Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation最新文献
D. Beaver, Sanjeev Kumar, Harry C. Li, J. Sobel, Peter Vajgel
This paper describes Haystack, an object storage system optimized for Facebook's Photos application. Facebook currently stores over 260 billion images, which translates to over 20 petabytes of data. Users upload one billion new photos (∼60 terabytes) each week and Facebook serves over one million images per second at peak. Haystack provides a less expensive and higher performing solution than our previous approach, which leveraged network attached storage appliances over NFS. Our key observation is that this traditional design incurs an excessive number of disk operations because of metadata lookups. We carefully reduce this per photo metadata so that Haystack storage machines can perform all metadata lookups in main memory. This choice conserves disk operations for reading actual data and thus increases overall throughput.
{"title":"Finding a Needle in Haystack: Facebook's Photo Storage","authors":"D. Beaver, Sanjeev Kumar, Harry C. Li, J. Sobel, Peter Vajgel","doi":"10.5555/1924943.1924947","DOIUrl":"https://doi.org/10.5555/1924943.1924947","url":null,"abstract":"This paper describes Haystack, an object storage system optimized for Facebook's Photos application. Facebook currently stores over 260 billion images, which translates to over 20 petabytes of data. Users upload one billion new photos (∼60 terabytes) each week and Facebook serves over one million images per second at peak. Haystack provides a less expensive and higher performing solution than our previous approach, which leveraged network attached storage appliances over NFS. Our key observation is that this traditional design incurs an excessive number of disk operations because of metadata lookups. We carefully reduce this per photo metadata so that Haystack storage machines can perform all metadata lookups in main memory. This choice conserves disk operations for reading actual data and thus increases overall throughput.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"1 1","pages":"47-60"},"PeriodicalIF":0.0,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88274291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Updating an index of the web as documents are crawled requires continuously transforming a large repository of existing documents as new documents arrive. This task is one example of a class of data processing tasks that transform a large repository of data via small, independent mutations. These tasks lie in a gap between the capabilities of existing infrastructure. Databases do not meet the storage or throughput requirements of these tasks: Google's indexing system stores tens of petabytes of data and processes billions of updates per day on thousands of machines. MapReduce and other batch-processing systems cannot process small updates individually as they rely on creating large batches for efficiency.We have built Percolator, a system for incrementally processing updates to a large data set, and deployed it to create the Google web search index. By replacing a batch-based indexing system with an indexing system based on incremental processing using Percolator, we process the same number of documents per day, while reducing the average age of documents in Google search results by 50%.
{"title":"Large-scale Incremental Processing Using Distributed Transactions and Notifications","authors":"Daniel Peng, F. Dabek","doi":"10.5555/1924943.1924961","DOIUrl":"https://doi.org/10.5555/1924943.1924961","url":null,"abstract":"Updating an index of the web as documents are crawled requires continuously transforming a large repository of existing documents as new documents arrive. This task is one example of a class of data processing tasks that transform a large repository of data via small, independent mutations. These tasks lie in a gap between the capabilities of existing infrastructure. Databases do not meet the storage or throughput requirements of these tasks: Google's indexing system stores tens of petabytes of data and processes billions of updates per day on thousands of machines. MapReduce and other batch-processing systems cannot process small updates individually as they rely on creating large batches for efficiency.We have built Percolator, a system for incrementally processing updates to a large data set, and deployed it to create the Google web search index. By replacing a batch-based indexing system with an indexing system based on incremental processing using Percolator, we process the same number of documents per day, while reducing the average age of documents in Google search results by 50%.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"6 1","pages":"251-264"},"PeriodicalIF":0.0,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89644196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan R. K. Ports, A. Clements, Irene Zhang, S. Madden, B. Liskov
Distributed in-memory application data caches like memcached are a popular solution for scaling database-driven web sites. These systems are easy to add to existing deployments, and increase performance significantly by reducing load on both the database and application servers. Unfortunately, such caches do not integrate well with the database or the application. They cannot maintain transactional consistency across the entire system, violating the isolation properties of the underlying database. They leave the application responsible for locating data in the cache and keeping it up to date, a frequent source of application complexity and programming errors.Addressing both of these problems, we introduce a transactional cache, TxCache, with a simple programming model. TxCache ensures that any data seen within a transaction, whether it comes from the cache or the database, reflects a slightly stale but consistent snapshot of the database. TxCache makes it easy to add caching to an application by simply designating functions as cacheable; it automatically caches their results, and invalidates the cached data as the underlying database changes. Our experiments found that adding TxCache increased the throughput of a web application by up to 5.2×, only slightly less than a non-transactional cache, showing that consistency does not have to come at the price of performance.
