Pub Date : 2024-04-29eCollection Date: 2024-01-01DOI: 10.1177/11779322241248913
Fritz F Parl
The kinetochore is a multiprotein structure that attaches at one end to DNA in the centromere and at the other end to microtubules in the mitotic spindle. By connecting centromere and spindle, the kinetochore controls the migration of chromosomes during cell division. The exact position where the kinetochore assembles on each centromere was uncertain because large sections of centromeric DNA had not been sequenced due to highly repetitive alpha-satellite arrays. Embedded in the arrays is a 17 bp consensus sequence, the so-called CENP-B box, which binds the CENP-B protein, the only protein that binds directly to centromeric DNA. Recently, the Telomere-to-Telomere Consortium published the complete centromeric DNA sequences of all chromosomes including their epigenetic modifications in the T2T-CHM13 map. I used data from the T2T-CHM13 map to locate the CENP-B boxes in the centromeres as anchor of kinetochores. Most of the CENP-B boxes in centromeric DNA are methylated with the exception of the so-called centromere dip region (CDR), where CENP-B protein dimers bind to adjacent unmethylated CENP-B boxes and interact with CENP-A and CENP-C proteins to assemble the kinetochore. The centromeres of all chromosomes combined have a size of 407 Mb of which the kinetochores account for 5.0 Mb or 1.2%. There is no correlation between centromere and kinetochore size (P = .77). While the number of CENP-B boxes varies 4-fold between chromosomes, their density (number/Kb) varies less than 2-fold with a mean of 2.61 ± 0.33. The narrow range ensures a uniform pull of the spindle on the centromeres. I illustrate the findings in a model of the human kinetochore anchored at unmethylated CENP-B boxes in the CDR and present circos plots of chromosomes to show the location of kinetochores in their respective centromeres.
{"title":"Analysis of CENP-B Boxes as Anchor of Kinetochores in Centromeres of Human Chromosomes.","authors":"Fritz F Parl","doi":"10.1177/11779322241248913","DOIUrl":"https://doi.org/10.1177/11779322241248913","url":null,"abstract":"<p><p>The kinetochore is a multiprotein structure that attaches at one end to DNA in the centromere and at the other end to microtubules in the mitotic spindle. By connecting centromere and spindle, the kinetochore controls the migration of chromosomes during cell division. The exact position where the kinetochore assembles on each centromere was uncertain because large sections of centromeric DNA had not been sequenced due to highly repetitive alpha-satellite arrays. Embedded in the arrays is a 17 bp consensus sequence, the so-called CENP-B box, which binds the CENP-B protein, the only protein that binds directly to centromeric DNA. Recently, the Telomere-to-Telomere Consortium published the complete centromeric DNA sequences of all chromosomes including their epigenetic modifications in the T2T-CHM13 map. I used data from the T2T-CHM13 map to locate the CENP-B boxes in the centromeres as anchor of kinetochores. Most of the CENP-B boxes in centromeric DNA are methylated with the exception of the so-called centromere dip region (CDR), where CENP-B protein dimers bind to adjacent unmethylated CENP-B boxes and interact with CENP-A and CENP-C proteins to assemble the kinetochore. The centromeres of all chromosomes combined have a size of 407 Mb of which the kinetochores account for 5.0 Mb or 1.2%. There is no correlation between centromere and kinetochore size (<i>P</i> = .77). While the number of CENP-B boxes varies 4-fold between chromosomes, their density (number/Kb) varies less than 2-fold with a mean of 2.61 ± 0.33. The narrow range ensures a uniform pull of the spindle on the centromeres. I illustrate the findings in a model of the human kinetochore anchored at unmethylated CENP-B boxes in the CDR and present circos plots of chromosomes to show the location of kinetochores in their respective centromeres.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25eCollection Date: 2024-01-01DOI: 10.1177/11779322241248912
Faris S Imran, Tahreer M Al-Thuwaini
The detection of polymorphisms in genes that control livestock reproduction could be highly beneficial for identifying and enhancing economic traits. One of these genes is pentraxin 3 (PTX3), which affects the reproduction of sheep. Therefore, this study investigated whether the variability of the PTX3 gene was related to the litter size of Awassi and Hamdani ewes. A total of 200 ewes (130 Awassi and 70 Hamdani) were used for genomic DNA extraction. Polymerase chain reaction was used to amplify the sequence fragments of exons 1, 2, 3, and 4 from the PTX3 gene (Oar_v4.0; Chr 1, NC_056054.1), resulting in products of 254, 312, 302, and 253, respectively. Two genotypes, GG and GT, were identified for 302 bp amplicon. A novel mutation was discovered through sequence analysis in the GT genotype at position g.22645332G>T. The statistical analysis revealed a significant association between single nucleotide polymorphism (SNP g.22645332G>T; Oar_v4.0; Chr 1, NC_056054.1) and litter size. The presence of the SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) genotype in ewes resulted in a significant difference compared to ewes with GG genotypes. The discrepancy became apparent in several aspects, including litter sizes, twinning rates, lambing rates, litter weight at birth, and days to lambing. There were fewer lambs born to ewes with the GG genotype than to ewes with the GT genotype. The variant SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) has positive effects on the litter size of Awassi and Hamdani sheep. The SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1 has been associated with an increase in litter size and higher prolificacy in ewes.
