Pub Date : 2024-08-06eCollection Date: 2024-01-01DOI: 10.2147/BTT.S472491
Bayan H Sajer, Wafa A Alshehri, Sahar S Alghamdi, Rasha S Suliman, Alhanouf Albejad, Haifa Hakmi
Introduction: This study aimed to investigate the fungal growth and diversity in the Sabkha marsh. The anti-bacterial properties of the isolated fungi were assessed using an agar disk diffusion assay, and the crude extracts were tested for their anticancer activities. Liquid chromatography-mass spectrometry was employed to identify the active compounds of the fungal secondary metabolites. In-silico studies were conducted to predict the toxicity, pharmacokinetic properties, and safety profiles of the identified compounds.
Results: The analysis revealed that the isolated fungi belonged to the Aspergillus species, specifically Aspergillus flavus and Aspergillus niger. The crude extract of A. flavus exhibited significant anticancer activity against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Liquid chromatography-mass spectrometry analysis identified several compounds in the fungal isolates. In Aspergillus flavus, the compounds included Aflavinine, Dihydro-24-hydroxyaflavinine, Phomaligin A, Hydroxysydonic acid, Gregatin B, Pulvinulin A, Chrysogine, Aspergillic acid, Aflatoxin B1, and Aflatoxin G1. In Aspergillus niger, the compounds identified were atromentin, fonsecin B, firalenone, rubrofusarin, aurasperone E, aurasperone D, aurasperone C, nigerone, and αβ-dehydrocurvularin.
Conclusion: This study demonstrated promising fungal growth and diversity in the Sabkha marsh, with Aspergillus species being the most prevalent. The fungal crude extract showed anticancer activities against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Future research should focus on investigating the antimicrobial activities of these fungi against multidrug-resistant bacteria and exploring the genetic changes in bacteria and cancer cells treated with these fungal extracts. Additionally, it is important to test the anticancer activity of the active compounds separately to determine which one is the active agent against cancer cells. This information can be used in drug development trials.
{"title":"Aspergillus Species from the Sabkha Marsh: Potential Antimicrobial and Anticancer Agents Revealed Through Molecular and Pharmacological Analysis.","authors":"Bayan H Sajer, Wafa A Alshehri, Sahar S Alghamdi, Rasha S Suliman, Alhanouf Albejad, Haifa Hakmi","doi":"10.2147/BTT.S472491","DOIUrl":"10.2147/BTT.S472491","url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to investigate the fungal growth and diversity in the Sabkha marsh. The anti-bacterial properties of the isolated fungi were assessed using an agar disk diffusion assay, and the crude extracts were tested for their anticancer activities. Liquid chromatography-mass spectrometry was employed to identify the active compounds of the fungal secondary metabolites. In-silico studies were conducted to predict the toxicity, pharmacokinetic properties, and safety profiles of the identified compounds.</p><p><strong>Results: </strong>The analysis revealed that the isolated fungi belonged to the Aspergillus species, specifically <i>Aspergillus flavus</i> and <i>Aspergillus niger</i>. The crude extract of <i>A. flavus</i> exhibited significant anticancer activity against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Liquid chromatography-mass spectrometry analysis identified several compounds in the fungal isolates. In <i>Aspergillus flavus</i>, the compounds included Aflavinine, Dihydro-24-hydroxyaflavinine, Phomaligin A, Hydroxysydonic acid, Gregatin B, Pulvinulin A, Chrysogine, Aspergillic acid, Aflatoxin B1, and Aflatoxin G1. In <i>Aspergillus niger</i>, the compounds identified were atromentin, fonsecin B, firalenone, rubrofusarin, aurasperone E, aurasperone D, aurasperone C, nigerone, and αβ-dehydrocurvularin.</p><p><strong>Conclusion: </strong>This study demonstrated promising fungal growth and diversity in the Sabkha marsh, with Aspergillus species being the most prevalent. The fungal crude extract showed anticancer activities against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Future research should focus on investigating the antimicrobial activities of these fungi against multidrug-resistant bacteria and exploring the genetic changes in bacteria and cancer cells treated with these fungal extracts. Additionally, it is important to test the anticancer activity of the active compounds separately to determine which one is the active agent against cancer cells. This information can be used in drug development trials.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"207-228"},"PeriodicalIF":5.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: To explore analgesic effect and bone repair mechanism of non-radioactive technetium-99 conjugated with methylene diphosphonate (99Tc-MDP, brand name, Yunke) on bone metastases (BM).
