Pub Date : 2024-10-12DOI: 10.1186/s12938-024-01296-y
H M Ngwangwa, D Modungwa, T Pandelani, F J Nemavhola
Diseases of the esophagus affect its function and often lead to replacement of long sections of the organ. Current healing methods involve the use of bioscaffolds processed from other animal models. Although the properties of these animal models are not exactly the same as those of the human esophagus, they nevertheless present a reasonable means of assessing the biomechanical properties of the esophageal tissue. Besides, sheep bear many similarities physiologically to humans and they also suffer from same diseases as humans. The morphology of their esophagus is also comparable to that of humans. Thus, in the study, an ovine esophagus was studied. Studies on the planar biaxial tests of the gross esophageal anatomy are limited. The composite nature of the gross anatomy of the esophagus makes the application of structure-based models such as Holzapfel-type models very difficult. In current studies the tissue is therefore often separated into specific layers with substantial collagen content. The effects of adipose tissue and other non-collagenous tissue often make the mechanical behavior of the esophagus widely diverse and unpredictable using deterministic structure-based models. Thus, it may be very difficult to predict its mechanical behavior. In the study, an NARX neural network was used to predict the stress-strain response of the gross anatomy of the ovine esophagus. The results show that the NARX model was able to achieve a correlation above 99.9% within a fitting error margin of 16%. Therefore, the use of artificial neural networks may provide a more accurate way of predicting the biaxial stress-strain response of the esophageal tissue, and lead to further improvements in the design and development of synthetic replacement materials for esophageal tissue.
{"title":"Estimation of the biaxial tensile behavior of ovine esophageal tissue using artificial neural networks.","authors":"H M Ngwangwa, D Modungwa, T Pandelani, F J Nemavhola","doi":"10.1186/s12938-024-01296-y","DOIUrl":"https://doi.org/10.1186/s12938-024-01296-y","url":null,"abstract":"<p><p>Diseases of the esophagus affect its function and often lead to replacement of long sections of the organ. Current healing methods involve the use of bioscaffolds processed from other animal models. Although the properties of these animal models are not exactly the same as those of the human esophagus, they nevertheless present a reasonable means of assessing the biomechanical properties of the esophageal tissue. Besides, sheep bear many similarities physiologically to humans and they also suffer from same diseases as humans. The morphology of their esophagus is also comparable to that of humans. Thus, in the study, an ovine esophagus was studied. Studies on the planar biaxial tests of the gross esophageal anatomy are limited. The composite nature of the gross anatomy of the esophagus makes the application of structure-based models such as Holzapfel-type models very difficult. In current studies the tissue is therefore often separated into specific layers with substantial collagen content. The effects of adipose tissue and other non-collagenous tissue often make the mechanical behavior of the esophagus widely diverse and unpredictable using deterministic structure-based models. Thus, it may be very difficult to predict its mechanical behavior. In the study, an NARX neural network was used to predict the stress-strain response of the gross anatomy of the ovine esophagus. The results show that the NARX model was able to achieve a correlation above 99.9% within a fitting error margin of 16%. Therefore, the use of artificial neural networks may provide a more accurate way of predicting the biaxial stress-strain response of the esophageal tissue, and lead to further improvements in the design and development of synthetic replacement materials for esophageal tissue.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"100"},"PeriodicalIF":2.9,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1186/s12938-024-01291-3
Dian Zhang, Hongyan Zhou, Tianli Zhou, Yan Chang, Lei Wang, Mao Sheng, Huihui Jia, Xiaodong Yang
Background: Developmental dysplasia of the hip (DDH) is a common pediatric orthopedic condition characterized by varying degrees of acetabular dysplasia and hip dislocation. Current 2D imaging methods often fail to provide sufficient anatomical detail for effective treatment planning, leading to higher rates of misdiagnosis and missed diagnoses. MRI, with its advantages of being radiation-free, multi-planar, and containing more anatomical information, can provide the crucial morphological and volumetric data needed to evaluate DDH. However, manual techniques for measuring parameters like the center-edge angle (CEA) and acetabular index (AI) are time-consuming. Automating these processes is essential for accurate clinical assessments and personalized treatment strategies.
