首页 > 最新文献

Biomolecules & Therapeutics最新文献

英文 中文
The Multifaceted Role of Epithelial Membrane Protein 2 in Cancer: from Biomarker to Therapeutic Target. 上皮细胞膜蛋白 2 在癌症中的多方面作用:从生物标记物到治疗目标。
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-10-21 DOI: 10.4062/biomolther.2024.168
Ji Yun Jang, Mi Kyung Park, Chang Hoon Lee, Ho Lee

Tetraspanin superfamily proteins not only facilitate the trafficking of specific proteins to distinct plasma membrane domains but also influence cell-to-cell and cell-extracellular matrix interactions. Among these proteins, Epithelial Membrane Protein 2 (EMP2), a member of the growth arrest-specific gene 3/peripheral myelin protein 22 (GAS3/PMP22) family, is known to affect key cellular processes. Recent studies have revealed that EMP2 modulates critical signaling pathways and interacts with adhesion molecules and growth factor receptors, underscoring its potential as a biomarker for cancer diagnosis and prognosis. These findings suggest that EMP2 expression patterns could provide valuable insights into tumorigenesis and metastasis. Moreover, EMP2 has emerged as a promising therapeutic target, with approaches aimed at inhibiting or modulating its activity showing potential to disrupt tumor growth and metastasis. This review provides a comprehensive overview of recent advances in understanding the multifaceted roles of EMP2 in cancer, with a focus on its underlying mechanisms and clinical significance.

四跨蛋白超家族蛋白质不仅能促进特定蛋白质向不同质膜域的迁移,还能影响细胞与细胞之间以及细胞与细胞外基质之间的相互作用。在这些蛋白中,上皮细胞膜蛋白 2(EMP2)是生长停滞特异性基因 3/外周髓鞘蛋白 22(GAS3/PMP22)家族的成员,已知会影响关键的细胞过程。最近的研究发现,EMP2 可调节关键的信号通路,并与粘附分子和生长因子受体相互作用,这突显了它作为癌症诊断和预后生物标记物的潜力。这些研究结果表明,EMP2 的表达模式可为了解肿瘤发生和转移提供有价值的信息。此外,EMP2 已成为一个很有前景的治疗靶点,旨在抑制或调节其活性的方法显示出破坏肿瘤生长和转移的潜力。这篇综述全面概述了在了解 EMP2 在癌症中的多方面作用方面的最新进展,重点关注其潜在机制和临床意义。
{"title":"The Multifaceted Role of Epithelial Membrane Protein 2 in Cancer: from Biomarker to Therapeutic Target.","authors":"Ji Yun Jang, Mi Kyung Park, Chang Hoon Lee, Ho Lee","doi":"10.4062/biomolther.2024.168","DOIUrl":"10.4062/biomolther.2024.168","url":null,"abstract":"<p><p>Tetraspanin superfamily proteins not only facilitate the trafficking of specific proteins to distinct plasma membrane domains but also influence cell-to-cell and cell-extracellular matrix interactions. Among these proteins, Epithelial Membrane Protein 2 (EMP2), a member of the growth arrest-specific gene 3/peripheral myelin protein 22 (GAS3/PMP22) family, is known to affect key cellular processes. Recent studies have revealed that EMP2 modulates critical signaling pathways and interacts with adhesion molecules and growth factor receptors, underscoring its potential as a biomarker for cancer diagnosis and prognosis. These findings suggest that EMP2 expression patterns could provide valuable insights into tumorigenesis and metastasis. Moreover, EMP2 has emerged as a promising therapeutic target, with approaches aimed at inhibiting or modulating its activity showing potential to disrupt tumor growth and metastasis. This review provides a comprehensive overview of recent advances in understanding the multifaceted roles of EMP2 in cancer, with a focus on its underlying mechanisms and clinical significance.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"697-707"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyronaridine Inhibited MUC5AC Mucin Gene Expression by Regulation of Nuclear Factor Kappa B Signaling Pathway in Human Pulmonary Mucoepidermoid Cells. 吡咯烷酮通过调控核因子卡巴B信号通路抑制人肺黏液表皮样细胞中MUC5AC黏蛋白基因的表达
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI: 10.4062/biomolther.2024.072
Rajib Hossain, Hyun Jae Lee, Choong Jae Lee

In this study, the potential effects of pyronaridine, an antimalarial agent, on airway MUC5AC mucin gene expression were investigated. The human pulmonary epithelial NCI-H292 cells were pretreated with pyronaridine for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of pyronaridine on the PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also examined. Pyronaridine inhibited glycoprotein production and mRNA expression of MUC5AC mucins induced by PMA through the inhibition of degradation of inhibitory kappa Bα and NF-κB p65 nuclear translocation. These results suggest that pyronaridine suppresses gene expression of mucin through regulation of the NF-κB signaling pathway in human pulmonary epithelial cells.