Procedures: In vivo experiment, mouse BM models of prostate cancer RM-1 cell were constructed and divided into Control, Yunke, 99Tc+SnCl2 and MDP groups based on medicine composition. Tumor specimens were inspected for size, X-ray, microCT and histopathology. In vitro experiment, with Cell Counting Kit-8 (CCK8), scratch, clone, apoptosis, Polymerase Chain Reaction (PCR) and Western Blot experiments, effects of Yunke on RM-1 cells and osteoclast-related cells were observed.
Results: In vivo experiment, there was no difference in tumor size between Yunke and control group. Contrasted with control group, in Yunke group, trabecular spacing (Tb.Sp) of tumor bone was lower, bone volume/total volume (BV/TV) on marrow cavity and bone cortex were higher. Tunnel staining showed that positive rate of apoptosis in Yunke group was higher than that in control group. Ki67 staining showed that Yunke could not inhibit proliferation of tumor cells. In vitro experiment, CCK8 and scratch experiments showed that Yunke neither can inhibit proliferation nor can inhibit migration of RM-1 cells. High concentration of Yunke promoted late apoptosis of RM-1 cells. Yunke could inhibit BMM cell proliferation, differentiation of osteoclasts, and osteoclast-related transcription factors. Yunke displayed different degrees of inhibitory effects on MAPKs signaling pathway during osteoclast differentiation. It had obvious inhibitory effects on osteoclast-related transcription factors, such as cFOS, NFATC1, ACP-5, CTSK, D2 and MMP-9, the strongest inhibitory effects were observed with ACP-5, CTSK and D2. Yunke also displayed different degrees of inhibitory effects on protein activities of JNK, pERK, ERK and pP38.
Conclusion: Yunke cannot inhibit the proliferation and migration of RM-1 cells, so we think it is not recommended for the treatment of primary tumors and prevention of occurrence of tumors metastatic to bones. The mechanism of therapeutic effect of Yunke on BM by inhibiting proliferation of BMM, inhibiting MAPKs signal transduction and activation of transcription factors during differentiation process of BMM-derived osteoclasts, inhibiting number and size of osteoclasts, inhibiting bone resorption and protecting bone destruction through enhancing bone hardness and bone mass. Thereby, we believe that Yunke is more suitable for promoting the repair induced by BMs, delaying its progression and reducing the occurrence of SREs.
