首页 > 最新文献

Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)最新文献

英文 中文
Learning to extract chemical names based on random text generation and incomplete dictionary 学习基于随机文本生成和不完整字典的化学名称提取
Su Yan, W. Spangler, Ying Chen
Automatically extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable good quality training set to train a reliable entity extraction model. Leveraging the well-studied random text generation techniques based on formal grammars, we explore the idea of automatically creating training sets for the task of chemical named entity extraction. Assuming the availability of an incomplete list of chemical names, we are able to generate well-controlled, random, yet realistic chemical-like training documents. Compared to state-of-the-art models learned from manually labeled data and rule-based systems using real-world data, our solutions show comparable or better results, with least human effort.
化学物质名称的自动提取对生物医学和生命科学研究具有重要意义。该任务的一个主要障碍是难以获得相当大的高质量训练集来训练可靠的实体提取模型。利用基于形式语法的随机文本生成技术,我们探索了为化学命名实体提取任务自动创建训练集的想法。假设有一个不完整的化学名称列表,我们就能够生成控制良好的、随机的、但又逼真的化学类培训文档。与从人工标记数据和使用真实世界数据的基于规则的系统中学习的最先进的模型相比,我们的解决方案显示出可比或更好的结果,而人工付出的努力最少。
{"title":"Learning to extract chemical names based on random text generation and incomplete dictionary","authors":"Su Yan, W. Spangler, Ying Chen","doi":"10.1145/2350176.2350180","DOIUrl":"https://doi.org/10.1145/2350176.2350180","url":null,"abstract":"Automatically extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable good quality training set to train a reliable entity extraction model. Leveraging the well-studied random text generation techniques based on formal grammars, we explore the idea of automatically creating training sets for the task of chemical named entity extraction. Assuming the availability of an incomplete list of chemical names, we are able to generate well-controlled, random, yet realistic chemical-like training documents. Compared to state-of-the-art models learned from manually labeled data and rule-based systems using real-world data, our solutions show comparable or better results, with least human effort.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"126 1","pages":"21-25"},"PeriodicalIF":0.0,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80602646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Detecting protein complexes from noisy protein interaction data 从嘈杂的蛋白质相互作用数据中检测蛋白质复合物
Dmitry Efimov, Nazar Zaki, Jose Berengueres
High-throughput experimental techniques have made available large datasets of experimentally detected protein-protein interactions. However, experimentally determined protein complexes datasets are not exhaustive nor reliable. A protein complex plays a key role in disease development. Therefore, the identification and characterization of protein complexes involved is crucial to the understanding of the molecular events under normal and abnormal physiological conditions. In this paper, we propose a novel graph mining algorithm to identify protein complexes. The algorithm first checks the quality of the interaction data, then predicts protein complexes based on the concept of weighted clustering coefficient. To demonstrate the effectiveness of our proposed method, we present experimental results on yeast protein interaction data. The level of accuracy achieved is a strong argument in favor of the proposed method. Novel protein complexes were also predicted to assist biologists in their search for protein complexes. The datasets and programs are freely available from http://faculty.uaeu.ac.ae/nzaki/PE-WCC.htm.
高通量实验技术使实验检测到的蛋白质相互作用的大数据集成为可能。然而,实验确定的蛋白质复合物数据集并不详尽也不可靠。一种蛋白质复合物在疾病发展中起着关键作用。因此,蛋白质复合物的鉴定和表征对于了解正常和异常生理条件下的分子事件至关重要。在本文中,我们提出了一种新的图挖掘算法来识别蛋白质复合物。该算法首先检查相互作用数据的质量,然后基于加权聚类系数的概念预测蛋白质复合物。为了证明我们提出的方法的有效性,我们给出了酵母蛋白相互作用数据的实验结果。所达到的精度水平是支持所提出方法的有力论据。新的蛋白质复合物也被预测有助于生物学家寻找蛋白质复合物。数据集和程序可从http://faculty.uaeu.ac.ae/nzaki/PE-WCC.htm免费获得。
{"title":"Detecting protein complexes from noisy protein interaction data","authors":"Dmitry Efimov, Nazar Zaki, Jose Berengueres","doi":"10.1145/2350176.2350177","DOIUrl":"https://doi.org/10.1145/2350176.2350177","url":null,"abstract":"High-throughput experimental techniques have made available large datasets of experimentally detected protein-protein interactions. However, experimentally determined protein complexes datasets are not exhaustive nor reliable. A protein complex plays a key role in disease development. Therefore, the identification and characterization of protein complexes involved is crucial to the understanding of the molecular events under normal and abnormal physiological conditions. In this paper, we propose a novel graph mining algorithm to identify protein complexes. The algorithm first checks the quality of the interaction data, then predicts protein complexes based on the concept of weighted clustering coefficient. To demonstrate the effectiveness of our proposed method, we present experimental results on yeast protein interaction data. The level of accuracy achieved is a strong argument in favor of the proposed method. Novel protein complexes were also predicted to assist biologists in their search for protein complexes. The datasets and programs are freely available from http://faculty.uaeu.ac.ae/nzaki/PE-WCC.htm.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"PP 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84534012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Inferring Phylogenetic Trees Using a Multiobjective Artificial Bee Colony Algorithm 用多目标人工蜂群算法推断系统发育树