本研究探讨了抗疟药物吡咯烷酮对气道 MUC5AC 粘蛋白基因表达的潜在影响。研究还考察了吡咯烷对 PMA 诱导的核因子卡巴 B(NF-κB)信号通路的影响。吡咯那啶通过抑制抑制性卡巴Bα的降解和NF-κB p65的核转位,抑制了PMA诱导的糖蛋白生成和MUC5AC粘蛋白的mRNA表达。这些结果表明,吡咯烷酮通过调节人肺上皮细胞的 NF-κB 信号通路抑制粘蛋白的基因表达。
{"title":"Pyronaridine Inhibited <i>MUC5AC</i> Mucin Gene Expression by Regulation of Nuclear Factor Kappa B Signaling Pathway in Human Pulmonary Mucoepidermoid Cells.","authors":"Rajib Hossain, Hyun Jae Lee, Choong Jae Lee","doi":"10.4062/biomolther.2024.072","DOIUrl":"10.4062/biomolther.2024.072","url":null,"abstract":"<p><p>In this study, the potential effects of pyronaridine, an antimalarial agent, on airway <i>MUC5AC</i> mucin gene expression were investigated. The human pulmonary epithelial NCI-H292 cells were pretreated with pyronaridine for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of pyronaridine on the PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also examined. Pyronaridine inhibited glycoprotein production and mRNA expression of <i>MUC5AC</i> mucins induced by PMA through the inhibition of degradation of inhibitory kappa Bα and NF-κB p65 nuclear translocation. These results suggest that pyronaridine suppresses gene expression of mucin through regulation of the NF-κB signaling pathway in human pulmonary epithelial cells.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"540-545"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis. 吉非替尼与对乙酰氨基酚联用会通过ROS介导的细胞凋亡加剧肝毒性
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-06-14 DOI: 10.4062/biomolther.2023.209
Jiangxin Xu, Xiangliang Huang, Yourong Zhou, Zhifei Xu, Xinjun Cai, Bo Yang, Qiaojun He, Peihua Luo, Hao Yan, Jie Jin

Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it need for analgesics during oncology treatment, particularly in the context ofthe coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.

吉非替尼是治疗非小细胞肺癌的耐受性良好的一线药物。由于肿瘤治疗期间需要镇痛药,特别是在冠状病毒疾病的情况下,患者更容易感染高烧和咽喉痛。这增加了同时服用吉非替尼和解热镇痛药对乙酰氨基酚(APAP)的可能性。鉴于吉非替尼和对乙酰氨基酚过量服用会导致患者肝损伤甚至急性肝衰竭,因此同时使用这两种药物时存在严重肝毒性的风险。然而,人们对这两种药物在治疗剂量下的安全性知之甚少。本研究在动物模型中模拟了吉非替尼和 APAP 的临床相关剂量给药,结果证实吉非替尼与 APAP 联用会产生额外的肝毒性。我们发现,吉非替尼加 APAP 会明显加剧细胞死亡,而每种药物本身对肝细胞存活的影响很小或微乎其微。从机理上讲,吉非替尼和 APAP 联用明显通过凋亡途径诱导肝细胞死亡。活性氧(ROS)生成和 DNA 损伤积累参与了肝细胞凋亡。吉非替尼加 APAP 还能促进 Kelch 样 ECH 相关蛋白 1(Keap1)的表达,并通过抑制 p62 的表达下调抗氧化因子--核因子红细胞 2 相关因子 2(Nrf2)。综上所述,本研究揭示了吉非替尼和 APAP 联合用药潜在的 ROS 介导的凋亡依赖性肝毒性效应,p62/Keap1/Nrf2 信号通路在其中参与并发挥了重要的调控作用。
{"title":"The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis.","authors":"Jiangxin Xu, Xiangliang Huang, Yourong Zhou, Zhifei Xu, Xinjun Cai, Bo Yang, Qiaojun He, Peihua Luo, Hao Yan, Jie Jin","doi":"10.4062/biomolther.2023.209","DOIUrl":"10.4062/biomolther.2023.209","url":null,"abstract":"<p><p>Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it need for analgesics during oncology treatment, particularly in the context ofthe coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"647-657"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Lapachone Exerts Hypnotic Effects via Adenosine A1 Receptor in Mice. β-拉帕醌通过腺苷 A1 受体对小鼠产生催眠作用
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-08-21 DOI: 10.4062/biomolther.2024.106
Do Hyun Lee, Hye Jin Jee, Yi-Sook Jung