{"title":"The Novel <i>PTX3</i> Variant g.22645332G>T Is Strongly Related to Awassi and Hamdani Sheep Litter Size.","authors":"Faris S Imran, Tahreer M Al-Thuwaini","doi":"10.1177/11779322241248912","DOIUrl":"https://doi.org/10.1177/11779322241248912","url":null,"abstract":"<p><p>The detection of polymorphisms in genes that control livestock reproduction could be highly beneficial for identifying and enhancing economic traits. One of these genes is pentraxin 3 (<i>PTX3</i>), which affects the reproduction of sheep. Therefore, this study investigated whether the variability of the <i>PTX3</i> gene was related to the litter size of Awassi and Hamdani ewes. A total of 200 ewes (130 Awassi and 70 Hamdani) were used for genomic DNA extraction. Polymerase chain reaction was used to amplify the sequence fragments of exons 1, 2, 3, and 4 from the <i>PTX3</i> gene (Oar_v4.0; Chr 1, NC_056054.1), resulting in products of 254, 312, 302, and 253, respectively. Two genotypes, GG and GT, were identified for 302 bp amplicon. A novel mutation was discovered through sequence analysis in the GT genotype at position g.22645332G>T. The statistical analysis revealed a significant association between single nucleotide polymorphism (SNP g.22645332G>T; Oar_v4.0; Chr 1, NC_056054.1) and litter size. The presence of the SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) genotype in ewes resulted in a significant difference compared to ewes with GG genotypes. The discrepancy became apparent in several aspects, including litter sizes, twinning rates, lambing rates, litter weight at birth, and days to lambing. There were fewer lambs born to ewes with the GG genotype than to ewes with the GT genotype. The variant SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) has positive effects on the litter size of Awassi and Hamdani sheep. The SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1 has been associated with an increase in litter size and higher prolificacy in ewes.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25eCollection Date: 2024-01-01DOI: 10.1177/11779322241248904
Ateeq A Al-Zahrani
A variety of active chemicals found in medicinal plants can be used to develop new medications with few adverse effects. In vitro and in silico analyses were used to evaluate the anticancer properties of Juniperus procera fruit and leaf extracts. Here, we show that the methanolic extract from J procera fruit and leaf extracts inhibits 2 human ovarian cancer cell lines, A2780CP and SKOV-3. The leaf extract demonstrated strong cytotoxicity against A2780CP with an IC50 of 1.2 μg/mL, almost matching the IC50 of the anticancer medication doxorubicin (0.9 μg/mL). Higher antioxidant activity was observed in the fruit than leaf extract. The molecular docking results showed that the active component, podocarpusflavone A, was the best-docked chemical with the human topoisomerase II alpha enzyme. According to our knowledge, this is the first in vitro study to show the cytotoxicity of J procera extracts against the 2 previously described human ovarian cancer cell lines. The fact that the podocarpusflavone A molecule may have an inhibitory effect on the human topoisomerase II alpha enzyme was also revealed by this first in silico analysis. Our findings imply that the J procera fruit and leaf methanolic extract has anticancer characteristics that may guide future in vivo studies.