Methods: This study employed a U-Net-based CNN model to automate the segmentation of hip MRI images in children. The segmentation process was validated using a leave-one-out method during training. Subsequently, the segmented hip joint images were utilized in clinical settings to perform automated measurements of key angles: AI, femoral neck angle (FNA), and CEA. This automated approach aimed to replace manual measurements and provide an objective reference for clinical assessments.
Results: The U-Net-based network demonstrates high effectiveness in hip segmentation compared to manual radiologist segmentations. In test data, it achieves average DSC values of 0.9109 (acetabulum) and 0.9244 (proximal femur), with a 91.76% segmentation success rate. The average ASD values are 0.3160 mm (acetabulum) and 0.6395 mm (proximal femur) in test data, with Ground Truth (GT) edge points and predicted segmentation maps having a mean distance of less than 1 mm. Using automated segmentation models for clinical hip angle measurements (CEA, AI, FNA) shows no statistical difference compared to manual measurements (p > 0.05).
Conclusion: Utilizing U-Net-based image segmentation and automated measurement of morphological parameters significantly enhances the accuracy and efficiency of DDH assessment. These methods improve precision in automatic measurements and provide an objective basis for clinical diagnosis and treatment of DDH.
{"title":"Using 2D U-Net convolutional neural networks for automatic acetabular and proximal femur segmentation of hip MRI images and morphological quantification: a preliminary study in DDH.","authors":"Dian Zhang, Hongyan Zhou, Tianli Zhou, Yan Chang, Lei Wang, Mao Sheng, Huihui Jia, Xiaodong Yang","doi":"10.1186/s12938-024-01291-3","DOIUrl":"10.1186/s12938-024-01291-3","url":null,"abstract":"<p><strong>Background: </strong>Developmental dysplasia of the hip (DDH) is a common pediatric orthopedic condition characterized by varying degrees of acetabular dysplasia and hip dislocation. Current 2D imaging methods often fail to provide sufficient anatomical detail for effective treatment planning, leading to higher rates of misdiagnosis and missed diagnoses. MRI, with its advantages of being radiation-free, multi-planar, and containing more anatomical information, can provide the crucial morphological and volumetric data needed to evaluate DDH. However, manual techniques for measuring parameters like the center-edge angle (CEA) and acetabular index (AI) are time-consuming. Automating these processes is essential for accurate clinical assessments and personalized treatment strategies.</p><p><strong>Methods: </strong>This study employed a U-Net-based CNN model to automate the segmentation of hip MRI images in children. The segmentation process was validated using a leave-one-out method during training. Subsequently, the segmented hip joint images were utilized in clinical settings to perform automated measurements of key angles: AI, femoral neck angle (FNA), and CEA. This automated approach aimed to replace manual measurements and provide an objective reference for clinical assessments.</p><p><strong>Results: </strong>The U-Net-based network demonstrates high effectiveness in hip segmentation compared to manual radiologist segmentations. In test data, it achieves average DSC values of 0.9109 (acetabulum) and 0.9244 (proximal femur), with a 91.76% segmentation success rate. The average ASD values are 0.3160 mm (acetabulum) and 0.6395 mm (proximal femur) in test data, with Ground Truth (GT) edge points and predicted segmentation maps having a mean distance of less than 1 mm. Using automated segmentation models for clinical hip angle measurements (CEA, AI, FNA) shows no statistical difference compared to manual measurements (p > 0.05).</p><p><strong>Conclusion: </strong>Utilizing U-Net-based image segmentation and automated measurement of morphological parameters significantly enhances the accuracy and efficiency of DDH assessment. These methods improve precision in automatic measurements and provide an objective basis for clinical diagnosis and treatment of DDH.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"98"},"PeriodicalIF":2.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1186/s12938-024-01295-z
Yongchao Yan, Yunbo Liu, Yize Guo, Bin Li, Yanjiang Li, Xinning Wang
Objective: This retrospective aims to develop a comprehensive predictive model based on CT radiomic features and clinical parameters, facilitating early preoperative diagnosis of pyonephrosis.
