首页 > 最新文献

Biogerontology最新文献

英文 中文
Telomeres and aging: on and off the planet! 端粒与衰老:地球上和地球外!
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 DOI: 10.1007/s10522-024-10098-7

Abstract

Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective “caps” at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the “end-replication problem” first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.

摘要 在人口迅速老龄化的今天,改善人类的健康寿命比以往任何时候都更为迫切。端粒是线性染色体末端的保护性 "帽子",对于维持真核生物基因组的稳定性至关重要。由于端粒的物理位置以及阿列克谢-奥洛夫尼科夫(Alexey Olovnikov)博士首次提出的 "末端复制问题",端粒会随着细胞分裂而缩短,其影响极为深远。端粒是衰老的标志和分子驱动因素,也是遗传、生活方式和环境因素累积效应的基本整合成分,这些因素会随着时间的推移侵蚀端粒长度。端粒的持续损耗以及由此导致的细胞衰老对复制潜能的限制具有强大的肿瘤抑制功能,同时也是衰老和一系列与年龄相关的退行性病变(包括生育能力下降、痴呆症、心血管疾病和癌症)的基础。然而,关于长期太空探索和最终居住在其他行星上所带来的巨大压力和暴露,以及这些任务将如何影响端粒、生殖、健康、疾病风险和衰老,目前的数据还非常少。在此,我们简要回顾一下我们目前的认识,近年来,由于美国国家航空航天局双胞胎研究(NASA Twins Study)的开展,我们的认识有了长足的进步,该研究是迄今为止对与太空飞行相关的人类健康影响进行的最全面的评估。因此,双胞胎研究走在了为宇航员提供个性化太空医疗方法的前沿,并为后续任务奠定了基础。我们还从目前的理解推断未来的任务,强调可能使人类生存的潜在生物和生化策略,并考虑在极端的太空环境中长寿的前景。
{"title":"Telomeres and aging: on and off the planet!","authors":"","doi":"10.1007/s10522-024-10098-7","DOIUrl":"https://doi.org/10.1007/s10522-024-10098-7","url":null,"abstract":"<h3>Abstract</h3> <p>Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective “caps” at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the “end-replication problem” first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome ends and the theory of marginotomy: implications for reproduction. 染色体末端与边缘切除理论:对生殖的启示。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 Epub Date: 2023-11-09 DOI: 10.1007/s10522-023-10071-w
Isabel Córdova-Oriz, Alba M Polonio, Isabel Cuadrado-Torroglosa, Lucía Chico-Sordo, Marta Medrano, Juan A García-Velasco, Elisa Varela

Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the "duration of life" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.

端粒是位于线性染色体末端的保护性结构。它们在20世纪30年代首次被描述,但直到70年代初,理论生物学家阿列克谢·M·奥洛夫尼科夫(Alexey M.Olovnikov)才发现端粒的生物学特性。他提出了一种理论,将这种现象与细胞增殖能力的极限和“寿命”联系起来(边缘切除术理论),并提出了端粒延长预防衰老的潜力(抗边缘切除术)。增殖性端粒缩短对预期寿命的影响后来得到证实。在人类中,端粒缩短被端粒酶抵消,端粒酶是一种在大多数成年体细胞中检测不到的酶,但存在于癌症细胞、成年和胚胎干细胞和生殖细胞中。尽管在配子发生过程中,雄性和雌性配子的端粒长度动态不同,但端粒长度在胚泡阶段会重置,从而设定物种的初始长度。端粒途径在生殖中的作用已经被探索了多年,主要是因为延迟生育导致不孕不育增加。卵巢体细胞端粒长度短与胚胎的生育能力下降和非整倍体率升高有关。因此,人们对旨在提高生育能力的端粒延长策略越来越感兴趣。还观察到,生活方式因素可以影响端粒长度并改善生育结果。在这篇综述中,我们讨论了端粒理论在生育能力中的意义,特别是在卵母细胞、精子和胚胎中,以及提高生育成功率的疗法。
{"title":"Chromosome ends and the theory of marginotomy: implications for reproduction.","authors":"Isabel Córdova-Oriz, Alba M Polonio, Isabel Cuadrado-Torroglosa, Lucía Chico-Sordo, Marta Medrano, Juan A García-Velasco, Elisa Varela","doi":"10.1007/s10522-023-10071-w","DOIUrl":"10.1007/s10522-023-10071-w","url":null,"abstract":"<p><p>Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the \"duration of life\" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71520370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomeres, cellular senescence, and aging: past and future. 端粒、细胞衰老与衰老:过去与未来。
IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY Pub Date : 2024-04-01 Epub Date: 2023-12-27 DOI: 10.1007/s10522-023-10085-4
Madeline Eppard, João F Passos, Stella Victorelli