Sleep is one of the most essential physiological phenomena for maintaining health. Sleep disturbances, such as insomnia, are often accompanied by psychiatric or physical conditions such as impaired attention, anxiety, and stress. Medication used to treat insomnia have concerns about potential side effects with long-term use, so interest in the use of alternative medicine is increasing. In this study, we investigated the hypnotic effects of β-lapachone (β-Lap), a natural naphthoquinone compound, using pentobarbital-induced sleep test, immunohistochemistry, real-time PCR, and western blot in mice. Our results indicated that β-Lap exerts a significant hypnotic effect by showing a decrease in sleep onset latency and an increase in total sleep time in pentobarbital-induced sleep model. The results of c-Fos immunostaining showed that β-Lap decreased neuronal activity in the basal forebrain and lateral hypothalamus, which are wakefulness-promoting brain regions, while increasing in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly abolished by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an adenosine A1 receptor (A1R) antagonist. Western blot analysis showed that β-Lap increased extracellular signalregulated kinase phosphorylation and nuclear factor-kappa B translocation from the cytoplasm to the nucleus; these effects were inhibited by DPCPX. Additionally, β-Lap increased the mRNA levels of A1R. Taken together, these results suggest that β-Lap exerts hypnotic effects, potentially through A1R.

睡眠是维持健康最基本的生理现象之一。失眠等睡眠障碍通常伴随着精神或身体状况,如注意力不集中、焦虑和压力。用于治疗失眠的药物存在长期使用可能产生副作用的问题,因此人们对使用替代药物的兴趣与日俱增。在这项研究中,我们使用戊巴比妥诱导小鼠睡眠试验、免疫组织化学、实时 PCR 和 Western 印迹法研究了天然萘醌化合物 β-拉帕醌(β-Lap)的催眠作用。结果表明,在戊巴比妥诱导的睡眠模型中,β-Lap具有明显的催眠作用,能降低睡眠开始潜伏期,增加总睡眠时间。c-Fos免疫染色结果显示,β-Lap降低了前脑基底层和下丘脑外侧神经元的活性,而增加了视前核外侧神经元的活性,视前核外侧神经元是促进睡眠的区域;所有这些效应都被腺苷A1受体(A1R)拮抗剂8-环戊基-1,3-二丙基黄嘌呤(DPCPX)显著消除。Western 印迹分析显示,β-Lap 增加了细胞外信号调节激酶的磷酸化和核因子-kappa B 从细胞质到细胞核的转位;DPCPX 抑制了这些效应。此外,β-Lap 还增加了 A1R 的 mRNA 水平。综上所述,这些结果表明,β-Lap 可能通过 A1R 发挥催眠作用。
{"title":"β-Lapachone Exerts Hypnotic Effects via Adenosine A<sub>1</sub> Receptor in Mice.","authors":"Do Hyun Lee, Hye Jin Jee, Yi-Sook Jung","doi":"10.4062/biomolther.2024.106","DOIUrl":"10.4062/biomolther.2024.106","url":null,"abstract":"<p><p>Sleep is one of the most essential physiological phenomena for maintaining health. Sleep disturbances, such as insomnia, are often accompanied by psychiatric or physical conditions such as impaired attention, anxiety, and stress. Medication used to treat insomnia have concerns about potential side effects with long-term use, so interest in the use of alternative medicine is increasing. In this study, we investigated the hypnotic effects of β-lapachone (β-Lap), a natural naphthoquinone compound, using pentobarbital-induced sleep test, immunohistochemistry, real-time PCR, and western blot in mice. Our results indicated that β-Lap exerts a significant hypnotic effect by showing a decrease in sleep onset latency and an increase in total sleep time in pentobarbital-induced sleep model. The results of c-Fos immunostaining showed that β-Lap decreased neuronal activity in the basal forebrain and lateral hypothalamus, which are wakefulness-promoting brain regions, while increasing in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly abolished by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an adenosine A<sub>1</sub> receptor (A<sub>1</sub>R) antagonist. Western blot analysis showed that β-Lap increased extracellular signalregulated kinase phosphorylation and nuclear factor-kappa B translocation from the cytoplasm to the nucleus; these effects were inhibited by DPCPX. Additionally, β-Lap increased the mRNA levels of A<sub>1</sub>R. Taken together, these results suggest that β-Lap exerts hypnotic effects, potentially through A<sub>1</sub>R.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"531-539"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycogen Phosphorylase Inhibitor Promotes Hair Growth via Protecting from Oxidative-Stress and Regulating Glycogen Breakdown in Human Hair follicles. 糖原磷酸化酶抑制剂通过保护人体毛囊免受氧化应激和调节糖原分解促进毛发生长
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-08-06 DOI: 10.4062/biomolther.2024.098
Bomi Park, Daeun Kim, Hairu Zhao, SoonRe Kim, Byung Cheol Park, Sanghwa Lee, Yurim Lee, Hee Dong Park, Dongchul Lim, Sunyoung Ryu, Jae Sung Hwang