药用植物中的多种活性化学物质可用于开发不良反应少的新药物。我们采用体外和硅学分析来评估杜松果实和叶子提取物的抗癌特性。在这里,我们发现从杜松果实和叶片中提取的甲醇提取物对两种人类卵巢癌细胞株 A2780CP 和 SKOV-3 有抑制作用。叶提取物对 A2780CP 具有很强的细胞毒性,其 IC50 值为 1.2 μg/mL,几乎与抗癌药物多柔比星的 IC50 值(0.9 μg/mL)相当。果实提取物的抗氧化活性高于叶片提取物。分子对接结果显示,活性成分荚果黄酮 A 是与人类拓扑异构酶 II alpha 酶对接最好的化学物质。据我们所知,这是首次在体外研究中显示荚蒾提取物对之前描述过的两种人类卵巢癌细胞系具有细胞毒性。此外,首次硅学分析还揭示了荚果黄酮 A 分子可能对人类拓扑异构酶 II alpha 有抑制作用。我们的研究结果表明,荚蒾果实和叶片甲醇提取物具有抗癌特性,可为未来的体内研究提供指导。
{"title":"The Potential Role of Phytochemicals of <i>Juniperus procera</i> in the Treatment of Ovarian Cancer and the Inhibition of Human Topoisomerase II Alpha Activity.","authors":"Ateeq A Al-Zahrani","doi":"10.1177/11779322241248904","DOIUrl":"https://doi.org/10.1177/11779322241248904","url":null,"abstract":"<p><p>A variety of active chemicals found in medicinal plants can be used to develop new medications with few adverse effects. In vitro and in silico analyses were used to evaluate the anticancer properties of <i>Juniperus procera</i> fruit and leaf extracts. Here, we show that the methanolic extract from <i>J procera</i> fruit and leaf extracts inhibits 2 human ovarian cancer cell lines, A2780CP and SKOV-3. The leaf extract demonstrated strong cytotoxicity against A2780CP with an IC50 of 1.2 μg/mL, almost matching the IC50 of the anticancer medication doxorubicin (0.9 μg/mL). Higher antioxidant activity was observed in the fruit than leaf extract. The molecular docking results showed that the active component, podocarpusflavone A, was the best-docked chemical with the human topoisomerase II alpha enzyme. According to our knowledge, this is the first in vitro study to show the cytotoxicity of <i>J procera</i> extracts against the 2 previously described human ovarian cancer cell lines. The fact that the podocarpusflavone A molecule may have an inhibitory effect on the human topoisomerase II alpha enzyme was also revealed by this first in silico analysis. Our findings imply that the <i>J procera</i> fruit and leaf methanolic extract has anticancer characteristics that may guide future in vivo studies.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23eCollection Date: 2024-01-01DOI: 10.1177/11779322241234767
Khomaini Hasan, Umi Baroroh, Indri Novia Madhani, Zahra Silmi Muscifa, Mia Tria Novianti, Muhamad Abidin, Muhammad Yusuf, Toto Subroto
Enzymatic reactions can be modulated by the incorporation of organic solvents, leading to alterations in enzyme stability, activity, and reaction rates. These solvents create a favorable microenvironment that enables hydrophobic reactions, facilities enzyme-substrate complex formation, and reduces undesirable water-dependent side reactions. However, it is crucial to understand the impact of organic solvents on enzymatic activity, as they can also induce enzyme inactivation. In this study, the enzymatic performance of Aspergillus oryzae α-amylase (Taka-amylase) in various organic solvents both experimentally and computationally was investigated. The results demonstrated that ethanol and ether sustain Taka-amylase activity up to 20% to 25% of the organic solvents, with ether providing twice the stability of ethanol. Molecular dynamics simulations further revealed that Taka-amylase has a more stable structure in ether and ethanol relative to other organic solvents. In addition, the analysis showed that the loop located near the active site in the AB-domain is a vulnerable site for enzyme destabilization when exposed to organic solvents. The ability of Taka-amylase to preserve the secondary loop structure in ether and ethanol contributed to the enzyme's activity. In addition, the solvent accessibility surface area of Taka-amylase is distributed throughout all enzyme structures, thereby contributing to the instability of Taka-amylase in the presence of most organic solvents.