Over half a century has passed since Alexey Olovnikov's groundbreaking proposal of the end-replication problem in 1971, laying the foundation for our understanding of telomeres and their pivotal role in cellular senescence. This review paper delves into the intricate and multifaceted relationship between cellular senescence, the influence of telomeres in this process, and the far-reaching consequences of telomeres in the context of aging and age-related diseases. Additionally, the paper investigates the various factors that can influence telomere shortening beyond the confines of the end-replication problem and how telomeres can exert their impact on aging, even in the absence of significant shortening. Ultimately, this paper stands as a tribute to the pioneering work of Olovnikov, whose seminal contributions established the solid foundation upon which our ongoing explorations of telomeres and the aging process are based.

自1971年阿列克谢-奥洛夫尼科夫(Alexey Olovnikov)开创性地提出末端复制问题,为我们了解端粒及其在细胞衰老中的关键作用奠定了基础以来,半个多世纪已经过去了。这篇综述论文深入探讨了细胞衰老、端粒在这一过程中的影响以及端粒在衰老和老年相关疾病中的深远影响之间错综复杂的多方面关系。此外,这篇论文还研究了影响端粒缩短的各种因素,这些因素超出了末端复制问题的范围,以及端粒如何对衰老产生影响,即使在端粒没有明显缩短的情况下。奥洛夫尼科夫的开创性贡献为我们目前对端粒和衰老过程的探索奠定了坚实的基础。
{"title":"Telomeres, cellular senescence, and aging: past and future.","authors":"Madeline Eppard, João F Passos, Stella Victorelli","doi":"10.1007/s10522-023-10085-4","DOIUrl":"10.1007/s10522-023-10085-4","url":null,"abstract":"<p><p>Over half a century has passed since Alexey Olovnikov's groundbreaking proposal of the end-replication problem in 1971, laying the foundation for our understanding of telomeres and their pivotal role in cellular senescence. This review paper delves into the intricate and multifaceted relationship between cellular senescence, the influence of telomeres in this process, and the far-reaching consequences of telomeres in the context of aging and age-related diseases. Additionally, the paper investigates the various factors that can influence telomere shortening beyond the confines of the end-replication problem and how telomeres can exert their impact on aging, even in the absence of significant shortening. Ultimately, this paper stands as a tribute to the pioneering work of Olovnikov, whose seminal contributions established the solid foundation upon which our ongoing explorations of telomeres and the aging process are based.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomeres in health and longevity: special issue in memory of Alexey Olovnikov. 健康与长寿中的端粒:纪念阿列克谢-奥洛夫尼科夫特刊。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 DOI: 10.1007/s10522-023-10090-7
Ivan A Olovnikov

In this special issue we commemorate theoretical biologist Alexey Olovnikov (1936-2022), whose theory of marginotomy has laid the foundation for the new field of biology that studies the molecular structure of telomeres and its role in health, longevity and aging. This issue contains a collection of reviews and research articles that discuss different aspects of telomere and telomerase research, ranging from telomere length dynamics in wild animal populations to problems of telomere maintenance during human space flight.

在这期特刊中,我们纪念了理论生物学家阿列克谢-奥洛夫尼科夫(Alexey Olovnikov,1936-2022),他的边切理论为研究端粒分子结构及其在健康、长寿和衰老中的作用的生物学新领域奠定了基础。本期杂志收录的评论和研究文章讨论了端粒和端粒酶研究的不同方面,从野生动物群体的端粒长度动态到人类太空飞行期间的端粒维持问题。
{"title":"Telomeres in health and longevity: special issue in memory of Alexey Olovnikov.","authors":"Ivan A Olovnikov","doi":"10.1007/s10522-023-10090-7","DOIUrl":"10.1007/s10522-023-10090-7","url":null,"abstract":"<p><p>In this special issue we commemorate theoretical biologist Alexey Olovnikov (1936-2022), whose theory of marginotomy has laid the foundation for the new field of biology that studies the molecular structure of telomeres and its role in health, longevity and aging. This issue contains a collection of reviews and research articles that discuss different aspects of telomere and telomerase research, ranging from telomere length dynamics in wild animal populations to problems of telomere maintenance during human space flight.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking telomere dynamics to evolution, life history and environmental change: perspectives, predictions and problems. 将端粒动态与进化、生活史和环境变化联系起来:观点、预测和问题。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 Epub Date: 2024-01-22 DOI: 10.1007/s10522-023-10081-8
Pat Monaghan