{"title":"Investigating the Underlying Molecular Mechanisms of Yunke on Bone Metastases from Prostate Cancer.","authors":"Simin Liu, Zhiyuan Tian, Taiming Zhang, Jirong Zhang, Yanlei Huo, Chao Ma","doi":"10.2147/BTT.S457188","DOIUrl":"10.2147/BTT.S457188","url":null,"abstract":"<p><strong>Objective: </strong>To explore analgesic effect and bone repair mechanism of non-radioactive technetium-99 conjugated with methylene diphosphonate (<sup>99</sup>Tc-MDP, brand name, Yunke) on bone metastases (BM).</p><p><strong>Procedures: </strong>In vivo experiment, mouse BM models of prostate cancer RM-1 cell were constructed and divided into Control, Yunke, <sup>99</sup>Tc+SnCl<sub>2</sub> and MDP groups based on medicine composition. Tumor specimens were inspected for size, X-ray, microCT and histopathology. In vitro experiment, with Cell Counting Kit-8 (CCK8), scratch, clone, apoptosis, Polymerase Chain Reaction (PCR) and Western Blot experiments, effects of Yunke on RM-1 cells and osteoclast-related cells were observed.</p><p><strong>Results: </strong>In vivo experiment, there was no difference in tumor size between Yunke and control group. Contrasted with control group, in Yunke group, trabecular spacing (Tb.Sp) of tumor bone was lower, bone volume/total volume (BV/TV) on marrow cavity and bone cortex were higher. Tunnel staining showed that positive rate of apoptosis in Yunke group was higher than that in control group. Ki67 staining showed that Yunke could not inhibit proliferation of tumor cells. In vitro experiment, CCK8 and scratch experiments showed that Yunke neither can inhibit proliferation nor can inhibit migration of RM-1 cells. High concentration of Yunke promoted late apoptosis of RM-1 cells. Yunke could inhibit BMM cell proliferation, differentiation of osteoclasts, and osteoclast-related transcription factors. Yunke displayed different degrees of inhibitory effects on MAPKs signaling pathway during osteoclast differentiation. It had obvious inhibitory effects on osteoclast-related transcription factors, such as cFOS, NFATC1, ACP-5, CTSK, D2 and MMP-9, the strongest inhibitory effects were observed with ACP-5, CTSK and D2. Yunke also displayed different degrees of inhibitory effects on protein activities of JNK, pERK, ERK and pP38.</p><p><strong>Conclusion: </strong>Yunke cannot inhibit the proliferation and migration of RM-1 cells, so we think it is not recommended for the treatment of primary tumors and prevention of occurrence of tumors metastatic to bones. The mechanism of therapeutic effect of Yunke on BM by inhibiting proliferation of BMM, inhibiting MAPKs signal transduction and activation of transcription factors during differentiation process of BMM-derived osteoclasts, inhibiting number and size of osteoclasts, inhibiting bone resorption and protecting bone destruction through enhancing bone hardness and bone mass. Thereby, we believe that Yunke is more suitable for promoting the repair induced by BMs, delaying its progression and reducing the occurrence of SREs.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"195-206"},"PeriodicalIF":5.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04eCollection Date: 2024-01-01DOI: 10.2147/BTT.S461287
Wen Jun Zhang, Chong Ling Hu, Bing Ling Guo, Xi Ping Liang, Chao Yu Wang, Tao Yang
Objective: The purpose of this study was to analyze the mechanism by which STAT5B inhibits ferroptosis in mantle cell lymphoma (MCL) by promoting DCAF13 transcriptional regulation of p53/xCT pathway.
Methods: The correlations between STAT5B, DCAF13 and ferroptosis in MCL were analyzed using Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/index.html). The expression levels and pairwise correlations of STAT5B, DCAF13, p53 and xCT in MCL patients were detected, respectively. STAT5B was silenced to confirm their criticality in MCL ferroptosis. the effects of blocking necrosis, apoptosis and ferroptosis on the anti-MCL effects of STAT5B were examined. Cells with STAT5B overexpression and/or DCAF13 silencing were constructed to confirm the involvement of DCAF13 in the STAT5B-regulated p53/xCT pathway. The regulation of p53 ubiquitination was confirmed by DCAF13 overexpression and MG132. The effects of silencing DCAF13 and MG132 on STAT5B overexpression on MCL was clarified by a tumor-bearing nude mouse model.
Results: DCAF13 was overexpressed in MCL and positively correlated with STAT5B, negatively correlated with p53, and positively correlated with xCT. Inhibition of ferroptosis alleviated the inhibitory effects of siSTAT5B on MCL, while inhibition of necrosis and apoptosis had few effects. Silencing of DCAF13 led to the blocking of STAT5B regulation of p53/xCT and ferroptosis. The changes in DCAF13 and the addition of MG132 did not have statistically significant effects on p53 mRNA. Elevation of DCAF13 resulted in downregulation of p53 protein levels, and this inhibition was reversed by MG132. In animal models, the promotion of MCL and the inhibition of ferroptosis by STAT5B. Silencing of DCAF13 blocked STAT5B inhibition of p53 and induction of xCT, GPX4, and GSH.