Methods: Clinical and radiological data from 311 patients treated for upper urinary tract stones with obstructive pyelohydronephrosis, between January 2018 and May 2023, were retrospectively collected. Univariate and multivariate logistic regression analyses were conducted on clinical data to identify independent risk factors for pyonephrosis. A clinical model was developed using logistic regression. The 3D Slicer software was employed to manually delineate the region of interest (ROI) in the preoperative CT images, corresponding to the area of pyelohydronephrosis, for feature extraction. The optimal radiomic features were selected to construct radiomic models and calculate the radiomic score (Radscore). Subsequently, a combined clinical-radiomic model-the nomogram-was established by integrating the Radscore with independent risk factors.
Results: Univariate and multivariate logistic regression analyses identified cystatin C, Hounsfield Unit (HU) of pyonephrosis, history of ipsilateral urological surgery, and positive urine culture as independent risk factors for pyonephrosis (P < 0.05). Fourteen optimal radiomic features were selected from CT images to construct four radiomic models, with the Naive Bayes model demonstrating the best predictive performance in both training and validation sets. In the training set, the AUCs for the clinical model, radiomic model, and nomogram were 0.902, 0.939, and 0.991, respectively; in the validation set, they were 0.843, 0.874, and 0.959. Both calibration and decision curves showed good agreement between the predicted probabilities of the nomogram and the actual occurrences.
Conclusion: The nomogram, constructed from CT radiomic features and clinical variables, provides an effective non-invasive predictive tool for pyonephrosis, surpassing both clinical and radiomic models.
{"title":"Early diagnostic model of pyonephrosis with calculi based on radiomic features combined with clinical variables.","authors":"Yongchao Yan, Yunbo Liu, Yize Guo, Bin Li, Yanjiang Li, Xinning Wang","doi":"10.1186/s12938-024-01295-z","DOIUrl":"10.1186/s12938-024-01295-z","url":null,"abstract":"<p><strong>Objective: </strong>This retrospective aims to develop a comprehensive predictive model based on CT radiomic features and clinical parameters, facilitating early preoperative diagnosis of pyonephrosis.</p><p><strong>Methods: </strong>Clinical and radiological data from 311 patients treated for upper urinary tract stones with obstructive pyelohydronephrosis, between January 2018 and May 2023, were retrospectively collected. Univariate and multivariate logistic regression analyses were conducted on clinical data to identify independent risk factors for pyonephrosis. A clinical model was developed using logistic regression. The 3D Slicer software was employed to manually delineate the region of interest (ROI) in the preoperative CT images, corresponding to the area of pyelohydronephrosis, for feature extraction. The optimal radiomic features were selected to construct radiomic models and calculate the radiomic score (Radscore). Subsequently, a combined clinical-radiomic model-the nomogram-was established by integrating the Radscore with independent risk factors.</p><p><strong>Results: </strong>Univariate and multivariate logistic regression analyses identified cystatin C, Hounsfield Unit (HU) of pyonephrosis, history of ipsilateral urological surgery, and positive urine culture as independent risk factors for pyonephrosis (P < 0.05). Fourteen optimal radiomic features were selected from CT images to construct four radiomic models, with the Naive Bayes model demonstrating the best predictive performance in both training and validation sets. In the training set, the AUCs for the clinical model, radiomic model, and nomogram were 0.902, 0.939, and 0.991, respectively; in the validation set, they were 0.843, 0.874, and 0.959. Both calibration and decision curves showed good agreement between the predicted probabilities of the nomogram and the actual occurrences.</p><p><strong>Conclusion: </strong>The nomogram, constructed from CT radiomic features and clinical variables, provides an effective non-invasive predictive tool for pyonephrosis, surpassing both clinical and radiomic models.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"97"},"PeriodicalIF":2.9,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1186/s12938-024-01290-4
Saeed Asgary, Mahtab Aram, Mahta Fazlyab
This review aims to comprehensively explore calcium-enriched mixture (CEM) cement as a crucial biomaterial in dentistry/endodontics. With its growing clinical relevance, there is a need to evaluate its composition, chemical/physical/biological properties, clinical applications, and future perspectives to provide clinicians/researchers with a detailed understanding of its potential in endodontic procedures. Through systematic analysis of available evidence, we assess the advantages/limitations of CEM cement, offering valuable insights for informed decision-making in dental/endodontic practice. Our findings highlight the commendable chemical/physical properties of CEM cement, including handling characteristics, alkalinity, color stability, bioactivity, biocompatibility, sealing ability, and antimicrobial properties. Importantly, CEM cement has shown the potential in promoting regenerative processes, such as dentinogenesis and cementogenesis. It has demonstrated successful outcomes in various clinical applications, including vital pulp therapy techniques, endodontic surgery, open apices management, root resorption/perforation repair, and as an orifice/root canal obturation material. The efficacy and reliability of CEM cement in diverse clinical scenarios underscore its effectiveness in endodontic practice. However, we emphasize the need for well-designed clinical trials with long-term follow-up to further substantiate the full potential of CEM cement. This review serves as a robust reference for researchers/practitioners, offering an in-depth exploration of CEM cement and its multifaceted roles in contemporary dentistry/endodontics.