Hair growth cycles are mainly regulated by human dermal papilla cells (hDPCs) and human outer root sheath cells (hORSCs). Protecting hDPCs from excessive oxidative stress and hORSCs from glycogen phosphorylase (PYGL) is crucial to maintaining the hair growth phase, anagen. In this study, we developed a new PYGL inhibitor, Hydroxytrimethylpyridinyl Methylindolecarboxamide (HTPI) and assessed its potential to prevent hair loss. HTPI reduced oxidative damage, preventing cell death and restored decreased level of anagen marker ALP and its related genes induced by hydrogen peroxide in hDPCs. Moreover, HTPI inhibited glycogen degradation and induced cell survival under glucose starvation in hORSCs. In ex-vivo culture, HTPI significantly enhanced hair growth compared to the control with minoxidil showing comparable results. Overall, these findings suggest that HTPI has significant potential as a therapeutic agent for the prevention and treatment of hair loss.

头发生长周期主要由人类真皮乳头细胞(hDPCs)和人类外根鞘细胞(hORSCs)调节。保护 hDPC 免受过度氧化应激,保护 hORSC 免受糖原磷酸化酶(PYGL)的侵害,对于维持头发生长期(生长期)至关重要。在这项研究中,我们开发了一种新的PYGL抑制剂--羟基三甲基吡啶甲基吲哚甲酰胺(HTPI),并评估了其预防脱发的潜力。HTPI 减少了氧化损伤,防止了细胞死亡,并恢复了过氧化氢诱导的脱发标志物 ALP 及其相关基因水平的下降。此外,HTPI 还能抑制糖原降解,并在葡萄糖饥饿条件下诱导 hORSCs 细胞存活。在体外培养中,与米诺西地相比,HTPI能显著促进头发生长。总之,这些研究结果表明,HTPI 在预防和治疗脱发方面具有巨大的治疗潜力。
{"title":"Glycogen Phosphorylase Inhibitor Promotes Hair Growth via Protecting from Oxidative-Stress and Regulating Glycogen Breakdown in Human Hair follicles.","authors":"Bomi Park, Daeun Kim, Hairu Zhao, SoonRe Kim, Byung Cheol Park, Sanghwa Lee, Yurim Lee, Hee Dong Park, Dongchul Lim, Sunyoung Ryu, Jae Sung Hwang","doi":"10.4062/biomolther.2024.098","DOIUrl":"10.4062/biomolther.2024.098","url":null,"abstract":"<p><p>Hair growth cycles are mainly regulated by human dermal papilla cells (hDPCs) and human outer root sheath cells (hORSCs). Protecting hDPCs from excessive oxidative stress and hORSCs from glycogen phosphorylase (PYGL) is crucial to maintaining the hair growth phase, anagen. In this study, we developed a new PYGL inhibitor, Hydroxytrimethylpyridinyl Methylindolecarboxamide (HTPI) and assessed its potential to prevent hair loss. HTPI reduced oxidative damage, preventing cell death and restored decreased level of anagen marker ALP and its related genes induced by hydrogen peroxide in hDPCs. Moreover, HTPI inhibited glycogen degradation and induced cell survival under glucose starvation in hORSCs. In ex-vivo culture, HTPI significantly enhanced hair growth compared to the control with minoxidil showing comparable results. Overall, these findings suggest that HTPI has significant potential as a therapeutic agent for the prevention and treatment of hair loss.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"640-646"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gilteritinib Reduces FLT3 Expression in Acute Myeloid Leukemia Cells. 吉利替尼能减少急性髓性白血病细胞中的 FLT3 表达
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI: 10.4062/biomolther.2023.215
Thị Lam Thái, Sun-Young Han