Conclusion: STAT5B suppresses ferroptosis by promoting DCAF13 transcription to regulate p53/xCT pathway to promote MCL progression.
{"title":"STAT5B Suppresses Ferroptosis by Promoting DCAF13 Transcription to Regulate p53/xCT Pathway to Promote Mantle Cell Lymphoma Progression.","authors":"Wen Jun Zhang, Chong Ling Hu, Bing Ling Guo, Xi Ping Liang, Chao Yu Wang, Tao Yang","doi":"10.2147/BTT.S461287","DOIUrl":"10.2147/BTT.S461287","url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to analyze the mechanism by which STAT5B inhibits ferroptosis in mantle cell lymphoma (MCL) by promoting DCAF13 transcriptional regulation of p53/xCT pathway.</p><p><strong>Methods: </strong>The correlations between STAT5B, DCAF13 and ferroptosis in MCL were analyzed using Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/index.html). The expression levels and pairwise correlations of STAT5B, DCAF13, p53 and xCT in MCL patients were detected, respectively. STAT5B was silenced to confirm their criticality in MCL ferroptosis. the effects of blocking necrosis, apoptosis and ferroptosis on the anti-MCL effects of STAT5B were examined. Cells with STAT5B overexpression and/or DCAF13 silencing were constructed to confirm the involvement of DCAF13 in the STAT5B-regulated p53/xCT pathway. The regulation of p53 ubiquitination was confirmed by DCAF13 overexpression and MG132. The effects of silencing DCAF13 and MG132 on STAT5B overexpression on MCL was clarified by a tumor-bearing nude mouse model.</p><p><strong>Results: </strong>DCAF13 was overexpressed in MCL and positively correlated with STAT5B, negatively correlated with p53, and positively correlated with xCT. Inhibition of ferroptosis alleviated the inhibitory effects of siSTAT5B on MCL, while inhibition of necrosis and apoptosis had few effects. Silencing of DCAF13 led to the blocking of STAT5B regulation of p53/xCT and ferroptosis. The changes in DCAF13 and the addition of MG132 did not have statistically significant effects on p53 mRNA. Elevation of DCAF13 resulted in downregulation of p53 protein levels, and this inhibition was reversed by MG132. In animal models, the promotion of MCL and the inhibition of ferroptosis by STAT5B. Silencing of DCAF13 blocked STAT5B inhibition of p53 and induction of xCT, GPX4, and GSH.</p><p><strong>Conclusion: </strong>STAT5B suppresses ferroptosis by promoting DCAF13 transcription to regulate p53/xCT pathway to promote MCL progression.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"181-193"},"PeriodicalIF":5.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiral amines are essential motifs in pharmaceuticals, agrochemicals, and specialty chemicals. While traditional chemical routes to chiral amines often lack stereoselectivity and require harsh conditions, biocatalytic methods using engineered enzymes can offer high efficiency and selectivity under sustainable conditions. This review discusses recent advances in protein engineering of transaminases, oxidases, and other enzymes to improve catalytic performance. Strategies such as directed evolution, immobilization, and computational redesign have expanded substrate scope and enhanced efficiency. Furthermore, process optimization guided by techno-economic assessments has been crucial for establishing viable biomanufacturing routes. Combining state-of-the-art enzyme engineering with multifaceted process development will enable scalable, economical enzymatic synthesis of diverse chiral amine targets.