本综述旨在全面探讨富钙混合物(CEM)水门汀作为牙科/根管治疗学中的一种重要生物材料的作用。随着其临床相关性的不断提高,有必要对其成分、化学/物理/生物特性、临床应用和未来前景进行评估,以便让临床医生/研究人员详细了解其在牙髓治疗过程中的潜力。通过对现有证据的系统分析,我们评估了 CEM 水泥的优势/局限性,为牙科/牙髓治疗实践中的知情决策提供了宝贵的见解。我们的研究结果强调了 CEM 水泥值得称赞的化学/物理特性,包括操作特性、碱性、颜色稳定性、生物活性、生物相容性、密封能力和抗菌特性。重要的是,CEM 水泥已显示出促进牙本质生成和骨水泥生成等再生过程的潜力。它在各种临床应用中都取得了成功,包括活髓治疗技术、牙髓手术、开放根尖管理、根吸收/穿孔修复,以及作为孔口/根管封堵材料。CEM 骨水泥在各种临床应用中的有效性和可靠性突出表明了它在牙髓治疗实践中的有效性。然而,我们强调有必要进行精心设计的临床试验和长期随访,以进一步证实 CEM 水门汀的全部潜力。这篇综述为研究人员/从业人员提供了有力的参考,深入探讨了 CEM 水泥及其在当代牙科/牙髓病学中的多方面作用。
{"title":"Comprehensive review of composition, properties, clinical applications, and future perspectives of calcium-enriched mixture (CEM) cement: a systematic analysis","authors":"Saeed Asgary, Mahtab Aram, Mahta Fazlyab","doi":"10.1186/s12938-024-01290-4","DOIUrl":"https://doi.org/10.1186/s12938-024-01290-4","url":null,"abstract":"This review aims to comprehensively explore calcium-enriched mixture (CEM) cement as a crucial biomaterial in dentistry/endodontics. With its growing clinical relevance, there is a need to evaluate its composition, chemical/physical/biological properties, clinical applications, and future perspectives to provide clinicians/researchers with a detailed understanding of its potential in endodontic procedures. Through systematic analysis of available evidence, we assess the advantages/limitations of CEM cement, offering valuable insights for informed decision-making in dental/endodontic practice. Our findings highlight the commendable chemical/physical properties of CEM cement, including handling characteristics, alkalinity, color stability, bioactivity, biocompatibility, sealing ability, and antimicrobial properties. Importantly, CEM cement has shown the potential in promoting regenerative processes, such as dentinogenesis and cementogenesis. It has demonstrated successful outcomes in various clinical applications, including vital pulp therapy techniques, endodontic surgery, open apices management, root resorption/perforation repair, and as an orifice/root canal obturation material. The efficacy and reliability of CEM cement in diverse clinical scenarios underscore its effectiveness in endodontic practice. However, we emphasize the need for well-designed clinical trials with long-term follow-up to further substantiate the full potential of CEM cement. This review serves as a robust reference for researchers/practitioners, offering an in-depth exploration of CEM cement and its multifaceted roles in contemporary dentistry/endodontics.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"30 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anomalous origin of coronary artery is a common coronary artery anatomy anomaly. The anomalous origin of the coronary artery may lead to problems such as narrowing of the coronary arteries at the beginning of the coronary arteries and abnormal alignment, which may lead to myocardial ischemia due to the compression of the coronary arteries. Clinical symptoms include chest tightness and dyspnea, with angina pectoris as a common symptom that can be life-threatening. Timely and accurate diagnosis of anomalous coronary artery origin is of great importance. Coronary computed tomography angiography (CCTA) can provide detailed information on the characteristics of coronary arteries. Therefore, we combined CCTA and artificial intelligence (AI) technology to analyze the CCTA image features and clinical features of patients with anomalous origin of the right coronary artery to predict angina pectoris and the relevance of different features to angina pectoris. In this retrospective analysis, we compiled data on 15 characteristics from 126 patients diagnosed with anomalous right coronary artery origins. The dataset encompassed both CCTA imaging attributes, such as the positioning of the right coronary artery orifices and the alignment of coronary arteries, and clinical parameters including gender and age. To identify the most salient features, we employed the Chi-square feature selection method, which filters features based on their statistical significance. We then focused on features yielding a Chi-square score exceeding a threshold of 1, thereby narrowing down the selection to seven key variables, including cardiac function and gender. Subsequently, we evaluated seven classifiers known for their efficacy in classification tasks. Through rigorous training and testing, we conducted a comparative analysis to identify the top three classifiers with the highest accuracy rates. The top three classifiers in this study are Support Vector Machine (SVM), Ensemble Learning (EL), and Kernel Approximation Classifier. Among the SVM, EL and Kernel Approximation Classifier-based classifiers, the best performance is achieved for linear SVM, optimizable Ensembles Learning and SVM kernel, respectively. And the corresponding accuracy is 75.7%, 75.7%, and 73.0%, respectively. The AUC values are 0.77, 0.80, and 0.75, respectively. Machine learning (ML) models can predict angina pectoris caused by the origin anomalous of the right coronary artery, providing valuable auxiliary diagnostic information for clinicians and serving as a warning to clinicians. It is hoped that timely intervention and treatment can be realized to avoid serious consequences such as myocardial infarction.