This perspectives paper considers the value of studying telomere biology outside of a biomedical context. I provide illustrative examples of the kinds of questions that evolutionary ecologists have addressed in studies of telomere dynamics in non-model species, primarily metazoan animals, and what this can contribute to our understanding of their evolution, life histories and health. I also discuss why the predicted relationships between telomere dynamics and life history traits, based on the detailed cellular studies in humans and model organisms, are not always found in studies in other species.

这篇视角论文探讨了在生物医学背景之外研究端粒生物学的价值。我举例说明了进化生态学家在研究非模式物种(主要是元祖类动物)端粒动态时所涉及的问题类型,以及这对我们理解它们的进化、生命史和健康有什么帮助。我还将讨论为什么在人类和模式生物的详细细胞研究基础上预测的端粒动态和生命史特征之间的关系并不总是能在其他物种的研究中找到。
{"title":"Linking telomere dynamics to evolution, life history and environmental change: perspectives, predictions and problems.","authors":"Pat Monaghan","doi":"10.1007/s10522-023-10081-8","DOIUrl":"10.1007/s10522-023-10081-8","url":null,"abstract":"<p><p>This perspectives paper considers the value of studying telomere biology outside of a biomedical context. I provide illustrative examples of the kinds of questions that evolutionary ecologists have addressed in studies of telomere dynamics in non-model species, primarily metazoan animals, and what this can contribute to our understanding of their evolution, life histories and health. I also discuss why the predicted relationships between telomere dynamics and life history traits, based on the detailed cellular studies in humans and model organisms, are not always found in studies in other species.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomeres and telomerase: active but complex players in life-history decisions. 端粒和端粒酶:生命史决策中活跃而复杂的角色。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 Epub Date: 2023-08-23 DOI: 10.1007/s10522-023-10060-z
Radmila Čapková Frydrychová, Barbora Konopová, Vratislav Peska, Miloslav Brejcha, Michala Sábová

Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.

对人类端粒的研究证实,端粒对生物体的寿命和健康有重大影响。然而,最近的研究表明,最初认为端粒以普遍和核心的方式影响所有真核生物物种的寿命的观点过于简单化了。事实上,来自各种动物物种的研究结果表明,端粒生物学在衰老中的作用比以前认识到的更加微妙和错综复杂。在这里,我们展示了端粒生物学如何因类群而异。我们还展示了端粒生物学如何与基本的生活史特征相对应,并影响物种的生命表以及在生长、体型、繁殖和寿命方面的投资;端粒被假定以一种积极而复杂的方式塑造物种的进化前景。我们的评估是基于动物王国中许多实例的端粒生物学数据,这些实例因生物体的复杂程度和生活史策略而异。
{"title":"Telomeres and telomerase: active but complex players in life-history decisions.","authors":"Radmila Čapková Frydrychová, Barbora Konopová, Vratislav Peska, Miloslav Brejcha, Michala Sábová","doi":"10.1007/s10522-023-10060-z","DOIUrl":"10.1007/s10522-023-10060-z","url":null,"abstract":"<p><p>Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10049291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods that shaped telomerase research. 影响端粒酶研究的方法。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 Epub Date: 2023-10-31 DOI: 10.1007/s10522-023-10073-8
Louise Bartle, Raymund J Wellinger

Telomerase, the ribonucleoprotein (RNP) responsible for telomere maintenance, has a complex life. Complex in that it is made of multiple proteins and an RNA, and complex because it undergoes many changes, and passes through different cell compartments. As such, many methods have been developed to discover telomerase components, delve deep into understanding its structure and function and to figure out how telomerase biology ultimately relates to human health and disease. While some old gold-standard methods are still key for determining telomere length and measuring telomerase activity, new technologies are providing promising new ways to gain detailed information that we have never had access to before. Therefore, we thought it timely to briefly review the methods that have revealed information about the telomerase RNP and outline some of the remaining questions that could be answered using new methodology.