{"title":"Transactional Consistency and Automatic Management in an Application Data Cache","authors":"Dan R. K. Ports, A. Clements, Irene Zhang, S. Madden, B. Liskov","doi":"10.5555/1924943.1924963","DOIUrl":"https://doi.org/10.5555/1924943.1924963","url":null,"abstract":"Distributed in-memory application data caches like memcached are a popular solution for scaling database-driven web sites. These systems are easy to add to existing deployments, and increase performance significantly by reducing load on both the database and application servers. Unfortunately, such caches do not integrate well with the database or the application. They cannot maintain transactional consistency across the entire system, violating the isolation properties of the underlying database. They leave the application responsible for locating data in the cache and keeping it up to date, a frequent source of application complexity and programming errors.Addressing both of these problems, we introduce a transactional cache, TxCache, with a simple programming model. TxCache ensures that any data seen within a transaction, whether it comes from the cache or the database, reflects a slightly stale but consistent snapshot of the database. TxCache makes it easy to add caching to an application by simply designating functions as cacheable; it automatically caches their results, and invalidates the cached data as the underlying database changes. Our experiments found that adding TxCache increased the throughput of a web application by up to 5.2×, only slightly less than a non-transactional cache, showing that consistency does not have to come at the price of performance.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"244 1","pages":"279-292"},"PeriodicalIF":0.0,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88428027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deployed multithreaded applications contain many races because these applications are difficult to write, test, and debug. Worse, the number of races in deployed applications may drastically increase due to the rise of multicore hardware and the immaturity of current race detectors. LOOM is a "live-workaround" system designed to quickly and safely bypass application races at runtime. LOOM provides a flexible and safe language for developers to write execution filters that explicitly synchronize code. It then uses an evacuation algorithm to safely install the filters to live applications to avoid races. It reduces its performance overhead using hybrid instrumentation that combines static and dynamic instrumentation. We evaluated LOOM on nine real races from a diverse set of six applications, including MySQL and Apache. Our results show that (1) LOOM can safely fix all evaluated races in a timely manner, thereby increasing application availability; (2) LOOM incurs little performance overhead; (3) LOOM scales well with the number of application threads; and (4) LOOM is easy to use.
{"title":"Bypassing Races in Live Applications with Execution Filters","authors":"Jingyue Wu, Heming Cui, Junfeng Yang","doi":"10.21236/ada640252","DOIUrl":"https://doi.org/10.21236/ada640252","url":null,"abstract":"Deployed multithreaded applications contain many races because these applications are difficult to write, test, and debug. Worse, the number of races in deployed applications may drastically increase due to the rise of multicore hardware and the immaturity of current race detectors. \u0000 \u0000LOOM is a \"live-workaround\" system designed to quickly and safely bypass application races at runtime. LOOM provides a flexible and safe language for developers to write execution filters that explicitly synchronize code. It then uses an evacuation algorithm to safely install the filters to live applications to avoid races. It reduces its performance overhead using hybrid instrumentation that combines static and dynamic instrumentation. \u0000 \u0000We evaluated LOOM on nine real races from a diverse set of six applications, including MySQL and Apache. Our results show that (1) LOOM can safely fix all evaluated races in a timely manner, thereby increasing application availability; (2) LOOM incurs little performance overhead; (3) LOOM scales well with the number of application threads; and (4) LOOM is easy to use.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"29 1","pages":"135-149"},"PeriodicalIF":0.0,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75847432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Ee, Rodrigo Fonseca, Sukun Kim, Daekyeong Moon, A. Tavakoli, D. Culler, S. Shenker, I. Stoica
An overall sensornet architecture would help tame the increasingly complex structure of wireless sensornet software and help foster greater interoperability between different codebases. A previous step in this direction is the Sensornet Protocol (SP), a unifying link-abstraction layer. This paper takes the natural next step by proposing a modular network-layer for sensornets that sits atop SP. This modularity eases implementation of new protocols by increasing code reuse, and enables co-existing protocols to share and reduce code and resources consumed at run-time. We demonstrate how current protocols can be decomposed into this modular structure and show that the costs, in performance and code footprint, are minimal relative to their monolithic counterparts.