{"title":"Enzymatic Routes for Chiral Amine Synthesis: Protein Engineering and Process Optimization.","authors":"Sayali Shantaram Vikhrankar, Seema Satbhai, Priyanka Kulkarni, Ranjit Ranbhor, Vibin Ramakrishnan, Prashant Kodgire","doi":"10.2147/BTT.S446712","DOIUrl":"10.2147/BTT.S446712","url":null,"abstract":"<p><p>Chiral amines are essential motifs in pharmaceuticals, agrochemicals, and specialty chemicals. While traditional chemical routes to chiral amines often lack stereoselectivity and require harsh conditions, biocatalytic methods using engineered enzymes can offer high efficiency and selectivity under sustainable conditions. This review discusses recent advances in protein engineering of transaminases, oxidases, and other enzymes to improve catalytic performance. Strategies such as directed evolution, immobilization, and computational redesign have expanded substrate scope and enhanced efficiency. Furthermore, process optimization guided by techno-economic assessments has been crucial for establishing viable biomanufacturing routes. Combining state-of-the-art enzyme engineering with multifaceted process development will enable scalable, economical enzymatic synthesis of diverse chiral amine targets.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"165-179"},"PeriodicalIF":5.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25eCollection Date: 2024-01-01DOI: 10.2147/BTT.S480422
Yafei Zhou, Christopher L H Huang, Yanmin Zhang
{"title":"Gene Expression, Morphology, and Electrophysiology During the Dynamic Development of Human-Induced Pluripotent Stem Cell-Derived Atrial- and Ventricular-Like Cardiomyocytes [Response to Letter].","authors":"Yafei Zhou, Christopher L H Huang, Yanmin Zhang","doi":"10.2147/BTT.S480422","DOIUrl":"10.2147/BTT.S480422","url":null,"abstract":"","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"163-164"},"PeriodicalIF":5.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06eCollection Date: 2024-01-01DOI: 10.2147/BTT.S448587
Johann Lechner, Volker von Baehr, Florian Notter, Fabian Schick
Introduction: Osteoimmunology recognizes the relationship between bone cells and immune cells. Chronic osteoimmune dysregulation is present in bone marrow defects of the jaw (BMDJ) as fatty-degenerative osteonecrosis (FDOJ). In comparison to samples from healthy jaw bone, the cytokine analysis of samples of BMDJ/FDOJ from 128 patients showed downregulated TNF-α and IL-6 expression and the singular overexpression of the chemokine RANTES/CCL5.
Aim and objectives: This paper raises the question of whether the osteoimmune defects due to incomplete wound healing in BMDJ/FDOJ in 128 patients are related to dysregulation of the Th1/Th2 ratio and regulatory T cell (T-reg) expression in a control group of 197 BMDJ/FDOJ patients, each presenting with BMDJ/FJOD and one of seven different immune disorders.
Material and methods: In the control group, serum concentrations of the cytokines IFN-y and IL-4 were determined after stimulated cytokine release and displayed as Th1/Th2 ratios.
Results: Data show a shift in Th2 in more than 80% (n = 167) of the control cohort of 197 chronically ill patients with concomitant BMDJ/FDOJ. In these 167 subjects, the Th1/Th2 ratio was <6.1 demonstrating impaired immune regulation. Forty-seven subjects or 30% showed not only a shift in Th2 but also excessive T-reg overactivation with levels of >1.900 pg/mL, indicating strongly downregulated immune activity.
Discussion: BMDJ/FDOJ is characterized by a lack of Th1 cytokines and an excessive expression of RANTES/CCL5 and IL-1ra and, thus, the inversion of an acute inflammatory cytokine pattern. In contrast, abdominal fat contains a very high proportion of regulatory Th1 cells and produces an inflammatory immune response through the high overexpression of TNF-α and IL-6. The lack of Th1 activation in BMDJ/FDOJ areas inhibits normal wound healing and supports the persistence of BMDJ/FDOJ.