有机溶剂的加入可调节酶促反应,从而改变酶的稳定性、活性和反应速率。这些溶剂可创造有利的微环境,从而促成疏水性反应、促进酶-底物复合物的形成,并减少不良的水依赖性副反应。然而,了解有机溶剂对酶活性的影响至关重要,因为它们也会导致酶失活。本研究通过实验和计算研究了黑曲霉α-淀粉酶(Taka-淀粉酶)在各种有机溶剂中的酶解性能。结果表明,乙醇和乙醚在 20% 至 25% 的有机溶剂中可维持 Taka 淀粉酶的活性,其中乙醚的稳定性是乙醇的两倍。分子动力学模拟进一步表明,相对于其他有机溶剂,Taka-淀粉酶在乙醚和乙醇中具有更稳定的结构。此外,分析表明,当暴露在有机溶剂中时,位于 AB 域活性位点附近的环路是酶失稳的易损位点。在乙醚和乙醇中,Taka-淀粉酶能够保持二级环结构,这有助于提高酶的活性。此外,Taka-淀粉酶与溶剂接触的表面积分布在所有酶结构中,因此导致了 Taka- 淀粉酶在大多数有机溶剂存在下的不稳定性。
{"title":"Enzymatic Performance of <i>Aspergillus oryzae</i> α-Amylase in the Presence of Organic Solvents: Activity, Stability, and Bioinformatic Studies.","authors":"Khomaini Hasan, Umi Baroroh, Indri Novia Madhani, Zahra Silmi Muscifa, Mia Tria Novianti, Muhamad Abidin, Muhammad Yusuf, Toto Subroto","doi":"10.1177/11779322241234767","DOIUrl":"https://doi.org/10.1177/11779322241234767","url":null,"abstract":"<p><p>Enzymatic reactions can be modulated by the incorporation of organic solvents, leading to alterations in enzyme stability, activity, and reaction rates. These solvents create a favorable microenvironment that enables hydrophobic reactions, facilities enzyme-substrate complex formation, and reduces undesirable water-dependent side reactions. However, it is crucial to understand the impact of organic solvents on enzymatic activity, as they can also induce enzyme inactivation. In this study, the enzymatic performance of <i>Aspergillus oryzae</i> α-amylase (Taka-amylase) in various organic solvents both experimentally and computationally was investigated. The results demonstrated that ethanol and ether sustain Taka-amylase activity up to 20% to 25% of the organic solvents, with ether providing twice the stability of ethanol. Molecular dynamics simulations further revealed that Taka-amylase has a more stable structure in ether and ethanol relative to other organic solvents. In addition, the analysis showed that the loop located near the active site in the AB-domain is a vulnerable site for enzyme destabilization when exposed to organic solvents. The ability of Taka-amylase to preserve the secondary loop structure in ether and ethanol contributed to the enzyme's activity. In addition, the solvent accessibility surface area of Taka-amylase is distributed throughout all enzyme structures, thereby contributing to the instability of Taka-amylase in the presence of most organic solvents.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27eCollection Date: 2024-01-01DOI: 10.1177/11779322241240651
Ryman Shoko, Farirai Mandivenga
Schistosomiasis, otherwise known as bilharzia or snail fever, is a disease that usually affects poor people and people exposed to poor sanitation. The disease affects over 200 million people worldwide annually. Schistosomiasis has been treated using a single drug, praziquantel, since the 1970s and this is resulting in schistosomes becoming resistant. Therefore, there is an urgent need to develop new antischistosoma drugs and vaccines. This study focuses on identifying potential antischistosomal compounds from the plant Salvia fruticosa. We virtually screened a library of 163 S fruticosa compounds by docking against Schistosoma mansoni sulfotransferase (SmSULT) using the PyRx software. Docking scores ranged from -4.7 to -9.3 kcal/mol. Compounds with binding affinity of -7.6 or stronger were subjected to drug-likeness assessments using the DataWarrior software. We also employed the PAINS removal tool to filter off false-positive results. Twelve compounds passed the drug-likeness screen, and these were subjected to in silico toxicity predictions to determine their mutagenic, tumorigenic and reproductive potential. Seven compounds were predicted to be nontoxic. After considering the toxicity analysis results and drug scores of the compounds, we identified rosmarinic acid and hispidulin as qualifying for further evaluation as potential drugs against schistosomiasis. Free energy calculations using the fastDRH webserver and molecular dynamics simulations using CABS-flex showed that the receptor-ligand complexes for the 2 lead compounds are stable under physiological conditions. We recommend that rosmarinic acid and hispidulin be used as hit compounds for the development of potential antischistosomal drugs.