{"title":"The value of CCTA combined with machine learning for predicting angina pectoris in the anomalous origin of the right coronary artery","authors":"Ying Wang, MengXing Wang, Mingyuan Yuan, Wenxian Peng","doi":"10.1186/s12938-024-01286-0","DOIUrl":"https://doi.org/10.1186/s12938-024-01286-0","url":null,"abstract":"Anomalous origin of coronary artery is a common coronary artery anatomy anomaly. The anomalous origin of the coronary artery may lead to problems such as narrowing of the coronary arteries at the beginning of the coronary arteries and abnormal alignment, which may lead to myocardial ischemia due to the compression of the coronary arteries. Clinical symptoms include chest tightness and dyspnea, with angina pectoris as a common symptom that can be life-threatening. Timely and accurate diagnosis of anomalous coronary artery origin is of great importance. Coronary computed tomography angiography (CCTA) can provide detailed information on the characteristics of coronary arteries. Therefore, we combined CCTA and artificial intelligence (AI) technology to analyze the CCTA image features and clinical features of patients with anomalous origin of the right coronary artery to predict angina pectoris and the relevance of different features to angina pectoris. In this retrospective analysis, we compiled data on 15 characteristics from 126 patients diagnosed with anomalous right coronary artery origins. The dataset encompassed both CCTA imaging attributes, such as the positioning of the right coronary artery orifices and the alignment of coronary arteries, and clinical parameters including gender and age. To identify the most salient features, we employed the Chi-square feature selection method, which filters features based on their statistical significance. We then focused on features yielding a Chi-square score exceeding a threshold of 1, thereby narrowing down the selection to seven key variables, including cardiac function and gender. Subsequently, we evaluated seven classifiers known for their efficacy in classification tasks. Through rigorous training and testing, we conducted a comparative analysis to identify the top three classifiers with the highest accuracy rates. The top three classifiers in this study are Support Vector Machine (SVM), Ensemble Learning (EL), and Kernel Approximation Classifier. Among the SVM, EL and Kernel Approximation Classifier-based classifiers, the best performance is achieved for linear SVM, optimizable Ensembles Learning and SVM kernel, respectively. And the corresponding accuracy is 75.7%, 75.7%, and 73.0%, respectively. The AUC values are 0.77, 0.80, and 0.75, respectively. Machine learning (ML) models can predict angina pectoris caused by the origin anomalous of the right coronary artery, providing valuable auxiliary diagnostic information for clinicians and serving as a warning to clinicians. It is hoped that timely intervention and treatment can be realized to avoid serious consequences such as myocardial infarction.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"15 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Articular cartilage damage and wear can result in cartilage degeneration, ultimately culminating in osteoarthritis. Current surgical interventions offer limited capacity for cartilage tissue regeneration and offer only temporary alleviation of symptoms. Tissue engineering strategies are increasingly recognized as promising modalities for cartilage restoration. Currently, various biological scaffolds utilizing tissue engineering materials are extensively employed in both fundamental and clinical investigations of cartilage repair. In order to optimize the cartilage repair ability of tissue engineering scaffolds, researchers not only optimize the structure and properties of scaffolds from the perspective of materials science and manufacturing technology to enhance their histocompatibility, but also adopt strategies such as loading cells, cytokines, and drugs to promote cartilage formation. This review provides an overview of contemporary tissue engineering strategies employed in cartilage repair, as well as a synthesis of existing preclinical and clinical research. Furthermore, the obstacles faced in the translation of tissue engineering strategies to clinical practice are discussed, offering valuable guidance for researchers seeking to address these challenges.