Conclusion: The Th1/Th2 ratio requires greater consideration, especially with respect to wound healing following dental surgical interventions, such as jaw surgery, implantation and augmentation, to avoid the emergence of the osteoimmune situation that is characteristic of BMDJ/FDOJ.
{"title":"Osteoimmune Interaction and TH-1/TH-2 Ratio in Jawbone Marrow Defects: An Underestimated Association - Original Research.","authors":"Johann Lechner, Volker von Baehr, Florian Notter, Fabian Schick","doi":"10.2147/BTT.S448587","DOIUrl":"10.2147/BTT.S448587","url":null,"abstract":"<p><strong>Introduction: </strong>Osteoimmunology recognizes the relationship between bone cells and immune cells. Chronic osteoimmune dysregulation is present in bone marrow defects of the jaw (BMDJ) as fatty-degenerative osteonecrosis (FDOJ). In comparison to samples from healthy jaw bone, the cytokine analysis of samples of BMDJ/FDOJ from 128 patients showed downregulated TNF-α and IL-6 expression and the singular overexpression of the chemokine RANTES/CCL5.</p><p><strong>Aim and objectives: </strong>This paper raises the question of whether the osteoimmune defects due to incomplete wound healing in BMDJ/FDOJ in 128 patients are related to dysregulation of the Th1/Th2 ratio and regulatory T cell (T-reg) expression in a control group of 197 BMDJ/FDOJ patients, each presenting with BMDJ/FJOD and one of seven different immune disorders.</p><p><strong>Material and methods: </strong>In the control group, serum concentrations of the cytokines IFN-y and IL-4 were determined after stimulated cytokine release and displayed as Th1/Th2 ratios.</p><p><strong>Results: </strong>Data show a shift in Th2 in more than 80% (n = 167) of the control cohort of 197 chronically ill patients with concomitant BMDJ/FDOJ. In these 167 subjects, the Th1/Th2 ratio was <6.1 demonstrating impaired immune regulation. Forty-seven subjects or 30% showed not only a shift in Th2 but also excessive T-reg overactivation with levels of >1.900 pg/mL, indicating strongly downregulated immune activity.</p><p><strong>Discussion: </strong>BMDJ/FDOJ is characterized by a lack of Th1 cytokines and an excessive expression of RANTES/CCL5 and IL-1ra and, thus, the inversion of an acute inflammatory cytokine pattern. In contrast, abdominal fat contains a very high proportion of regulatory Th1 cells and produces an inflammatory immune response through the high overexpression of TNF-α and IL-6. The lack of Th1 activation in BMDJ/FDOJ areas inhibits normal wound healing and supports the persistence of BMDJ/FDOJ.</p><p><strong>Conclusion: </strong>The Th1/Th2 ratio requires greater consideration, especially with respect to wound healing following dental surgical interventions, such as jaw surgery, implantation and augmentation, to avoid the emergence of the osteoimmune situation that is characteristic of BMDJ/FDOJ.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"147-161"},"PeriodicalIF":4.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05eCollection Date: 2024-01-01DOI: 10.2147/BTT.S480180
Mayang Wulandari, Amal Prihatono, Achmad Jaelani Rusdi
{"title":"Gene Expression, Morphology, and Electrophysiology During the Dynamic Development of Human Induced Pluripotent Stem Cell-Derived Atrial- and Ventricular-Like Cardiomyocytes [Letter].","authors":"Mayang Wulandari, Amal Prihatono, Achmad Jaelani Rusdi","doi":"10.2147/BTT.S480180","DOIUrl":"10.2147/BTT.S480180","url":null,"abstract":"","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"145-146"},"PeriodicalIF":5.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05eCollection Date: 2024-01-01DOI: 10.2147/BTT.S479606
Chanif Mahdi, Mayang Wulandari, Retno Dewi Prisusanti
{"title":"Response to \"Lncrna GAS5 Modulates the Progression of Glioma Through Repressing miR-135b-5p and Upregulating APC\" [Letter].","authors":"Chanif Mahdi, Mayang Wulandari, Retno Dewi Prisusanti","doi":"10.2147/BTT.S479606","DOIUrl":"10.2147/BTT.S479606","url":null,"abstract":"","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"143-144"},"PeriodicalIF":4.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10eCollection Date: 2024-01-01DOI: 10.2147/BTT.S448054
Yafei Zhou, Rui Zhou, Wenjun Huang, Jie Wang, Congshan Jiang, Anmao Li, Christopher L H Huang, Yanmin Zhang
Background and objectives: Gene expression, morphology, and electrophysiological combination are essential for assessing the dynamic development of human induced pluripotent stem cell-derived atrial- and ventricular-like cardiomyocytes (iPS-AM and iPS-VM, respectively).