{"title":"Computer-Assisted Discovery of <i>Salvia fruticosa</i> Compounds With Schistosomicidal Activity.","authors":"Ryman Shoko, Farirai Mandivenga","doi":"10.1177/11779322241240651","DOIUrl":"10.1177/11779322241240651","url":null,"abstract":"<p><p>Schistosomiasis, otherwise known as bilharzia or snail fever, is a disease that usually affects poor people and people exposed to poor sanitation. The disease affects over 200 million people worldwide annually. Schistosomiasis has been treated using a single drug, praziquantel, since the 1970s and this is resulting in schistosomes becoming resistant. Therefore, there is an urgent need to develop new antischistosoma drugs and vaccines. This study focuses on identifying potential antischistosomal compounds from the plant <i>Salvia fruticosa</i>. We virtually screened a library of 163 <i>S fruticosa</i> compounds by docking against <i>Schistosoma mansoni</i> sulfotransferase (<i>Sm</i>SULT) using the PyRx software. Docking scores ranged from -4.7 to -9.3 kcal/mol. Compounds with binding affinity of -7.6 or stronger were subjected to drug-likeness assessments using the DataWarrior software. We also employed the PAINS removal tool to filter off false-positive results. Twelve compounds passed the drug-likeness screen, and these were subjected to in silico toxicity predictions to determine their mutagenic, tumorigenic and reproductive potential. Seven compounds were predicted to be nontoxic. After considering the toxicity analysis results and drug scores of the compounds, we identified rosmarinic acid and hispidulin as qualifying for further evaluation as potential drugs against schistosomiasis. Free energy calculations using the fastDRH webserver and molecular dynamics simulations using CABS-flex showed that the receptor-ligand complexes for the 2 lead compounds are stable under physiological conditions. We recommend that rosmarinic acid and hispidulin be used as hit compounds for the development of potential antischistosomal drugs.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Narciclasine is an alkaloid belonging to the Amaryllidaceae family which has been reported to have many beneficial properties. Especially its anticancer properties have been widely reported. Here, we have focused on its potential use in suppressing the inflammatory response in sepsis using in silico methods. Lipopolysaccharide (LPS) is an endotoxin which is present in the outer membrane of gram-negative bacteria and is a crucial player in the pathogenesis of gram-negative sepsis. Activation of toll-like receptor 4 (TLR4) signaling by LPS is an important event in the pathogenesis of gram-negative sepsis. This initiates a downstream signaling pathway comprising of several adaptor proteins such as toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), myeloid differentiation primary response protein 88 (MyD88), interleukin-1 receptor-associated kinase (IRAK)-1, IRAK-4, interferon regulatory factor 3 (IRF-3), tumor necrosis factor receptor-associated factor 6 (TRAF-6) leading to nuclear factor kappa B (NF-κβ) activation resulting in elevated production of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. S100 calcium binding proteins A8/A9 (S100A8/A9) have been found to be an agonist of TLR4, and it amplifies the inflammatory response in sepsis. Molecular docking studies of narciclasine with target proteins associated with the LPS-TLR4 pathway showed that it has good binding affinity and stable interactions with the targets studied. Molecular dynamics (MD) simulation studies over 100 ns showed that most of the ligand-target complexes were stable. The structures of all the targets except TRAF-6 were retrieved from the Protein Data Bank (PDB) database. Homology modeling was done to predict the 3-dimensional structure of TRAF-6. MD simulation of narciclasine-TRAF-6 complex showed that the structure is stable. Metapocket was used for active site prediction in the target proteins. Toxicity analysis by admetSAR revealed that narciclasine was readily biodegradable and exhibited minimum toxicity. These results indicate that narciclasine has effective anti-inflammatory properties which could be useful in suppressing the inflammatory response in sepsis.
{"title":"Effectiveness of Narciclasine in Suppressing the Inflammatory Response in Sepsis: Molecular Docking and In Silico Studies.","authors":"Manoj Kumar Kingsley, Gurugubelli Krishna Rao, Ballambattu Vishnu Bhat","doi":"10.1177/11779322241233436","DOIUrl":"10.1177/11779322241233436","url":null,"abstract":"<p><p>Narciclasine is an alkaloid belonging to the Amaryllidaceae family which has been reported to have many beneficial properties. Especially its anticancer properties have been widely reported. Here, we have focused on its potential use in suppressing the inflammatory response in sepsis using in silico methods. Lipopolysaccharide (LPS) is an endotoxin which is present in the outer membrane of gram-negative bacteria and is a crucial player in the pathogenesis of gram-negative sepsis. Activation of toll-like receptor 4 (TLR4) signaling by LPS is an important event in the pathogenesis of gram-negative sepsis. This initiates a downstream signaling pathway comprising of several adaptor proteins such as toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), myeloid differentiation primary response protein 88 (MyD88), interleukin-1 receptor-associated kinase (IRAK)-1, IRAK-4, interferon regulatory factor 3 (IRF-3), tumor necrosis factor receptor-associated factor 6 (TRAF-6) leading to nuclear factor kappa B (NF-κβ) activation resulting in elevated production of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. S100 calcium binding proteins A8/A9 (S100A8/A9) have been found to be an agonist of TLR4, and it amplifies the inflammatory response in sepsis. Molecular docking studies of narciclasine with target proteins associated with the LPS-TLR4 pathway showed that it has good binding affinity and stable interactions with the targets studied. Molecular dynamics (MD) simulation studies over 100 ns showed that most of the ligand-target complexes were stable. The structures of all the targets except TRAF-6 were retrieved from the Protein Data Bank (PDB) database. Homology modeling was done to predict the 3-dimensional structure of TRAF-6. MD simulation of narciclasine-TRAF-6 complex showed that the structure is stable. Metapocket was used for active site prediction in the target proteins. Toxicity analysis by admetSAR revealed that narciclasine was readily biodegradable and exhibited minimum toxicity. These results indicate that narciclasine has effective anti-inflammatory properties which could be useful in suppressing the inflammatory response in sepsis.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-08DOI: 10.1177/11779322241233442
V. Agunbiade, O. O. Babalola
The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.