{"title":"Tissue engineering strategies hold promise for the repair of articular cartilage injury","authors":"Chenhui Yang, Rongjin Chen, Changshun Chen, Fei Yang, Hefang Xiao, Bin Geng, Yayi Xia","doi":"10.1186/s12938-024-01260-w","DOIUrl":"https://doi.org/10.1186/s12938-024-01260-w","url":null,"abstract":"Articular cartilage damage and wear can result in cartilage degeneration, ultimately culminating in osteoarthritis. Current surgical interventions offer limited capacity for cartilage tissue regeneration and offer only temporary alleviation of symptoms. Tissue engineering strategies are increasingly recognized as promising modalities for cartilage restoration. Currently, various biological scaffolds utilizing tissue engineering materials are extensively employed in both fundamental and clinical investigations of cartilage repair. In order to optimize the cartilage repair ability of tissue engineering scaffolds, researchers not only optimize the structure and properties of scaffolds from the perspective of materials science and manufacturing technology to enhance their histocompatibility, but also adopt strategies such as loading cells, cytokines, and drugs to promote cartilage formation. This review provides an overview of contemporary tissue engineering strategies employed in cartilage repair, as well as a synthesis of existing preclinical and clinical research. Furthermore, the obstacles faced in the translation of tissue engineering strategies to clinical practice are discussed, offering valuable guidance for researchers seeking to address these challenges.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"6 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.
{"title":"Ferroptosis in radiation-induced brain injury: roles and clinical implications","authors":"Lifang Li, Xia Liu, Chunfeng Han, Licheng Tian, Yongzhi Wang, Baolin Han","doi":"10.1186/s12938-024-01288-y","DOIUrl":"https://doi.org/10.1186/s12938-024-01288-y","url":null,"abstract":"Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"64 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1186/s12938-024-01284-2
Tatsuo Fujikawa, Yoji Yamada
The thresholds of mechanical inputs for bruising caused by blunt impact are important in the fields of machine safety and forensics. However, reliable data on these thresholds remain inadequate owing to a lack of in vivo experiments, which are crucial for investigating the occurrence of bruising. Since experiments involving live human participants are limited owing to ethical concerns, finite-element method (FEM) simulations of the bruising mechanism should be used to compensate for the lack of experimental data by estimating the thresholds under various conditions, which requires clarifying the mechanism of formation of actual bruises. Therefore, this study aimed to visualize the mechanism underlying the formation of bruises caused by blunt impact to enable FEM simulations to estimate the thresholds of mechanical inputs for bruising. In vivo microscopy of a transparent glass catfish subjected to blunt contact with an indenter was performed. The fish were anesthetized by immersing them in buffered MS-222 (75–100 mg/L) and then fixed on a subject tray. The indenter, made of transparent acrylic and having a rectangular contact area with dimensions of 1.0 mm × 1.5 mm, was loaded onto the lateral side of the caudal region of the fish. Blood vessels and surrounding tissues were examined through the transparent indenter using a microscope equipped with a video camera. The contact force was measured using a force-sensing table. One of the processes of rupturing thin blood vessels, which are an essential component of the bruising mechanism, was observed and recorded as a movie. The soft tissue surrounding the thin blood vessel extended in a plane perpendicular to the compressive contact force. Subsequently, the thin blood vessel was pulled into a straight configuration. Next, it was stretched in the axial direction and finally ruptured. The results obtained indicate that the extension of the surrounding tissue in the direction perpendicular to the contact force as well as the extension of the thin blood vessels are important factors in the bruising mechanism, which must be reproduced by FEM simulation to estimate the thresholds.