端粒是负责端粒维持的核糖核蛋白(RNP),具有复杂的生命。复杂性在于它由多种蛋白质和一种RNA组成,复杂性在于它经历了许多变化,并穿过不同的细胞隔室。因此,已经开发了许多方法来发现端粒酶成分,深入了解其结构和功能,并弄清楚端粒酶生物学最终如何与人类健康和疾病相关。虽然一些旧的金标准方法仍然是确定端粒长度和测量端粒酶活性的关键,但新技术正在提供我们以前从未获得过的有希望的新方法来获得详细信息。因此,我们认为现在是时候简要回顾一下已经揭示端粒酶RNP信息的方法,并概述一些可以使用新方法回答的剩余问题。
{"title":"Methods that shaped telomerase research.","authors":"Louise Bartle, Raymund J Wellinger","doi":"10.1007/s10522-023-10073-8","DOIUrl":"10.1007/s10522-023-10073-8","url":null,"abstract":"<p><p>Telomerase, the ribonucleoprotein (RNP) responsible for telomere maintenance, has a complex life. Complex in that it is made of multiple proteins and an RNA, and complex because it undergoes many changes, and passes through different cell compartments. As such, many methods have been developed to discover telomerase components, delve deep into understanding its structure and function and to figure out how telomerase biology ultimately relates to human health and disease. While some old gold-standard methods are still key for determining telomere length and measuring telomerase activity, new technologies are providing promising new ways to gain detailed information that we have never had access to before. Therefore, we thought it timely to briefly review the methods that have revealed information about the telomerase RNP and outline some of the remaining questions that could be answered using new methodology.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria and telomeres: hand in glove. 线粒体和端粒:携手合作。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 Epub Date: 2023-10-21 DOI: 10.1007/s10522-023-10074-7
Mélina Vaurs, Elif Beyza Dolu, Anabelle Decottignies

Born as an endosymbiont, the bacteria engulfed by the proto-eukaryotic cell more than 1.45 billion years ago progressively evolved as an important organelle with multiple interactions with the host cell. In particular, strong connections between mitochondria and the chromosome ends, the telomeres, led to propose a new theory of ageing in which dysfunctional telomeres and mitochondria are the main actors of a vicious circle reducing cell fitness and promoting cellular ageing. We review the evidences that oxidative stress and dysfunctional mitochondria damage telomeres and further discuss the interrelationship between telomere biology and mitochondria through the lens of telomerase which shuttles between the nucleus and mitochondria. Finally, we elaborate on the possible role of the mitochondrial genome on the inheritance of human telomere length through the expression of mitochondrial gene variants.

作为一种内共生体,14.5亿年前被原真核细胞吞噬的细菌逐渐进化为一种重要的细胞器,与宿主细胞有多种相互作用。特别是,线粒体和染色体末端端粒之间的紧密联系,提出了一种新的衰老理论,其中功能失调的端粒和线粒体是降低细胞健康度和促进细胞衰老的恶性循环的主要参与者。我们综述了氧化应激和线粒体功能障碍损害端粒的证据,并通过穿梭于细胞核和线粒体之间的端粒酶的透镜进一步讨论了端粒生物学与线粒体之间的相互关系。最后,我们详细阐述了线粒体基因组通过线粒体基因变体的表达在人类端粒长度遗传中的可能作用。
{"title":"Mitochondria and telomeres: hand in glove.","authors":"Mélina Vaurs, Elif Beyza Dolu, Anabelle Decottignies","doi":"10.1007/s10522-023-10074-7","DOIUrl":"10.1007/s10522-023-10074-7","url":null,"abstract":"<p><p>Born as an endosymbiont, the bacteria engulfed by the proto-eukaryotic cell more than 1.45 billion years ago progressively evolved as an important organelle with multiple interactions with the host cell. In particular, strong connections between mitochondria and the chromosome ends, the telomeres, led to propose a new theory of ageing in which dysfunctional telomeres and mitochondria are the main actors of a vicious circle reducing cell fitness and promoting cellular ageing. We review the evidences that oxidative stress and dysfunctional mitochondria damage telomeres and further discuss the interrelationship between telomere biology and mitochondria through the lens of telomerase which shuttles between the nucleus and mitochondria. Finally, we elaborate on the possible role of the mitochondrial genome on the inheritance of human telomere length through the expression of mitochondrial gene variants.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alexey Olovnikov: theoretical biology beyond the margins. 阿列克谢-奥洛夫尼科夫:超越边缘的理论生物学。
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-04-01 Epub Date: 2023-09-07 DOI: 10.1007/s10522-023-10061-y
Ivan A Olovnikov