Acute myeloid leukemia (AML) is a genetically diverse and challenging malignancy, with mutations in the FLT3 gene being particularly common and deleterious. Gilteritinib, a potent FLT3 inhibitor, has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib was developed based on its inhibitory activity against FLT3 kinase, it is important to understand the precise mechanisms of its antileukemic activity in managing drug resistance and discovering biomarkers. This study was designed to elucidate the effect of gilteritinib on the FLT3 expression level. The results showed that gilteritinib induced a dose-dependent decrease in both FLT3 phosphorylation and expression. This reduction was particularly pronounced after 48 h of treatment. The decrease in FLT3 expression was found to be independent of changes in FLT3 mRNA transcription, suggesting post-transcriptional regulatory mechanisms. Further studies were performed in various AML cell lines and cells with both FLT3 wild-type and FLT3 mutant exhibited FLT3 reduction by gilteritinib treatment. In addition, other FLT3 inhibitors were evaluated for their ability to reduce FLT3 expression. Other FLT3 inhibitors, midostaurin, crenolanib, and quizartinib, also reduced FLT3 expression, consistent with the effect of gilteritinib. These findings hold great promise for optimizing gilteritinib treatment in AML patients. However, it is important to recognize that further research is warranted to gain a full understanding of these mechanisms and their clinical implications in the context of FLT3 reduction.

急性髓性白血病(AML)是一种基因多样且极具挑战性的恶性肿瘤,其中FLT3基因突变尤为常见且具有毒性。Gilteritinib 是一种强效的 FLT3 抑制剂,已被美国食品药品管理局(FDA)批准用于治疗 FLT3 基因突变的复发/难治性急性髓性白血病。虽然吉特替尼是基于其对FLT3激酶的抑制活性而开发的,但了解其抗白血病活性的确切机制对于控制耐药性和发现生物标志物非常重要。本研究旨在阐明吉特替尼对FLT3表达水平的影响。结果显示,吉特替尼诱导了FLT3磷酸化和表达的剂量依赖性下降。这种降低在治疗48小时后尤为明显。研究发现,FLT3表达的降低与FLT3 mRNA转录的变化无关,这表明转录后调控机制的存在。在各种急性髓细胞系中进行了进一步研究,FLT3野生型和FLT3突变型细胞在吉特替尼治疗后都表现出FLT3降低。此外,还评估了其他 FLT3 抑制剂降低 FLT3 表达的能力。其他FLT3抑制剂、米多司他林、克瑞那尼和奎沙替尼也能降低FLT3的表达,与吉特替尼的效果一致。这些发现为优化吉特替尼治疗急性髓细胞性白血病患者带来了巨大希望。然而,重要的是要认识到,要全面了解这些机制及其在减少FLT3方面的临床意义,还需要进一步的研究。
{"title":"Gilteritinib Reduces FLT3 Expression in Acute Myeloid Leukemia Cells.","authors":"Thị Lam Thái, Sun-Young Han","doi":"10.4062/biomolther.2023.215","DOIUrl":"10.4062/biomolther.2023.215","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a genetically diverse and challenging malignancy, with mutations in the FLT3 gene being particularly common and deleterious. Gilteritinib, a potent FLT3 inhibitor, has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib was developed based on its inhibitory activity against FLT3 kinase, it is important to understand the precise mechanisms of its antileukemic activity in managing drug resistance and discovering biomarkers. This study was designed to elucidate the effect of gilteritinib on the FLT3 expression level. The results showed that gilteritinib induced a dose-dependent decrease in both FLT3 phosphorylation and expression. This reduction was particularly pronounced after 48 h of treatment. The decrease in FLT3 expression was found to be independent of changes in FLT3 mRNA transcription, suggesting post-transcriptional regulatory mechanisms. Further studies were performed in various AML cell lines and cells with both FLT3 wild-type and FLT3 mutant exhibited FLT3 reduction by gilteritinib treatment. In addition, other FLT3 inhibitors were evaluated for their ability to reduce FLT3 expression. Other FLT3 inhibitors, midostaurin, crenolanib, and quizartinib, also reduced FLT3 expression, consistent with the effect of gilteritinib. These findings hold great promise for optimizing gilteritinib treatment in AML patients. However, it is important to recognize that further research is warranted to gain a full understanding of these mechanisms and their clinical implications in the context of FLT3 reduction.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"577-581"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells. 多巴胺受体 D2 拮抗剂多潘立酮通过抑制 ERK/STAT3 介导的途径诱导人结肠癌 HCT116 细胞凋亡
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-06-25 DOI: 10.4062/biomolther.2024.048
So Jin Sim, Jeong-Hoon Jang, Joon-Seok Choi, Kyung-Soo Chun

Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase- 3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways, respectively. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.

结肠直肠癌(CRC)的发病率和死亡率居高不下,因此实施战略性预防和治疗措施至关重要。最近有报道称,多巴胺受体 D2(DRD2)是一种 G 蛋白偶联受体,在肿瘤细胞生长过程中发挥多种作用。本研究探讨了多巴胺受体D2拮抗剂多潘立酮在HCT116人CRC细胞中的抗癌潜力。多潘立酮可在浓度和时间上降低细胞活力,从而诱导细胞凋亡。分子机制显示,多潘立酮调节了线粒体通路,降低了线粒体Bcl-2水平,提高了细胞膜细胞色素C的表达,并引发了caspase-3、-7和-9的裂解。多潘立酮减少了β-arrestin2/MEK复合物的形成,从而抑制了ERK的激活。此外,多潘立酮还能减少 JAK2 和 STAT3 的活化。用MEK抑制剂U0126处理可减少MEK、ERK和STAT3的磷酸化,而不改变JAK2的活化,这表明多潘立酮分别针对MEK-ERK-STAT3和JAK2-STAT3信号通路。免疫印迹分析显示,多潘立酮还下调了DRD2的表达。多潘立酮诱导了活性氧(ROS)的产生,而N-乙酰半胱氨酸治疗可降低ROS水平并恢复细胞活力。一项体内异种移植研究验证了多潘立酮的显著抗肿瘤作用。这些结果强调了多潘立酮的多方面抗癌作用,凸显了它作为人类 CRC 治疗药物的潜力。
{"title":"Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells.","authors":"So Jin Sim, Jeong-Hoon Jang, Joon-Seok Choi, Kyung-Soo Chun","doi":"10.4062/biomolther.2024.048","DOIUrl":"10.4062/biomolther.2024.048","url":null,"abstract":"<p><p>Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase- 3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways, respectively. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and <i>N</i>-acetylcysteine treatment mitigated ROS levels and restored cell viability. An <i>in vivo</i> xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"568-576"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decellularized Matrices for the Treatment of Tissue Defects: from Matrix Origin to Immunological Mechanisms. 用于治疗组织缺损的脱细胞基质:从基质起源到免疫机制。
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI: 10.4062/biomolther.2024.050
Xinyue Wang, Jiqiang Guo, Qing Yu, Luyao Zhao, Xiang Gao, Li Wang, Meiling Wen, Junrong Yan, Meiwen An, Yang Liu

Decellularized matrix transplantation has emerged as a promising therapeutic approach for repairing tissue defects, with numerous studies assessing its safety and efficacy in both animal models and clinical settings. The host immune response elicited by decellularized matrix grafts of natural biological origin plays a crucial role in determining the success of tissue repair, influenced by matrix heterogeneity and the inflammatory microenvironment of the wound. However, the specific immunologic mechanisms underlying the interaction between decellularized matrix grafts and the host immune system remain elusive. This article reviews the sources of decellularized matrices, available decellularization techniques, and residual immunogenic components. It focuses on the host immune response following decellularized matrix transplantation, with emphasis on the key mechanisms of Toll-like receptor, T-cell receptor, and TGF-β/SMAD signaling in the stages of post-transplantation immunorecognition, immunomodulation, and tissue repair, respectively. Furthermore, it highlights the innovative roles of TLR10 and miR-29a-3p in improving transplantation outcomes. An in-depth understanding of the molecular mechanisms underlying the host immune response after decellularized matrix transplantation provides new directions for the repair of tissue defects.