{"title":"A modular network layer for sensorsets","authors":"C. Ee, Rodrigo Fonseca, Sukun Kim, Daekyeong Moon, A. Tavakoli, D. Culler, S. Shenker, I. Stoica","doi":"10.5555/1298455.1298479","DOIUrl":"https://doi.org/10.5555/1298455.1298479","url":null,"abstract":"An overall sensornet architecture would help tame the increasingly complex structure of wireless sensornet software and help foster greater interoperability between different codebases. A previous step in this direction is the Sensornet Protocol (SP), a unifying link-abstraction layer. This paper takes the natural next step by proposing a modular network-layer for sensornets that sits atop SP. This modularity eases implementation of new protocols by increasing code reuse, and enables co-existing protocols to share and reduce code and resources consumed at run-time. We demonstrate how current protocols can be decomposed into this modular structure and show that the costs, in performance and code footprint, are minimal relative to their monolithic counterparts.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"2 1","pages":"249-262"},"PeriodicalIF":0.0,"publicationDate":"2006-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73725539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Reis, John Dunagan, Helen J. Wang, O. Dubrovsky, Saher Esmeir
Vulnerability-driven filtering of network data can offer a fast and easy-to-deploy alternative or intermediary to software patching, as exemplified in Shield [43]. In this paper, we take Shield's vision to a new domain, inspecting and cleansing not just static content, but also dynamic content. The dynamic content we target is the dynamic HTML in web pages, which have become a popular vector for attacks. The key challenge in filtering dynamic HTML is that it is undecidable to statically determine whether an embedded script will exploit the browser at run-time. We avoid this undecidability problem by rewriting web pages and any embedded scripts into safe equivalents, inserting checks so that the filtering is done at run-time. The rewritten pages contain logic for recursively applying run-time checks to dynamically generated or modified web content, based on known vulnerabilities. We have built and evaluated BrowserShield, a system that performs this dynamic instrumentation of embedded scripts, and that admits policies for customized run-time actions like vulnerability-driven filtering.
{"title":"BrowserShield: vulnerability-driven filtering of dynamic HTML","authors":"C. Reis, John Dunagan, Helen J. Wang, O. Dubrovsky, Saher Esmeir","doi":"10.1145/1281480.1281481","DOIUrl":"https://doi.org/10.1145/1281480.1281481","url":null,"abstract":"Vulnerability-driven filtering of network data can offer a fast and easy-to-deploy alternative or intermediary to software patching, as exemplified in Shield [43]. In this paper, we take Shield's vision to a new domain, inspecting and cleansing not just static content, but also dynamic content. The dynamic content we target is the dynamic HTML in web pages, which have become a popular vector for attacks. The key challenge in filtering dynamic HTML is that it is undecidable to statically determine whether an embedded script will exploit the browser at run-time. We avoid this undecidability problem by rewriting web pages and any embedded scripts into safe equivalents, inserting checks so that the filtering is done at run-time. The rewritten pages contain logic for recursively applying run-time checks to dynamically generated or modified web content, based on known vulnerabilities. We have built and evaluated BrowserShield, a system that performs this dynamic instrumentation of embedded scripts, and that admits policies for customized run-time actions like vulnerability-driven filtering.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"16 1","pages":"61-74"},"PeriodicalIF":0.0,"publicationDate":"2006-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90714759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Zeldovich, Silas Boyd-Wickizer, E. Kohler, David Mazières
HiStar is a new operating system designed to minimize the amount of code that must be trusted. HiStar provides strict information flow control, which allows users to specify precise data security policies without unduly limiting the structure of applications. HiStar's security features make it possible to implement a Unix-like environment with acceptable performance almost entirely in an untrusted user-level library. The system has no notion of superuser and no fully trusted code other than the kernel. HiStar's features permit several novel applications, including an entirely untrusted login process, separation of data between virtual private networks, and privacy-preserving, untrusted virus scanners.