Alexey Olovnikov (1936-2022) is an author of the famous marginotomy hypothesis, where he recognized the DNA end replication problem and its role in cell aging. In this biographical note we celebrate the 50th anniversary of this theoretical discovery that later enjoyed a brilliant confirmation and gave rise to a new thriving field of molecular biology and gerontology. We also take a look at the evolution of ideas in Alexey Olovnikov's lifelong quest to uncover the molecular mechanisms of aging, exploring the reasons why he walked away from his initial conclusion about the key role of telomeres in aging, and built a new vast theoretical landscape that linked all stages of ontogenesis.

阿列克谢-奥洛夫尼科夫(Alexey Olovnikov,1936-2022 年)是著名的边缘切开假说(marginotomy hypothesis)的提出者,他在该假说中认识到了 DNA 末端复制问题及其在细胞衰老中的作用。在本传记中,我们将庆祝这一理论发现 50 周年,这一发现后来得到了辉煌的证实,并催生了分子生物学和老年学这一新领域的蓬勃发展。我们还将回顾阿列克谢-奥洛夫尼科夫毕生探索衰老分子机制的思想演变过程,探讨他为何放弃最初关于端粒在衰老中的关键作用的结论,并建立起一个连接本体发生各个阶段的新的庞大理论体系。
{"title":"Alexey Olovnikov: theoretical biology beyond the margins.","authors":"Ivan A Olovnikov","doi":"10.1007/s10522-023-10061-y","DOIUrl":"10.1007/s10522-023-10061-y","url":null,"abstract":"<p><p>Alexey Olovnikov (1936-2022) is an author of the famous marginotomy hypothesis, where he recognized the DNA end replication problem and its role in cell aging. In this biographical note we celebrate the 50th anniversary of this theoretical discovery that later enjoyed a brilliant confirmation and gave rise to a new thriving field of molecular biology and gerontology. We also take a look at the evolution of ideas in Alexey Olovnikov's lifelong quest to uncover the molecular mechanisms of aging, exploring the reasons why he walked away from his initial conclusion about the key role of telomeres in aging, and built a new vast theoretical landscape that linked all stages of ontogenesis.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10524561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential use of nanozyme in aging and age‐related diseases 纳米酶在衰老和老年相关疾病中的潜在用途
IF 4.5 4区 医学 Q1 Nursing Pub Date : 2024-03-11 DOI: 10.1007/s10522-024-10095-w
Amirsasan Gorgzadeh, Paria Arab Amiri, Saman Yasamineh, Basim Kareem Naser, Khairia abdulrahman abdulallah

The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.

Graphical Abstract

老年人口日益增多对 21 世纪社会的影响最为深远。医疗费用不断增长的主要原因是,随着预期寿命的延长,慢性病的发病率也在增加。人们提出了不同的观点来解释衰老,但普遍认为蛋白质、脂类和核酸的氧化损伤是衰老过程的原因。在所有当代工业化文化中,预期寿命延长的同时,与年龄有关的疾病,如心血管和神经系统疾病、2 型糖尿病、骨质疏松症和癌症的发病率也急剧上升。因此,学术界和公共卫生部门应优先开发延长健康寿命的疗法。纳米材料中的纳米酶(NZ)类活性已被确认为有前途的抗衰老纳米药物。不仅如此,具有催化活性的纳米材料已发展成为具有高结构稳定性、可变催化活性和功能多样性的人工酶,可用于各种生物环境,包括与年龄有关的疾病。由于具有模仿酶的固有特性,酶在治疗与活性氧(ROS)有关的疾病方面引起了极大的兴趣。本文概述了 NZs 对衰老和老年相关疾病的影响。最后,提出了在衰老和与年龄有关的疾病中研究和使用酶的前景和威胁。
{"title":"The potential use of nanozyme in aging and age‐related diseases","authors":"Amirsasan Gorgzadeh, Paria Arab Amiri, Saman Yasamineh, Basim Kareem Naser, Khairia abdulrahman abdulallah","doi":"10.1007/s10522-024-10095-w","DOIUrl":"https://doi.org/10.1007/s10522-024-10095-w","url":null,"abstract":"<p>The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biogerontology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1