{"title":"Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants","authors":"V. Agunbiade, O. O. Babalola","doi":"10.1177/11779322241233442","DOIUrl":"https://doi.org/10.1177/11779322241233442","url":null,"abstract":"The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140077190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28eCollection Date: 2024-01-01DOI: 10.1177/11779322241234772
V Kalidasan, Darshinie Suresh, Nurulisa Zulkifle, Yap Siew Hwei, Leong Kok Hoong, Reena Rajasuriar, Kumitaa Theva Das
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids by oxidative deamination, producing hydrogen peroxide (H2O2) as a by-product. The generation of intracellular H2O2 may alter the redox-homeostasis mechanism of cells and increase the oxidative stress levels in tissues, associated with the pathogenesis of age-related diseases and organ decline. This study investigates the effect of DAO knockdown using clustered regularly interspaced short palindromic repeats (CRISPR) through an in silico approach on its protein-protein interactions (PPIs) and their potential roles in the process of aging. The target sequence and guide RNA of DAO were designed using the CCTop database, PPI analysis using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Reactome biological pathway, protein docking using GalaxyTongDock database, and structure analysis. The translated target sequence of DAO lies between amino acids 43 to 50. The 10 proteins that were predicted to interact with DAO are involved in peroxisome pathways such as acyl-coenzyme A oxidase 1 (ACOX1), alanine-glyoxylate and serine-pyruvate aminotransferase (AGXT), catalase (CAT), carnitine O-acetyltransferase (CRAT), glyceronephosphate O-acyltransferase (GNPAT), hydroxyacid oxidase 1 (HAO1), hydroxyacid oxidase 2 (HAO2), trans-L-3-hydroxyproline dehydratase (L3HYPDH), polyamine oxidase (PAOX), and pipecolic acid and sarcosine oxidase (PIPOX). In summary, DAO mutation would most likely reduce activity with its interacting proteins that generate H2O2. However, DAO mutation may result in peroxisomal disorders, and thus, alternative techniques should be considered for an in vivo approach.
{"title":"Investigating D-Amino Acid Oxidase Expression and Interaction Network Analyses in Pathways Associated With Cellular Stress: Implications in the Biology of Aging.","authors":"V Kalidasan, Darshinie Suresh, Nurulisa Zulkifle, Yap Siew Hwei, Leong Kok Hoong, Reena Rajasuriar, Kumitaa Theva Das","doi":"10.1177/11779322241234772","DOIUrl":"10.1177/11779322241234772","url":null,"abstract":"<p><p>D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids by oxidative deamination, producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as a by-product. The generation of intracellular H<sub>2</sub>O<sub>2</sub> may alter the redox-homeostasis mechanism of cells and increase the oxidative stress levels in tissues, associated with the pathogenesis of age-related diseases and organ decline. This study investigates the effect of DAO knockdown using clustered regularly interspaced short palindromic repeats (CRISPR) through an <i>in silico</i> approach on its protein-protein interactions (PPIs) and their potential roles in the process of aging. The target sequence and guide RNA of DAO were designed using the CCTop database, PPI analysis using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Reactome biological pathway, protein docking using GalaxyTongDock database, and structure analysis. The translated target sequence of DAO lies between amino acids 43 to 50. The 10 proteins that were predicted to interact with DAO are involved in peroxisome pathways such as acyl-coenzyme A oxidase 1 (ACOX1), alanine-glyoxylate and serine-pyruvate aminotransferase (AGXT), catalase (CAT), carnitine O-acetyltransferase (CRAT), glyceronephosphate O-acyltransferase (GNPAT), hydroxyacid oxidase 1 (HAO1), hydroxyacid oxidase 2 (HAO2), trans-L-3-hydroxyproline dehydratase (L3HYPDH), polyamine oxidase (PAOX), and pipecolic acid and sarcosine oxidase (PIPOX). In summary, DAO mutation would most likely reduce activity with its interacting proteins that generate H<sub>2</sub>O<sub>2</sub>. However, DAO mutation may result in peroxisomal disorders, and thus, alternative techniques should be considered for an <i>in vivo</i> approach.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13eCollection Date: 2024-01-01DOI: 10.1177/11779322231224665