脱细胞基质移植已成为修复组织缺损的一种很有前景的治疗方法,许多研究评估了它在动物模型和临床环境中的安全性和有效性。受基质异质性和伤口炎症微环境的影响,天然生物来源的脱细胞基质移植物引起的宿主免疫反应在决定组织修复成功与否方面起着至关重要的作用。然而,脱细胞基质移植物与宿主免疫系统之间相互作用的具体免疫学机制仍然难以捉摸。本文回顾了脱细胞基质的来源、可用的脱细胞技术以及残留的免疫原性成分。文章重点探讨了脱细胞基质移植后的宿主免疫反应,强调了Toll样受体、T细胞受体和TGF-β/SMAD信号分别在移植后免疫认知、免疫调节和组织修复阶段的关键机制。此外,它还强调了 TLR10 和 miR-29a-3p 在改善移植结果方面的创新作用。深入了解脱细胞基质移植后宿主免疫反应的分子机制为组织缺损的修复提供了新的方向。
{"title":"Decellularized Matrices for the Treatment of Tissue Defects: from Matrix Origin to Immunological Mechanisms.","authors":"Xinyue Wang, Jiqiang Guo, Qing Yu, Luyao Zhao, Xiang Gao, Li Wang, Meiling Wen, Junrong Yan, Meiwen An, Yang Liu","doi":"10.4062/biomolther.2024.050","DOIUrl":"10.4062/biomolther.2024.050","url":null,"abstract":"<p><p>Decellularized matrix transplantation has emerged as a promising therapeutic approach for repairing tissue defects, with numerous studies assessing its safety and efficacy in both animal models and clinical settings. The host immune response elicited by decellularized matrix grafts of natural biological origin plays a crucial role in determining the success of tissue repair, influenced by matrix heterogeneity and the inflammatory microenvironment of the wound. However, the specific immunologic mechanisms underlying the interaction between decellularized matrix grafts and the host immune system remain elusive. This article reviews the sources of decellularized matrices, available decellularization techniques, and residual immunogenic components. It focuses on the host immune response following decellularized matrix transplantation, with emphasis on the key mechanisms of Toll-like receptor, T-cell receptor, and TGF-β/SMAD signaling in the stages of post-transplantation immunorecognition, immunomodulation, and tissue repair, respectively. Furthermore, it highlights the innovative roles of TLR10 and miR-29a-3p in improving transplantation outcomes. An in-depth understanding of the molecular mechanisms underlying the host immune response after decellularized matrix transplantation provides new directions for the repair of tissue defects.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"509-522"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes. 白细胞介素-1β信号通过调节肝细胞中的 AKT 和 p38MAPK 促使细胞周期停滞和瘦素导致细胞凋亡
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI: 10.4062/biomolther.2023.232
Ananda Baral, Pil-Hoon Park

Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed in vivo using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained in vivo, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.

瘦素是一种源自脂肪组织的激素,具有强烈的肝毒性作用。然而,其潜在的分子机制尚未完全明了。在这项研究中,我们阐明了瘦素在肝细胞中发挥细胞毒性作用的机制,特别是白细胞介素-1β(IL-1β)信号传导的作用。瘦素能明显诱导培养的大鼠肝细胞成熟和分泌 IL-1β。有趣的是,用IL-1受体拮抗剂(IL-1Ra)或I型IL-1受体(IL-1R1)基因沉默预处理抑制IL-1β信号传导,可明显减弱瘦素诱导的细胞周期停滞。IL-1β信号在瘦素诱导的细胞周期停滞中的关键作用是通过上调作为细胞周期蛋白依赖性激酶抑制剂的p16介导的。此外,通过附件素V/7-AAD结合测定,抑制IL-1β信号传导可缓解瘦素诱导的细胞凋亡。从机制上讲,IL-1β信号通过抑制AKT和激活p38丝裂原活化蛋白激酶(p38MAPK)信号通路导致细胞凋亡和细胞周期停滞。利用肝细胞特异性IL-1R1基因敲除(IL-1R1 KO)小鼠在体内进一步证实了IL-1β信号传导参与了瘦素的细胞毒性作用。在体内也得到了基本相似的结果,在野生型小鼠肝脏中,瘦素给药导致凋亡标志物上调、AKT去磷酸化和p38MAPK活化,而在IL-1R1 KO小鼠肝脏中没有明显影响。综上所述,这些结果表明,IL-1β信号至少在一定程度上通过调节p38MAPK和AKT信号通路,对瘦素诱导的细胞周期停滞和细胞凋亡起到了关键作用。
{"title":"Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes.","authors":"Ananda Baral, Pil-Hoon Park","doi":"10.4062/biomolther.2023.232","DOIUrl":"10.4062/biomolther.2023.232","url":null,"abstract":"<p><p>Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed <i>in vivo</i> using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained <i>in vivo</i>, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"611-626"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy. 研究 Aureobasidium pullulans β-葡聚糖在癌症免疫疗法中的免疫刺激潜力
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI: 10.4062/biomolther.2024.047
Jae-Hyeon Jeong, Dae-Joon Kim, Seong-Jin Hong, Jae-Hee Ahn, Dong-Ju Lee, Ah-Ra Jang, Sungyun Kim, Hyun-Jong Cho, Jae-Young Lee, Jong-Hwan Park, Young-Min Kim, Hyun-Jeong Ko