Methods: For iPS-AM/VM differentiation, we performed the small molecule-based temporal modulation of the retinoic acid and bone morphogenetic protein signaling pathways. We investigated the gene expression and morphology using immunofluorescence, quantitative real-time polymerase chain reaction, flow cytometry, and transmission electron microscopy as well as registered electrophysiological functions using a whole-cell patch clamp on days 20, 30, and 60 post-differentiations.
Results: Pan-cardiomyocyte marker, including troponin T2 (TNNT2) and alpha-actinin-2 (ACTN2), expressions increased both in iPS-AMs and iPS-VMs. Similarly, the mRNA expression of both iPS-AM-specific markers, ie, natriuretic peptide A (NPPA), myosin light chain 7 (MYL7), and K+ channel Kir3.4 (KCNJ5), and iPS-VM-specific markers, ie, gap junction α-1 (GJA1), myosin light chain 2 (MYL2), and alpha-1-subunit of a voltage-dependent L-type calcium channel (CACNA1C), increased from 0 to 20 days, and then decreased from 30 to 60 days. Concerning morphology, cardiac troponin-T (cTnT) arrangement was progressively organized and developed from a disorderly myofibrillar distribution to an organized sarcomere pattern both in iPS-AMs and iPS-VMs. Mitochondrial numbers gradually increased and those of lipid droplets decreased during dynamic development. Regarding physiological function, the resting and action potential amplitudes remained statistically indifferent in both cell types, and the action potential duration was prolonged during the development.
Conclusion: IPS-AMs/VMs displayed dynamic development concerning their gene expression, morphology, and electrophysiological function. The discoveries of this study could provide novel insights into heart development and encourage further research.
{"title":"Gene Expression, Morphology, and Electrophysiology During the Dynamic Development of Human Induced Pluripotent Stem Cell-Derived Atrial- and Ventricular-Like Cardiomyocytes.","authors":"Yafei Zhou, Rui Zhou, Wenjun Huang, Jie Wang, Congshan Jiang, Anmao Li, Christopher L H Huang, Yanmin Zhang","doi":"10.2147/BTT.S448054","DOIUrl":"10.2147/BTT.S448054","url":null,"abstract":"<p><strong>Background and objectives: </strong>Gene expression, morphology, and electrophysiological combination are essential for assessing the dynamic development of human induced pluripotent stem cell-derived atrial- and ventricular-like cardiomyocytes (iPS-AM and iPS-VM, respectively).</p><p><strong>Methods: </strong>For iPS-AM/VM differentiation, we performed the small molecule-based temporal modulation of the retinoic acid and bone morphogenetic protein signaling pathways. We investigated the gene expression and morphology using immunofluorescence, quantitative real-time polymerase chain reaction, flow cytometry, and transmission electron microscopy as well as registered electrophysiological functions using a whole-cell patch clamp on days 20, 30, and 60 post-differentiations.</p><p><strong>Results: </strong>Pan-cardiomyocyte marker, including troponin T2 (<i>TNNT2</i>) and alpha-actinin-2 (<i>ACTN2</i>), expressions increased both in iPS-AMs and iPS-VMs. Similarly, the mRNA expression of both iPS-AM-specific markers, ie, natriuretic peptide A (<i>NPPA</i>), myosin light chain 7 (<i>MYL7</i>), and K+ channel Kir3.4 (<i>KCNJ5</i>), and iPS-VM-specific markers, ie, gap junction α-1 (<i>GJA1</i>), myosin light chain 2 (<i>MYL2</i>), and alpha-1-subunit of a voltage-dependent L-type calcium channel (<i>CACNA1C</i>), increased from 0 to 20 days, and then decreased from 30 to 60 days. Concerning morphology, cardiac troponin-T (cTnT) arrangement was progressively organized and developed from a disorderly myofibrillar distribution to an organized sarcomere pattern both in iPS-AMs and iPS-VMs. Mitochondrial numbers gradually increased and those of lipid droplets decreased during dynamic development. Regarding physiological function, the resting and action potential amplitudes remained statistically indifferent in both cell types, and the action potential duration was prolonged during the development.