and evolutionary relationship of these cells across animal species remain unclear. In this perspective, we review the current knowledge associating phagocytic scavenger cells with aging in vertebrate and invertebrate animals, as well as put forward important questions for further exploration. Additionally, we highlight future challenges and propose a constructive approach for tackling them.
{"title":"The role of phagocytic cells in aging: insights from vertebrate and invertebrate models.","authors":"Brecht Driesschaert, Lucas Mergan, Cristiano Lucci, Caroline Simon, Dulce Santos, Lies De Groef, Liesbet Temmerman","doi":"10.1007/s10522-024-10131-9","DOIUrl":"10.1007/s10522-024-10131-9","url":null,"abstract":"<p><p>While the main role of phagocytic scavenger cells consists of the neutralization and elimination of pathogens, they also keep the body fluids clean by taking up and breaking down waste material. Since a build-up of waste is thought to contribute to the aging process, these cells become particularly pertinent in the research field of aging. Nevertheless, a direct link between their scavenging functions and the aging process has yet to be established. Integrative approaches involving various model organisms hold promise to elucidate this potential, but are lagging behind since the diversity and evolutionary relationship of these cells across animal species remain unclear. In this perspective, we review the current knowledge associating phagocytic scavenger cells with aging in vertebrate and invertebrate animals, as well as put forward important questions for further exploration. Additionally, we highlight future challenges and propose a constructive approach for tackling them.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"1301-1314"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.
线粒体是生物细胞内最重要的细胞器之一,具有不可替代的地位,在各种疾病中发挥着至关重要的作用。针对线粒体的研究和疗法在多种疾病中取得了重大进展。在生物体的整个生命周期中,线粒体的动态变化持续存在,由于其固有的特性和各种外部因素,线粒体极易受到损伤。这种易损性在衰老过程中尤为明显,生物功能的衰退与线粒体功能障碍密切相关。尽管线粒体是一个古老而神秘的细胞器,但人们对它仍有许多未知。在这里,我们将探讨线粒体过去和现在的知识,全面回顾线粒体的内在特性、与核 DNA 的相互作用,以及线粒体在衰老过程中面临的挑战和影响。
{"title":"Mitochondria: fundamental characteristics, challenges, and impact on aging.","authors":"Runyu Liang, Luwen Zhu, Yongyin Huang, Jia Chen, Qiang Tang","doi":"10.1007/s10522-024-10132-8","DOIUrl":"10.1007/s10522-024-10132-8","url":null,"abstract":"<p><p>As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":" ","pages":"923-941"},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}