Prekshi Garg, Farrukh Jamal, Prachi Srivastava
Intellectual disability (ID) is an early childhood neurodevelopmental disorder that is characterized by impaired intellectual functioning and adaptive behavior. It is one of the major concerns in the field of neurodevelopmental disorders across the globe. Diversified approaches have been put forward to overcome this problem. Among all these approaches, high throughput transcriptomic analysis has taken an important dimension. The identification of genes causing ID rapidly increased over the past 3 to 5 years owing to the use of sophisticated high throughput sequencing platforms. Early monitoring and preventions are much important for such disorder as their progression occurs during fetal development. This study is an attempt to identify differentially expressed genes (DEGs) and upregulated biological processes involved in development of ID patients through comparative analysis of available transcriptomics data. A total of 7 transcriptomic studies were retrieved from National Center for Biotechnology Information (NCBI) and were subjected to quality check and trimming prior to alignment. The normalization and differential expression analysis were carried out using DESeq2 and EdgeR packages of Rstudio to identify DEGs in ID. In progression of the study, functional enrichment analysis of the results obtained from both DESeq2 and EdgeR was done using gene set enrichment analysis (GSEA) tool to identify major upregulated biological processes involved in ID. Our findings concluded that monitoring the level of E2F targets, estrogen, and genes related to oxidative phosphorylation, DNA repair, and glycolysis during the developmental stage of an individual can help in the early detection of ID disorder.
智力障碍(ID)是一种以智力功能和适应行为受损为特征的儿童早期神经发育障碍。它是全球神经发育障碍领域的主要问题之一。为解决这一问题,人们提出了多种方法。在所有这些方法中,高通量转录组分析占据了重要地位。由于使用了先进的高通量测序平台,在过去的 3 至 5 年中,对导致智障的基因的鉴定迅速增加。早期监测和预防对此类疾病非常重要,因为它们的进展发生在胎儿发育过程中。本研究试图通过对现有的转录组学数据进行比较分析,找出与 ID 患者发育有关的差异表达基因(DEGs)和上调的生物过程。研究人员从美国国家生物技术信息中心(NCBI)检索到共 7 项转录组学研究,并在比对前进行了质量检查和修剪。使用 Rstudio 的 DESeq2 和 EdgeR 软件包进行归一化和差异表达分析,以确定 ID 中的 DEGs。在研究过程中,使用基因组富集分析(GSEA)工具对 DESeq2 和 EdgeR 得出的结果进行了功能富集分析,以确定 ID 中涉及的主要上调生物过程。我们的研究结果表明,在个体发育阶段监测 E2F 靶点、雌激素以及氧化磷酸化、DNA 修复和糖酵解相关基因的水平有助于早期检测 ID 疾病。
{"title":"Comparative Transcriptomics Data Profiling Reveals E2F Targets as an Important Biological Pathway Overexpressed in Intellectual Disability Disorder.","authors":"Prekshi Garg, Farrukh Jamal, Prachi Srivastava","doi":"10.1177/11779322231224665","DOIUrl":"10.1177/11779322231224665","url":null,"abstract":"<p><p>Intellectual disability (ID) is an early childhood neurodevelopmental disorder that is characterized by impaired intellectual functioning and adaptive behavior. It is one of the major concerns in the field of neurodevelopmental disorders across the globe. Diversified approaches have been put forward to overcome this problem. Among all these approaches, high throughput transcriptomic analysis has taken an important dimension. The identification of genes causing ID rapidly increased over the past 3 to 5 years owing to the use of sophisticated high throughput sequencing platforms. Early monitoring and preventions are much important for such disorder as their progression occurs during fetal development. This study is an attempt to identify differentially expressed genes (DEGs) and upregulated biological processes involved in development of ID patients through comparative analysis of available transcriptomics data. A total of 7 transcriptomic studies were retrieved from National Center for Biotechnology Information (NCBI) and were subjected to quality check and trimming prior to alignment. The normalization and differential expression analysis were carried out using DESeq2 and EdgeR packages of Rstudio to identify DEGs in ID. In progression of the study, functional enrichment analysis of the results obtained from both DESeq2 and EdgeR was done using gene set enrichment analysis (GSEA) tool to identify major upregulated biological processes involved in ID. Our findings concluded that monitoring the level of E2F targets, estrogen, and genes related to oxidative phosphorylation, DNA repair, and glycolysis during the developmental stage of an individual can help in the early detection of ID disorder.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