钝器撞击造成瘀伤的机械输入阈值在机器安全和法医学领域非常重要。然而,由于缺乏活体实验,有关这些阈值的可靠数据仍然不足,而活体实验对于研究瘀伤的发生至关重要。出于伦理考虑,涉及活人的实验有限,因此应采用有限元法(FEM)模拟瘀伤机制,通过估算各种条件下的阈值来弥补实验数据的不足,这就需要明确实际瘀伤的形成机制。因此,本研究旨在将钝器撞击导致的瘀伤形成机制可视化,以便通过有限元模拟估算瘀伤的机械输入阈值。研究人员对受到压头钝性接触的透明玻璃鲶鱼进行了活体显微镜观察。将鱼浸入缓冲液 MS-222(75-100 毫克/升)中进行麻醉,然后固定在受试者托盘上。压头由透明丙烯酸制成,接触面积为 1.0 mm × 1.5 mm 的矩形,压头装在鱼体尾部的外侧。使用配备摄像机的显微镜通过透明压头检查血管和周围组织。接触力是通过力感应台测量的。观察并记录了薄血管破裂的其中一个过程,这也是瘀伤机制的重要组成部分。细血管周围的软组织在垂直于压缩接触力的平面上延伸。随后,细血管被拉成一条直线。接着,它在轴向被拉伸,最后破裂。所得结果表明,周围组织在垂直于接触力方向上的延伸以及细血管的延伸是淤血机制中的重要因素,必须通过有限元模拟再现这些因素,以估计阈值。
{"title":"In vivo video microscopy of the rupturing process of thin blood vessels to clarify the mechanism of bruising caused by blunt impact: an animal study","authors":"Tatsuo Fujikawa, Yoji Yamada","doi":"10.1186/s12938-024-01284-2","DOIUrl":"https://doi.org/10.1186/s12938-024-01284-2","url":null,"abstract":"The thresholds of mechanical inputs for bruising caused by blunt impact are important in the fields of machine safety and forensics. However, reliable data on these thresholds remain inadequate owing to a lack of in vivo experiments, which are crucial for investigating the occurrence of bruising. Since experiments involving live human participants are limited owing to ethical concerns, finite-element method (FEM) simulations of the bruising mechanism should be used to compensate for the lack of experimental data by estimating the thresholds under various conditions, which requires clarifying the mechanism of formation of actual bruises. Therefore, this study aimed to visualize the mechanism underlying the formation of bruises caused by blunt impact to enable FEM simulations to estimate the thresholds of mechanical inputs for bruising. In vivo microscopy of a transparent glass catfish subjected to blunt contact with an indenter was performed. The fish were anesthetized by immersing them in buffered MS-222 (75–100 mg/L) and then fixed on a subject tray. The indenter, made of transparent acrylic and having a rectangular contact area with dimensions of 1.0 mm × 1.5 mm, was loaded onto the lateral side of the caudal region of the fish. Blood vessels and surrounding tissues were examined through the transparent indenter using a microscope equipped with a video camera. The contact force was measured using a force-sensing table. One of the processes of rupturing thin blood vessels, which are an essential component of the bruising mechanism, was observed and recorded as a movie. The soft tissue surrounding the thin blood vessel extended in a plane perpendicular to the compressive contact force. Subsequently, the thin blood vessel was pulled into a straight configuration. Next, it was stretched in the axial direction and finally ruptured. The results obtained indicate that the extension of the surrounding tissue in the direction perpendicular to the contact force as well as the extension of the thin blood vessels are important factors in the bruising mechanism, which must be reproduced by FEM simulation to estimate the thresholds.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"3 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1186/s12938-024-01287-z
R. Re, A. Scano, O. Amata, L. Spinelli, A. Tomba, C. Brambilla, A. Frizziero, A. V. Caserta, R. Cubeddu, A. Torricelli, D. Contini
Sarcopenia is a muscle disorder causing a progressive reduction of muscle mass and strength, but the mechanism of its manifestation is still partially unknown. The three main parameters to assess are: muscle strength, muscle volume or quality and low physical performance. There is not a definitive approach to assess the musculoskeletal condition of frail population and often the available tests to be performed in those clinical bedridden patients is reduced because of physical impairments. In this paper, we propose a novel instrumental multi-domain and non-invasive approach during a well-defined protocol of measurements for overcoming these limitations. A group of 28 bedridden elder people, subjected to surgery after hip fracture, was asked to perform voluntary isometric contractions at the 80% of their maximum voluntary contraction with the non-injured leg. The sensor employed before and/or during the exercise were: ultrasound to determine the muscle architecture (vastus lateralis); force acquisition with a load cell