Sergio Santander-Jiménez, M. A. Vega-Rodríguez, J. Pulido, J. M. Sánchez-Pérez
{"title":"Inferring Phylogenetic Trees Using a Multiobjective Artificial Bee Colony Algorithm","authors":"Sergio Santander-Jiménez, M. A. Vega-Rodríguez, J. Pulido, J. M. Sánchez-Pérez","doi":"10.1007/978-3-642-29066-4_13","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_13","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"36 1","pages":"144-155"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73523451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Feature Selection for Lung Cancer Detection Using SVM Based Recursive Feature Elimination Method 基于SVM递归特征消除方法的肺癌检测特征选择
K. Kancherla, Srinivas Mukkamala
{"title":"Feature Selection for Lung Cancer Detection Using SVM Based Recursive Feature Elimination Method","authors":"K. Kancherla, Srinivas Mukkamala","doi":"10.1007/978-3-642-29066-4_15","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_15","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"59 1","pages":"168-176"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76658714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series 基于gpu的离散目标序列随机生物系统参数估计多群粒子群算法
Marco S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini
{"title":"A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series","authors":"Marco S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini","doi":"10.1007/978-3-642-29066-4_7","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_7","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"10 1","pages":"74-85"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82148280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
Complex Detection in Protein-Protein Interaction Networks: A Compact Overview for Researchers and Practitioners 蛋白质-蛋白质相互作用网络中的复杂检测:研究人员和实践者的紧凑概述
C. Pizzuti, Simona E. Rombo, E. Marchiori
{"title":"Complex Detection in Protein-Protein Interaction Networks: A Compact Overview for Researchers and Practitioners","authors":"C. Pizzuti, Simona E. Rombo, E. Marchiori","doi":"10.1007/978-3-642-29066-4_19","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_19","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"16 1","pages":"211-223"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91529321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Understanding Zooplankton Long Term Variability through Genetic Programming 通过遗传规划了解浮游动物的长期变异性
S. Marini, A. Conversi
{"title":"Understanding Zooplankton Long Term Variability through Genetic Programming","authors":"S. Marini, A. Conversi","doi":"10.1007/978-3-642-29066-4_5","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_5","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"166 1","pages":"50-61"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73135658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Comparison of Methods for Meta-dimensional Data Analysis Using in Silico and Biological Data Sets 使用计算机和生物数据集进行元维度数据分析的方法比较
E. Holzinger, S. Dudek, A. Frase, B. Fridley, P. Chalise, M. Ritchie
{"title":"Comparison of Methods for Meta-dimensional Data Analysis Using in Silico and Biological Data Sets","authors":"E. Holzinger, S. Dudek, A. Frase, B. Fridley, P. Chalise, M. Ritchie","doi":"10.1007/978-3-642-29066-4_12","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_12","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"19 1","pages":"134-143"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83807907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Inferring Disease-Related Metabolite Dependencies with a Bayesian Optimization Algorithm 用贝叶斯优化算法推断疾病相关代谢物依赖性
H. Franken, Alexander Seitz, R. Lehmann, H. Häring, N. Stefan, A. Zell
{"title":"Inferring Disease-Related Metabolite Dependencies with a Bayesian Optimization Algorithm","authors":"H. Franken, Alexander Seitz, R. Lehmann, H. Häring, N. Stefan, A. Zell","doi":"10.1007/978-3-642-29066-4_6","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_6","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"7 1","pages":"62-73"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84493075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The Role of Mutations in Whole Genome Duplication 突变在全基因组复制中的作用
Qinxin Pan, Christian Darabos, J. Moore
{"title":"The Role of Mutations in Whole Genome Duplication","authors":"Qinxin Pan, Christian Darabos, J. Moore","doi":"10.1007/978-3-642-29066-4_11","DOIUrl":"https://doi.org/10.1007/978-3-642-29066-4_11","url":null,"abstract":"","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"43 1","pages":"122-133"},"PeriodicalIF":0.0,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84134717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1