{"title":"Making information flow explicit in HiStar","authors":"N. Zeldovich, Silas Boyd-Wickizer, E. Kohler, David Mazières","doi":"10.1145/2018396.2018419","DOIUrl":"https://doi.org/10.1145/2018396.2018419","url":null,"abstract":"HiStar is a new operating system designed to minimize the amount of code that must be trusted. HiStar provides strict information flow control, which allows users to specify precise data security policies without unduly limiting the structure of applications. HiStar's security features make it possible to implement a Unix-like environment with acceptable performance almost entirely in an untrusted user-level library. The system has no notion of superuser and no fully trusted code other than the kernel. HiStar's features permit several novel applications, including an entirely untrusted login process, separation of data between virtual private networks, and privacy-preserving, untrusted virus scanners.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"35 1","pages":"263-278"},"PeriodicalIF":0.0,"publicationDate":"2006-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82193685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SUNDR is a network file system designed to store data securely on untrusted servers. SUNDR lets clients detect any attempts at unauthorized file modification by malicious server operators or users. SUNDR's protocol achieves a property called fork consistency, which guarantees that clients can detect any integrity or consistency failures as long as they see each other's file modifications. An implementation is described that performs comparably with NFS (sometimes better and sometimes worse), while offering significantly stronger security.
{"title":"Secure Untrusted Data Repository (SUNDR)","authors":"Jinyuan Li, M. Krohn, David Mazières, D. Shasha","doi":"10.21236/ADA445862","DOIUrl":"https://doi.org/10.21236/ADA445862","url":null,"abstract":"SUNDR is a network file system designed to store data securely on untrusted servers. SUNDR lets clients detect any attempts at unauthorized file modification by malicious server operators or users. SUNDR's protocol achieves a property called fork consistency, which guarantees that clients can detect any integrity or consistency failures as long as they see each other's file modifications. An implementation is described that performs comparably with NFS (sometimes better and sometimes worse), while offering significantly stronger security.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"50 1","pages":"121-136"},"PeriodicalIF":0.0,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77577477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Single-language runtime systems, in the form of Java virtual machines, are widely deployed platforms for executing untrusted mobile code. These runtimes provide some of the features that operating systems provide: inter-application memory protection and basic system services. They do not, however, provide the ability to isolate applications from each other, or limit their resource consumption. This paper describes KaffeOS, a Java runtime system that provides these features. The KaffeOS architecture takes many lessons from operating system design, such as the use of a user/kernel boundary, and employs garbage collection techniques, such as write barriers. The KaffeOS architecture supports the OS abstraction of a process in a Java virtual machine. Each process executes as if it were run in its own virtual machine, including separate garbage collection of its own heap. The difficulty in designing KaffeOS lay in balancing the goals of isolation and resource management against the goal of allowing direct sharing of objects. Overall, KaffeOS is no more than 11% slower than the freely available JVM on which it is based, which is an acceptable penalty for the safety that it provides. Because of its implementation base, KaffeOS is substantially slower than commercial JVMs for trusted code, but it clearly outperforms those JVMs in the presence of denial-of-service attacks or misbehaving code.