β-glucan, a polysaccharide found in various sources, exhibits unique physicochemical properties, yet its high polymerization limits clinical applications because of its solubility. Addressing this limitation, we introduce PPTEE-glycan, a highly purified soluble β-1,3/1,6-glucan derived from Aureobasidium pullulans. The refined PPTEE-glycan demonstrated robust immune stimulation in vitro, activated dendritic cells, and enhanced co-stimulatory markers, cytokines, and cross-presentation. Formulated as a PPTEE + microemulsion (ME), it elevated immune responses in vivo, promoting antigen-specific antibodies and CD8+ T cell proliferation. Intratumoral administration of PPTEE + ME in tumor-bearing mice induced notable tumor regression, which was linked to the activation of immunosuppressive cells. This study highlights the potential of high-purity Aureobasidium pullulans-derived β-glucan, particularly PPTEE, as promising immune adjuvants, offering novel avenues for advancing cancer immunotherapy.

β-葡聚糖是一种存在于各种来源的多糖,具有独特的物理化学特性,但由于其可溶性,其高度聚合性限制了临床应用。针对这一局限性,我们推出了 PPTEE-聚糖,一种高度纯化的可溶性 β-1,3/1,6-聚糖,提取自 Aureobasidium pullulans。精制的 PPTEE-葡聚糖在体外显示出强大的免疫刺激作用,可激活树突状细胞,增强共刺激标记物、细胞因子和交叉呈递作用。在配制成 PPTEE + 微乳剂(ME)后,它提高了体内的免疫反应,促进了抗原特异性抗体和 CD8+ T 细胞的增殖。在肿瘤小鼠体内施用 PPTEE + ME 可诱导肿瘤明显消退,这与免疫抑制细胞的激活有关。这项研究凸显了高纯度奥氏拉布拉多来源β-葡聚糖(尤其是PPTEE)作为有前景的免疫佐剂的潜力,为推进癌症免疫疗法提供了新的途径。
{"title":"Investigating the Immune-Stimulating Potential of β-Glucan from <i>Aureobasidium pullulans</i> in Cancer Immunotherapy.","authors":"Jae-Hyeon Jeong, Dae-Joon Kim, Seong-Jin Hong, Jae-Hee Ahn, Dong-Ju Lee, Ah-Ra Jang, Sungyun Kim, Hyun-Jong Cho, Jae-Young Lee, Jong-Hwan Park, Young-Min Kim, Hyun-Jeong Ko","doi":"10.4062/biomolther.2024.047","DOIUrl":"10.4062/biomolther.2024.047","url":null,"abstract":"<p><p>β-glucan, a polysaccharide found in various sources, exhibits unique physicochemical properties, yet its high polymerization limits clinical applications because of its solubility. Addressing this limitation, we introduce PPTEE-glycan, a highly purified soluble β-1,3/1,6-glucan derived from <i>Aureobasidium pullulans</i>. The refined PPTEE-glycan demonstrated robust immune stimulation <i>in vitro</i>, activated dendritic cells, and enhanced co-stimulatory markers, cytokines, and cross-presentation. Formulated as a PPTEE + microemulsion (ME), it elevated immune responses <i>in vivo</i>, promoting antigen-specific antibodies and CD8+ T cell proliferation. Intratumoral administration of PPTEE + ME in tumor-bearing mice induced notable tumor regression, which was linked to the activation of immunosuppressive cells. This study highlights the potential of high-purity <i>Aureobasidium pullulans</i>-derived β-glucan, particularly PPTEE, as promising immune adjuvants, offering novel avenues for advancing cancer immunotherapy.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"556-567"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomolecules & Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1