placed on the chair, giving an indication of the muscle strength; surface electromyography (EMG) for monitoring muscular electrical activity; time-domain (TD) near-infrared spectroscopy (NIRS) for evaluating muscle oxidative metabolism. A personalized “report card” for each subject was created. It includes: the force diagram (both instantaneous and cumulative, expected and measured); the EMG–force diagram for a comparison between EMG derived median frequency and measured force; two graphs related to the hemodynamic parameters for muscle oxidative metabolism evaluation, i.e., oxy-, deoxy-, total-hemoglobin and tissue oxygen saturation for the whole exercise period. A table with the absolute values of the previous hemodynamic parameters during the rest and the ultrasound related parameters are also included. In this work, we present the union of protocols, multi-domain sensors and parameters for the evaluation of the musculoskeletal condition. The novelties are the use of sensors of different nature, i.e., force, electrical and optical, together with a new way to visualize and combine the results, by means of a concise, exhaustive and personalized medical report card for each patient. This assessment, totally non-invasive, is focused on a bedridden population, but can be extended to the monitoring of rehabilitation progresses or of the training of athletes.
{"title":"A personalized clinical assessment: multi-sensor approach for understanding musculoskeletal health in the frail population","authors":"R. Re, A. Scano, O. Amata, L. Spinelli, A. Tomba, C. Brambilla, A. Frizziero, A. V. Caserta, R. Cubeddu, A. Torricelli, D. Contini","doi":"10.1186/s12938-024-01287-z","DOIUrl":"https://doi.org/10.1186/s12938-024-01287-z","url":null,"abstract":"Sarcopenia is a muscle disorder causing a progressive reduction of muscle mass and strength, but the mechanism of its manifestation is still partially unknown. The three main parameters to assess are: muscle strength, muscle volume or quality and low physical performance. There is not a definitive approach to assess the musculoskeletal condition of frail population and often the available tests to be performed in those clinical bedridden patients is reduced because of physical impairments. In this paper, we propose a novel instrumental multi-domain and non-invasive approach during a well-defined protocol of measurements for overcoming these limitations. A group of 28 bedridden elder people, subjected to surgery after hip fracture, was asked to perform voluntary isometric contractions at the 80% of their maximum voluntary contraction with the non-injured leg. The sensor employed before and/or during the exercise were: ultrasound to determine the muscle architecture (vastus lateralis); force acquisition with a load cell placed on the chair, giving an indication of the muscle strength; surface electromyography (EMG) for monitoring muscular electrical activity; time-domain (TD) near-infrared spectroscopy (NIRS) for evaluating muscle oxidative metabolism. A personalized “report card” for each subject was created. It includes: the force diagram (both instantaneous and cumulative, expected and measured); the EMG–force diagram for a comparison between EMG derived median frequency and measured force; two graphs related to the hemodynamic parameters for muscle oxidative metabolism evaluation, i.e., oxy-, deoxy-, total-hemoglobin and tissue oxygen saturation for the whole exercise period. A table with the absolute values of the previous hemodynamic parameters during the rest and the ultrasound related parameters are also included. In this work, we present the union of protocols, multi-domain sensors and parameters for the evaluation of the musculoskeletal condition. The novelties are the use of sensors of different nature, i.e., force, electrical and optical, together with a new way to visualize and combine the results, by means of a concise, exhaustive and personalized medical report card for each patient. This assessment, totally non-invasive, is focused on a bedridden population, but can be extended to the monitoring of rehabilitation progresses or of the training of athletes.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"409 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}