</p><p><strong>Conclusion: </strong>IPS-AMs/VMs displayed dynamic development concerning their gene expression, morphology, and electrophysiological function. The discoveries of this study could provide novel insights into heart development and encourage further research.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"115-127"},"PeriodicalIF":4.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140920268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The patient was a 50-year-old Japanese woman who was diagnosed with total-colitis-type ulcerative colitis (UC) at the age of 26 years. She was treated with mesalazine and azathioprine, and her disease activity was well controlled. At the age of 50 years, the patient was experiencing fever, abdominal pain, diarrhea, bloody stool, and anal pain, which led to a diagnosis of a relapse of UC. Although steroid therapy was administered and tended to improve her symptoms, fecaloid vaginal discharge occurred, and rectovaginal fistula (RVF) was confirmed. Colostomy was performed, and infliximab was initiated as maintenance therapy for UC. All symptoms improved, and RVF closure was confirmed 6 months after the initiation of infliximab. To date, she has been free from relapse of UC. There have been only a few reports of UC complicated by RVF, and this condition is often difficult to treat. To the best of our knowledge, no other case of UC complicated by RVF in which the fistula was closed after treatment with colostomy and infliximab has been previously reported; thus, our report of the present case is valuable to the literature.
{"title":"Successful Fistula Closure After Treatment with Colostomy and Infliximab in a Patient with Ulcerative Colitis Complicated by Rectovaginal Fistula.","authors":"Sota Katsube, Satohiro Matsumoto, Masahiro Misawa, Nao Kakizawa, Ryo Hashimoto, Taku Mizutani, Keita Matsumoto, Shuhei Yoshikawa, Hirosato Mashima","doi":"10.2147/BTT.S457300","DOIUrl":"10.2147/BTT.S457300","url":null,"abstract":"<p><p>The patient was a 50-year-old Japanese woman who was diagnosed with total-colitis-type ulcerative colitis (UC) at the age of 26 years. She was treated with mesalazine and azathioprine, and her disease activity was well controlled. At the age of 50 years, the patient was experiencing fever, abdominal pain, diarrhea, bloody stool, and anal pain, which led to a diagnosis of a relapse of UC. Although steroid therapy was administered and tended to improve her symptoms, fecaloid vaginal discharge occurred, and rectovaginal fistula (RVF) was confirmed. Colostomy was performed, and infliximab was initiated as maintenance therapy for UC. All symptoms improved, and RVF closure was confirmed 6 months after the initiation of infliximab. To date, she has been free from relapse of UC. There have been only a few reports of UC complicated by RVF, and this condition is often difficult to treat. To the best of our knowledge, no other case of UC complicated by RVF in which the fistula was closed after treatment with colostomy and infliximab has been previously reported; thus, our report of the present case is valuable to the literature.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"18 ","pages":"107-113"},"PeriodicalIF":4.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}