{"title":"Processes in KaffeOS: isolation, resource management, and sharing in java","authors":"Godmar Back, Wilson C. Hsieh, Jay Lepreau","doi":"10.21236/ada440101","DOIUrl":"https://doi.org/10.21236/ada440101","url":null,"abstract":"Single-language runtime systems, in the form of Java virtual machines, are widely deployed platforms for executing untrusted mobile code. These runtimes provide some of the features that operating systems provide: inter-application memory protection and basic system services. They do not, however, provide the ability to isolate applications from each other, or limit their resource consumption. This paper describes KaffeOS, a Java runtime system that provides these features. The KaffeOS architecture takes many lessons from operating system design, such as the use of a user/kernel boundary, and employs garbage collection techniques, such as write barriers.\u0000 The KaffeOS architecture supports the OS abstraction of a process in a Java virtual machine. Each process executes as if it were run in its own virtual machine, including separate garbage collection of its own heap. The difficulty in designing KaffeOS lay in balancing the goals of isolation and resource management against the goal of allowing direct sharing of objects. Overall, KaffeOS is no more than 11% slower than the freely available JVM on which it is based, which is an acceptable penalty for the safety that it provides. Because of its implementation base, KaffeOS is substantially slower than commercial JVMs for trusted code, but it clearly outperforms those JVMs in the presence of denial-of-service attacks or misbehaving code.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"54 1","pages":"333-346"},"PeriodicalIF":0.0,"publicationDate":"2000-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73534535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Systems software such as OS kernels, embedded systems, and libraries must obey many rules for both correctness and performance. Common examples include "accesses to variable A must be guarded by lock B," "system calls must check user pointers for validity before using them," and "message handlers should free their buffers as quickly as possible to allow greater parallelism." Unfortunately, adherence to these rules is largely unchecked. This paper attacks this problem by showing how system implementors can use meta-level compilation (MC) to write simple, system-specific compiler extensions that automatically check their code for rule violations. By melding domain-specific knowledge with the automatic machinery of compilers, MC brings the benefits of language-level checking and optimizing to the higher, "meta" level of the systems implemented in these languages. This paper demonstrates the effectiveness of the MC approach by applying it to four complex, real systems: Linux, OpenBSD, the Xok exokernel, and the FLASH machine's embedded software. MC extensions found roughly 500 errors in these systems and led to numerous kernel patches. Most extensions were less than a hundred lines of code and written by implementors who had a limited understanding of the systems checked.
{"title":"Checking system rules using system-specific, programmer-written compiler extensions","authors":"D. Engler, B. Chelf, Andy Chou, Seth Hallem","doi":"10.21236/ada419626","DOIUrl":"https://doi.org/10.21236/ada419626","url":null,"abstract":"Systems software such as OS kernels, embedded systems, and libraries must obey many rules for both correctness and performance. Common examples include \"accesses to variable A must be guarded by lock B,\" \"system calls must check user pointers for validity before using them,\" and \"message handlers should free their buffers as quickly as possible to allow greater parallelism.\" Unfortunately, adherence to these rules is largely unchecked.\u0000 This paper attacks this problem by showing how system implementors can use meta-level compilation (MC) to write simple, system-specific compiler extensions that automatically check their code for rule violations. By melding domain-specific knowledge with the automatic machinery of compilers, MC brings the benefits of language-level checking and optimizing to the higher, \"meta\" level of the systems implemented in these languages. This paper demonstrates the effectiveness of the MC approach by applying it to four complex, real systems: Linux, OpenBSD, the Xok exokernel, and the FLASH machine's embedded software. MC extensions found roughly 500 errors in these systems and led to numerous kernel patches. Most extensions were less than a hundred lines of code and written by implementors who had a limited understanding of the systems checked.","PeriodicalId":90294,"journal":{"name":"Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation","volume":"66 1","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2000-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91267493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proceedings of the -- USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Symposium on Operating Systems Design and Implementation