6-Pyruvoyl tetrahydropterin synthase (6-PTPS) is a lyase involved in the synthesis of tetrahydrobiopterin. In Plasmodium species where dihydroneopterin aldolase (DHNA) is absent, it acts in the folate biosynthetic pathway necessary for the growth and survival of the parasite. The 6-pyruvoyl tetrahydropterin synthase of Plasmodium falciparum (PfPTPS) has been identified as a potential antimalarial drug target. This study identified potential inhibitors of PfPTPS using molecular docking techniques. Molecular docking and virtual screening of 62 compounds including the control to the deposited Protein Data Bank (PDB) structure was carried out using AutoDock Vina in PyRx. Five of the compounds, N,N-dimethyl-N'-[4-oxo-6-(2,2,5-trimethyl-1,3-dioxolan-4-yl)-3H-pteridin-2-yl]methanimidamide (140296439), 2-amino-6-[(1R)-3-cyclohexyl-1-hydroxypropyl]-3H-pteridin-4-one (140296495), 2-(2,3-dihydroxypropyl)-8,9-dihydro-6H-pyrimido[2,1-b]pteridine-7,11-dione (144380406), 2-(dimethylamino)-6-[(2,2-dimethyl-1,3-dioxolan-4-yl)-hydroxymethyl]-3H-pteridin-4-one (135573878), and [1-acetyloxy-1-(2-methyl-4-oxo-3H-pteridin-6-yl)propan-2-yl] acetate (136075207), showed better binding affinity than the control ligand, biopterin (135449517), and were selected and screened. Three conformers of 140296439 with the binding energy of -7.2, -7.1, and -7.0 kcal/mol along with 140296495 were better than the control at -5.7 kcal/mol. In silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies predicted good pharmacokinetic properties of all the compounds while reporting a high risk of irritant toxicity in 140296439 and 144380406. The study highlights the five compounds, 140296439, 140296495, 144380406, 135573878 and 136075207, as potential inhibitors of PfPTPS and possible compounds for antimalarial drug development.
{"title":"Computational Studies on 6-Pyruvoyl Tetrahydropterin Synthase (6-PTPS) of <i>Plasmodium falciparum</i>.","authors":"Shalom N Chinedu, Mercy Bella-Omunagbe, Esther Okafor, Rufus Afolabi, Ezekiel Adebiyi","doi":"10.1177/11779322241230214","DOIUrl":"10.1177/11779322241230214","url":null,"abstract":"<p><p>6-Pyruvoyl tetrahydropterin synthase (6-PTPS) is a lyase involved in the synthesis of tetrahydrobiopterin. In <i>Plasmodium</i> species where dihydroneopterin aldolase (DHNA) is absent, it acts in the folate biosynthetic pathway necessary for the growth and survival of the parasite. The 6-pyruvoyl tetrahydropterin synthase of <i>Plasmodium falciparum</i> (<i>Pf</i>PTPS) has been identified as a potential antimalarial drug target. This study identified potential inhibitors of <i>Pf</i>PTPS using molecular docking techniques. Molecular docking and virtual screening of 62 compounds including the control to the deposited Protein Data Bank (PDB) structure was carried out using AutoDock Vina in PyRx. Five of the compounds, <i>N,N</i>-dimethyl-<i>N</i>'-[4-oxo-6-(2,2,5-trimethyl-1,3-dioxolan-4-yl)-3H-pteridin-2-yl]methanimidamide (140296439), 2-amino-6-[(1R)-3-cyclohexyl-1-hydroxypropyl]-3H-pteridin-4-one (140296495), 2-(2,3-dihydroxypropyl)-8,9-dihydro-6H-pyrimido[2,1-b]pteridine-7,11-dione (144380406), 2-(dimethylamino)-6-[(2,2-dimethyl-1,3-dioxolan-4-yl)-hydroxymethyl]-3H-pteridin-4-one (135573878), and [1-acetyloxy-1-(2-methyl-4-oxo-3H-pteridin-6-yl)propan-2-yl] acetate (136075207), showed better binding affinity than the control ligand, biopterin (135449517), and were selected and screened. Three conformers of 140296439 with the binding energy of -7.2, -7.1, and -7.0 kcal/mol along with 140296495 were better than the control at -5.7 kcal/mol. In silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies predicted good pharmacokinetic properties of all the compounds while reporting a high risk of irritant toxicity in 140296439 and 144380406. The study highlights the five compounds, 140296439, 140296495, 144380406, 135573878 and 136075207, as potential inhibitors of PfPTPS and possible compounds for antimalarial drug development.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139705932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}